Relationships between Grey Matter Volume in the Bilateral Superior Frontal Gyrus and Reactive Aggression Varied by Level of Traditional Masculinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. MRI Data Acquisition and Processing
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Behavioral Data Analysis
3.3. Brain Imaging Data Analysis
4. Discussion
4.1. The Relationship between Masculinity and RA/PA
4.2. Masculinity and RA Interacting on Bilateral SFG
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romero-Martínez, Á.; Sarrate-Costa, C.; Moya-Albiol, L. Reactive vs proactive aggression: A differential psychobiological profile? Conclusions derived from a systematic review. Neurosci. Biobehav. Rev. 2022, 136, 104626. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.A.; Bushman, B.J. Human aggression. Annu. Rev. Psychol. 2002, 53, 27–51. [Google Scholar] [CrossRef] [PubMed]
- Flanigan, M.E.; Russo, S.J. Recent advances in the study of aggression. Neuropsychopharmacology 2019, 44, 241–244. [Google Scholar] [CrossRef]
- Lozier, L.M.; Cardinale, E.M.; VanMeter, J.W.; Marsh, A.A. Mediation of the relationship between callous-unemotional traits and proactive aggression by amygdala response to fear among children with conduct problems. JAMA Psychiatry 2014, 71, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Blader, J.C.; Pliszka, S.R.; Kafantaris, V.; Foley, C.A.; Crowell, J.A.; Carlson, G.A.; Sauder, C.L.; Margulies, D.M.; Sinha, C.; Sverd, J.; et al. Callous-Unemotional Traits, Proactive Aggression, and Treatment Outcomes of Aggressive Children With Attention-Deficit/Hyperactivity Disorder. J. Am. Acad. Child Adolesc. Psychiatry 2013, 52, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Woodworth, M.; Porter, S. In cold blood: Characteristics of criminal homicides as a function of psychopathy. J. Abnorm. Psychol. 2002, 111, 436. [Google Scholar] [CrossRef] [PubMed]
- Reidy, D.E.; Shelley-Tremblay, J.F.; Lilienfeld, S.O. Psychopathy, reactive aggression, and precarious proclamations: A review of behavioral, cognitive, and biological research. Aggress. Violent Behav. 2011, 16, 512–524. [Google Scholar] [CrossRef]
- Katsiyannis, A.; Rapa, L.J.; Whitford, D.K.; Scott, S.N. An Examination of US School Mass Shootings, 2017–2022: Findings and Implications. Adv. Neurodev. Disord. 2022, 7, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Bem, S.L. The measurement of psychological androgyny. J. Consult. Clin. Psychol. 1974, 42, 155. [Google Scholar] [CrossRef]
- Pletzer, B.; Petasis, O.; Ortner, T.M.; Cahill, L. Interactive effects of culture and sex hormones on the sex role self-concept. Front. Neurosci. 2015, 9, 240. [Google Scholar] [CrossRef]
- Kite, M.E.; Deaux, K.; Haines, E.L. Gender stereotypes. In Psychology of Women: A Handbook of Issues and Theories, 2nd ed.; Praeger Publishers/Greenwood Publishing Group: Westport, CT, USA, 2008; pp. 205–236. [Google Scholar]
- Kupers, T.A. Toxic masculinity as a barrier to mental health treatment in prison. J. Clin. Psychol. 2005, 61, 713–724. [Google Scholar] [CrossRef]
- Deniz, P.; Lajunen, T.; Özkan, T.; Gaygısız, E. Masculinity, femininity, and angry drivers: Masculinity and femininity as moderators between driver anger and anger expression style among young drivers. Accid. Anal. Prev. 2021, 161, 106347. [Google Scholar] [CrossRef]
- Parrott, D.J.; Zeichner, A. Effects of hypermasculinity oh physical aggression against women. Psychol. Men Masculinity 2003, 4, 70–78. [Google Scholar] [CrossRef]
- Malonda, E.; Samper-García, P.; Llorca-Mestre, A.; Muñoz-Navarro, R.; Mestre-Escrivá, V. Traditional masculinity and aggression in adolescence: Its relationship with emotional processes. Int. J. Environ. Res. Public Health 2021, 18, 9802. [Google Scholar] [CrossRef]
- Walker, S.; Richardson, D.S.; Green, L.R. Aggression among older adults: The relationship of interaction networks and gender role to direct and indirect responses. Aggress. Behav. Off. J. Int. Soc. Res. Aggress. 2000, 26, 145–154. [Google Scholar] [CrossRef]
- Kinney, T.A.; Smith, B.A.; Donzella, B. The influence of sex, gender, self-discrepancies, and self-awareness on anger and verbal aggressiveness among U.S. college students. J. Soc. Psychol. 2001, 141, 245–275. [Google Scholar] [CrossRef]
- Liu, W.J.; Li, Z.; Ding, C.D.Y.; Wang, X.; Chen, H. A holistic view of gender traits and personality traits predict human health. Personal. Individ. Differ. 2024, 222, 112601. [Google Scholar] [CrossRef]
- Spence, J.T.; Helmreich, R.L.; Stapp, J. The Personal Attributes Questionnaire: A Measure of Sex Role Stereotypes and Masculinity-Femininity; University of Texas: Austin, TX, USA, 1974. [Google Scholar]
- Rauch, J.M.; Eliot, L. Breaking the binary: Gender versus sex analysis in human brain imaging. NeuroImage 2022, 264, 119732. [Google Scholar] [CrossRef]
- Riva, P.; Romero Lauro, L.J.; DeWall, C.N.; Chester, D.S.; Bushman, B.J. Reducing aggressive responses to social exclusion using transcranial direct current stimulation. Soc. Cogn. Affect. Neurosci. 2015, 10, 352–356. [Google Scholar] [CrossRef]
- Bobes, M.A.; Ostrosky, F.; Diaz, K.; Romero, C.; Borja, K.; Santos, Y.; Valdés-Sosa, M. Linkage of functional and structural anomalies in the left amygdala of reactive-aggressive men. Soc. Cogn. Affect. Neurosci. 2013, 8, 928–936. [Google Scholar] [CrossRef]
- Naaijen, J.; Mulder, L.M.; Ilbegi, S.; de Bruijn, S.; Kleine-Deters, R.; Dietrich, A.; Hoekstra, P.J.; Marsman, J.-B.C.; Aggensteiner, P.M.; Holz, N.E. Specific cortical and subcortical alterations for reactive and proactive aggression in children and adolescents with disruptive behavior. Neuroimage Clin. 2020, 27, 102344. [Google Scholar] [CrossRef]
- Coccaro, E.F.; Fitzgerald, D.A.; Lee, R.; McCloskey, M.; Phan, K.L. Frontolimbic Morphometric Abnormalities in Intermittent Explosive Disorder and Aggression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2016, 1, 32–38. [Google Scholar] [CrossRef]
- Yang, Y.; Joshi, S.H.; Jahanshad, N.; Thompson, P.M.; Baker, L.A. Neural correlates of proactive and reactive aggression in adolescent twins. Aggress. Behav. 2017, 43, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhou, X.; Xia, L.-X. Brain structures and functional connectivity associated with individual differences in trait proactive aggression. Sci. Rep. 2019, 9, 7731. [Google Scholar] [CrossRef]
- Farah, T.; Ling, S.; Raine, A.; Yang, Y.; Schug, R. Alexithymia and reactive aggression: The role of the amygdala. Psychiatry Res. Neuroimaging 2018, 281, 85–91. [Google Scholar] [CrossRef]
- Li, Q.; Xiang, G.; Song, S.; Xiao, M.; Chen, H. Trait self-control mediates the association between resting-state neural correlates and emotional well-being in late adolescence. Soc. Cogn. Affect. Neurosci. 2021, 16, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Norvilitis, J.M.; Jin, S. Measuring Gender Orientation with the Bem Sex Role Inventory in Chinese Culture. Sex Roles 2001, 44, 237–251. [Google Scholar] [CrossRef]
- Lo, I.P.Y.; Kim, Y.K.; Small, E.; Chan, C.H.Y. The Gendered Self of Chinese Lesbians: Self-Esteem as a Mediator Between Gender Roles and Depression. Arch. Sex. Behav. 2019, 48, 1543–1554. [Google Scholar] [CrossRef]
- Malonda, E.; Llorca, A.; Zarco Alpuente, A.; Samper, P.; Mestre, V. Linking Traditional Masculinity, Aggression, and Violence. In Handbook of Anger, Aggression, and Violence; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–26. [Google Scholar] [CrossRef]
- Haines, E.L.; Deaux, K.; Lofaro, N. The times they are a-changing… or are they not? A comparison of gender stereotypes, 1983–2014. Psychol. Women Q. 2016, 40, 353–363. [Google Scholar] [CrossRef]
- Raine, A.; Dodge, K.; Loeber, R.; Gatzke-Kopp, L.; Lynam, D.; Reynolds, C.; Stouthamer-Loeber, M.; Liu, J. The reactive–proactive aggression questionnaire: Differential correlates of reactive and proactive aggression in adolescent boys. Aggress. Behav. Off. J. Int. Soc. Res. Aggress. 2006, 32, 159–171. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, S.; Zhang, Q.; Xia, L.-X. The longitudinal relationship between angry rumination and reactive–proactive aggression and the moderation effect of consideration of future consequences-immediate. Aggress. Behav. 2020, 46, 476–488. [Google Scholar] [CrossRef]
- Chen, X.; Gao, X.; Qin, J.; Wang, C.; Xiao, M.; Tian, Y.; Luo, Y.-j.; Qiu, J.; Feng, T.; He, Q.; et al. Resting-state functional network connectivity underlying eating disorder symptoms in healthy young adults. NeuroImage Clin. 2021, 30, 102671. [Google Scholar] [CrossRef]
- Zaremba, D.; Enneking, V.; Meinert, S.; Foerster, K.; Buerger, C.; Dohm, K.; Grotegerd, D.; Redlich, R.; Dietsche, B.; Krug, A.; et al. Effects of cumulative illness severity on hippocampal gray matter volume in major depression: A voxel-based morphometry study. Psychol. Med. 2018, 48, 2391–2398. [Google Scholar] [CrossRef] [PubMed]
- Senjem, M.L.; Gunter, J.L.; Shiung, M.M.; Petersen, R.C.; Jack, C.R. Comparison of different methodological implementations of voxel-based morphometry in neurodegenerative disease. Neuroimage 2005, 26, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Friston, K.J. Unified segmentation. Neuroimage 2005, 26, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 2007, 38, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Vega, D.; Ripolles, P.; Soto, A.; Torrubia, R.; Ribas, J.; Monreal, J.A.; Pascual, J.C.; Salvador, R.; Pomarol-Clotet, E.; Rodriguez-Fornells, A.; et al. Orbitofrontal overactivation in reward processing in borderline personality disorder: The role of non-suicidal self-injury. Brain Imaging Behav. 2018, 12, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Yokota, S.; Takeuchi, H.; Asano, K.; Asano, M.; Sassa, Y.; Taki, Y.; Kawashima, R. Increased grey matter volume of the right superior temporal gyrus in healthy children with autistic cognitive style: A VBM study. Brain Cogn. 2020, 139, 105514. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, C.; Zhao, Y.; Lai, H.; Zhang, L.; Gong, Q. Sex-linked neurofunctional basis of psychological resilience in late adolescence: A resting-state functional magnetic resonance imaging study. Eur. Child Adolesc. Psychiatry 2020, 29, 1075–1087. [Google Scholar] [CrossRef]
- Kong, F.; Zhen, Z.; Li, J.; Huang, L.; Wang, X.; Song, Y.; Liu, J. Sex-Related Neuroanatomical Basis of Emotion Regulation Ability. PLoS ONE 2014, 9, e97071. [Google Scholar] [CrossRef]
- Hayes, A.F. PROCESS: A Versatile Computational Tool for Observed Variable Mediation, Moderation, and Conditional Process Modeling; University of Kansas: Lawrence, KS, USA, 2012. [Google Scholar]
- Dai, Z.; Yan, C.; Li, K.; Wang, Z.; Wang, J.; Cao, M.; Lin, Q.; Shu, N.; Xia, M.; Bi, Y.; et al. Identifying and Mapping Connectivity Patterns of Brain Network Hubs in Alzheimer’s Disease. Cereb. Cortex 2015, 25, 3723–3742. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.-G.; Wang, X.-D.; Zuo, X.-N.; Zang, Y.-F. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 2016, 14, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Li, H.; Li, J.B.; Zeng, H.; Zhang, Y.; Deng, W.; Zhou, W.; Cao, L. Altered cerebellar gray matter and cerebellar-cortex resting-state functional connectivity in patients with bipolar disorder Ⅰ. J. Affect. Disord. 2022, 302, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Qian, A.; Tao, J.; Zhou, R.; Fu, C.; Yang, C.; Lin, Q.; Zhou, J.; Li, J.; Huang, X. Different effects of the DRD4 genotype on intrinsic brain network connectivity strength in drug-naive children with ADHD and healthy controls. Brain Imaging Behav. 2022, 16, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Besteher, B.; Squarcina, L.; Spalthoff, R.; Bellani, M.; Gaser, C.; Brambilla, P.; Nenadić, I. Brain structural correlates of irritability: Findings in a large healthy cohort. Hum. Brain Mapp. 2017, 38, 6230–6238. [Google Scholar] [CrossRef] [PubMed]
- Chou, M.-C.; Cheng, T.-C.; Yang, P.; Lin, R.-C.; Wu, M.-T. Changes of Brain Structures and Psychological Characteristics in Predatory, Affective Violent and Nonviolent Offenders. Tomography 2022, 8, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.-Z.; Huang, H.-X.; Jia, F.-Q.; Gong, Q.; Huang, Q.; Li, X. A new sex-role inventory (CSRI-50) indicates changes of sex role among Chinese college students. Acta Psychol. Sin. 2011, 43, 639–649. [Google Scholar]
- Aoki, Y.; Inokuchi, R.; Nakao, T.; Yamasue, H. Neural bases of antisocial behavior: A voxel-based meta-analysis. Soc. Cogn. Affect. Neurosci. 2013, 9, 1223–1231. [Google Scholar] [CrossRef]
- Rogers, J.C.; De Brito, S.A. Cortical and subcortical gray matter volume in youths with conduct problems: A meta-analysis. JAMA Psychiatry 2016, 73, 64–72. [Google Scholar] [CrossRef]
- Hu, S.; Ide, J.S.; Zhang, S.; Chiang-shan, R.L. The right superior frontal gyrus and individual variation in proactive control of impulsive response. J. Neurosci. 2016, 36, 12688–12696. [Google Scholar] [CrossRef]
- Padgett, J.K.; Tremblay, P.F. Gender Differences in Aggression. In The Wiley Encyclopedia of Personality and Individual Differences; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 173–177. [Google Scholar] [CrossRef]
- Lobbestael, J.; Cima, M.; Lemmens, A. The relationship between personality disorder traits and reactive versus proactive motivation for aggression. Psychiatry Res. 2015, 229, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Hsu, N.; Badura, K.L.; Newman, D.A.; Speach, M.E.P. Gender,“masculinity,” and “femininity”: A meta-analytic review of gender differences in agency and communion. Psychol. Bull. 2021, 147, 987. [Google Scholar] [CrossRef]
- Alegria, A.A.; Radua, J.; Rubia, K. Meta-Analysis of fMRI Studies of Disruptive Behavior Disorders. Am. J. Psychiatry 2016, 173, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Chester, D.S. Aggression as successful self-control. Soc. Personal. Psychol. Compass 2024, 18, e12832. [Google Scholar] [CrossRef]
- Mu, S.H.; Xu, M.; Duan, J.X.; Zhang, J.; Tan, L.H. Localizing Age-Related Changes in Brain Structure Using Voxel-Based Morphometry. Neural Plast. 2017, 2017, 6303512. [Google Scholar] [CrossRef] [PubMed]
- Pardini, D.A.; Raine, A.; Erickson, K.; Loeber, R. Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biol. Psychiatry 2014, 75, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Fanning, J.R.; Keedy, S.; Berman, M.E.; Lee, R.; Coccaro, E.F. Neural Correlates of Aggressive Behavior in Real Time: A Review of fMRI Studies of Laboratory Reactive Aggression. Curr. Behav. Neurosci. Rep. 2017, 4, 138–150. [Google Scholar] [CrossRef]
- Matthies, S.; Rüsch, N.; Weber, M.; Lieb, K.; Philipsen, A.; Tuescher, O.; Ebert, D.; Hennig, J.; van Elst, L.T. Small amygdala—High aggression? The role of the amygdala in modulating aggression in healthy subjects. World J. Biol. Psychiatry 2012, 13, 75–81. [Google Scholar] [CrossRef]
- Hodgetts, S.; Hausmann, M. Sex/gender differences in the human brain. In Encyclopedia of Behavioral Neuroscience, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
Variables | Mean (SD) | Range | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|
1. Age | 19.14 (0.99) | 17.06–25.88 | ||||
2. Masculinity | 4.50 (0.77) | 2.05–6.70 | 0.04 | |||
3. Femininity | 4.76 (0.69) | 2.50–6.80 | 0.01 | 0.54 *** | ||
4. Reactive aggression | 6.94 (3.92) | 0–20 | 0.01 | −0.03 | −0.18 *** | |
5. Proactive aggression | 1.31 (2.55) | 0–16 | 0.04 | 0.05 | −0.15 *** | 0.43 *** |
ΔR2 | F | β | VIF | ||
---|---|---|---|---|---|
Dependent variable | Reactive aggression | ||||
Model 1 | Masculinity | <0.001 | 0.66 | −0.03 | 1.00 |
Model 2 | Masculinity | 0.04 | 14.01 *** | 0.09 * | 1.41 |
Femininity | −0.23 *** | 1.41 | |||
Dependent variable | Proactive aggression | ||||
Model 3 | Masculinity | <0.005 | 1.82 | 0.05 | 1.00 |
Model 4 | Masculinity | 0.05 | 17.85 *** | 0.19 *** | 1.41 |
Femininity | −0.25 *** | 1.41 |
Coordinates | ||||||
---|---|---|---|---|---|---|
Anatomical Region | Hemisphere | Cluster Size | x | y | z | F |
STG | Left | 103 | −19.5 | 22.5 | 48 | 15.18 |
STG | Right | 72 | 19.5 | 21 | 61.5 | 15.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Ding, C.; Li, Z.; Chen, H. Relationships between Grey Matter Volume in the Bilateral Superior Frontal Gyrus and Reactive Aggression Varied by Level of Traditional Masculinity. Brain Sci. 2024, 14, 605. https://doi.org/10.3390/brainsci14060605
Liu W, Ding C, Li Z, Chen H. Relationships between Grey Matter Volume in the Bilateral Superior Frontal Gyrus and Reactive Aggression Varied by Level of Traditional Masculinity. Brain Sciences. 2024; 14(6):605. https://doi.org/10.3390/brainsci14060605
Chicago/Turabian StyleLiu, Weijun, Cody Ding, Ziang Li, and Hong Chen. 2024. "Relationships between Grey Matter Volume in the Bilateral Superior Frontal Gyrus and Reactive Aggression Varied by Level of Traditional Masculinity" Brain Sciences 14, no. 6: 605. https://doi.org/10.3390/brainsci14060605
APA StyleLiu, W., Ding, C., Li, Z., & Chen, H. (2024). Relationships between Grey Matter Volume in the Bilateral Superior Frontal Gyrus and Reactive Aggression Varied by Level of Traditional Masculinity. Brain Sciences, 14(6), 605. https://doi.org/10.3390/brainsci14060605