Comparison between Single-Dose and Two-Dose Psilocybin Administration in the Treatment of Major Depression: A Systematic Review and Meta-Analysis of Current Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources and Research Strategies
2.2. Eligibility Criteria
- Language: only articles in English were selected. This is for uniformity with other systematic reviews in the literature.
- Population: as it was the aim of this systematic review to investigate the efficacy of psilocybin with a focus on MDD, it was considered necessary to select only the population with a primary diagnosis of MDD, including subjects with TRD, a label of MDD itself.
- Types of studies: only data from clinical trials conducted on humans were taken into account.
- Intervention: only those studies involving the administration of a single dose or two doses of psilocybin were included, regardless of the specific dosage and mode of administration.
- Outcome: only studies that assessed a possible decrease in the severity of depressive symptoms among participants using standardized instruments were included.
- Comparison: the presence of one or more control groups that were treated with active (e.g., niacin) or standard placebo (e.g., saline) was not mandatory for inclusion.
- Population: trials with participants who did not report a diagnosis of MDD or reported it as a secondary diagnosis to other psychiatric disorders or other conditions of organic nature (e.g., cancer) were excluded.
- Types of studies: clinical trials performed on animal models, case studies, and systematic reviews were excluded.
- Intervention: studies in which other psychedelics than psilocybin, e.g., mescaline or bufotenine, were administered to patients were excluded, as well as studies involving no or more than two doses of psilocybin.
- Outcome: trial studies that did not include scales measuring depressive symptoms or in which timepoints were missing were excluded.
2.3. Study Screening and Selection Process
2.4. Data Extraction Process
2.5. Risk of Bias in Individual Studies
2.6. Statistical Analysis
3. Results
3.1. Risk of Bias Assessment
3.2. Sample Demographics
3.3. Effects of a Single Dose of Psilocybin on Depressive Symptoms
3.4. Effects of a Two-Dose Psilocybin Administration on Depressive Symptoms
3.5. Single-Dose versus Two-Dose Psilocybin Administration on Depressive Symptoms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bromet, E.; Andrade, L.H.; Hwang, I.; Sampson, N.A.; Alonso, J.; de Girolamo, G.; de Graaf, R.; Demyttenaere, K.; Hu, C.; Iwata, N.; et al. Cross-National Epidemiology of DSM-IV Major Depressive Episode. BMC Med. 2011, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.J.; Somerville, A.J.; Baxter, A.J.; Norman, R.; Patten, S.B.; Vos, T.; Whiteford, H.A. Global Variation in the Prevalence and Incidence of Major Depressive Disorder: A Systematic Review of the Epidemiological Literature. Psychol. Med. 2013, 43, 471–481. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5-TR, 5th ed.; Text Revision; American Psychiatric Association: Arlington, VA, USA, 2022. [Google Scholar]
- GBD 2019 Mental Disorders Collaborators. Global, Regional, and National Burden of 12 Mental Disorders in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [Google Scholar] [CrossRef]
- Greenberg, P.E.; Fournier, A.-A.; Sisitsky, T.; Simes, M.; Berman, R.; Koenigsberg, S.H.; Kessler, R.C. The Economic Burden of Adults with Major Depressive Disorder in the United States (2010 and 2018). PharmacoEconomics 2021, 39, 653–665. [Google Scholar] [CrossRef]
- Karrouri, R.; Hammani, Z.; Benjelloun, R.; Otheman, Y. Major Depressive Disorder: Validated Treatments and Future Challenges. World J. Clin. Cases 2021, 9, 9350–9367. [Google Scholar] [CrossRef]
- Fava, M.; Davidson, K.G. Definition and Epidemiology of Treatment-Resistant Depression. Psychiatr. Clin. N. Am. 1996, 19, 179–200. [Google Scholar] [CrossRef] [PubMed]
- Gaynes, B.N.; Lux, L.; Gartlehner, G.; Asher, G.; Forman-Hoffman, V.; Green, J.; Boland, E.; Weber, R.P.; Randolph, C.; Bann, C.; et al. Defining Treatment-Resistant Depression. Depress. Anxiety 2020, 37, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Dodd, S.; Bauer, M.; Carvalho, A.F.; Eyre, H.; Fava, M.; Kasper, S.; Kennedy, S.H.; Khoo, J.-P.; Lopez Jaramillo, C.; Malhi, G.S.; et al. A Clinical Approach to Treatment Resistance in Depressed Patients: What to Do When the Usual Treatments Don’t Work Well Enough? World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2021, 22, 483–494. [Google Scholar] [CrossRef]
- Monteiro, W.O.; Noshirvani, H.F.; Marks, I.M.; Lelliott, P.T. Anorgasmia from Clomipramine in Obsessive-Compulsive Disorder. A Controlled Trial. Br. J. Psychiatry J. Ment. Sci. 1987, 151, 107–112. [Google Scholar] [CrossRef]
- Montejo, A.I.; Llorca, G.; Izquierdo, J.A.; Ledesma, A.; Bousoño, M.; Calcedo, A.; Carrasco, J.L.; Daniel, E.; de Dios, A.; de la Gándara, J.; et al. Sexual dysfunction secondary to SSRIs. A comparative analysis in 308 patients. Actas Luso. Esp. Neurol. Psiquiatr. Cienc. Afines 1996, 24, 311–321. [Google Scholar]
- Goldstein, B.J.; Goodnick, P.J. Selective Serotonin Reuptake Inhibitors in the Treatment of Affective Disorders—III. Tolerability, Safety and Pharmacoeconomics. J. Psychopharmacol. 1998, 12, S55–S87. [Google Scholar] [CrossRef] [PubMed]
- De Wilde, J.; Spiers, R.; Mertens, C.; Bartholomé, F.; Schotte, G.; Leyman, S. A Double-Blind, Comparative, Multicentre Study Comparing Paroxetine with Fluoxetine in Depressed Patients. Acta Psychiatr. Scand. 1993, 87, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Sussman, N.; Ginsberg, D. Rethinking Side Effects of the Selective Serotonin Reuptake Inhibitors: Sexual Dysfunction and Weight Gain. Psychiatr. Ann. 1998, 28, 89–97. [Google Scholar] [CrossRef]
- Haddad, P. The SSRI Discontinuation Syndrome. J. Psychopharmacol. 1998, 12, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Culpepper, L. Early Onset of Antidepressant Action: Impact on Primary Care. J. Clin. Psychiatry 2001, 62 (Suppl. S4), 4–6; discussion 37-40. [Google Scholar] [PubMed]
- Greden, J.F. Unmet Need: What Justifies the Search for a New Antidepressant? J. Clin. Psychiatry 2002, 63 (Suppl. S2), 3–7. [Google Scholar]
- Fergusson, D.; Doucette, S.; Glass, K.C.; Shapiro, S.; Healy, D.; Hebert, P.; Hutton, B. Association between Suicide Attempts and Selective Serotonin Reuptake Inhibitors: Systematic Review of Randomised Controlled Trials. BMJ 2005, 330, 396. [Google Scholar] [CrossRef] [PubMed]
- Gunnell, D.; Saperia, J.; Ashby, D. Selective Serotonin Reuptake Inhibitors (SSRIs) and Suicide in Adults: Meta-Analysis of Drug Company Data from Placebo Controlled, Randomised Controlled Trials Submitted to the MHRA’s Safety Review. BMJ 2005, 330, 385. [Google Scholar] [CrossRef] [PubMed]
- Hammad, T.A.; Laughren, T.P.; Racoosin, J.A. Suicide Rates in Short-Term Randomized Controlled Trials of Newer Antidepressants. J. Clin. Psychopharmacol. 2006, 26, 203–207. [Google Scholar] [CrossRef]
- Khan, A.; Warner, H.A.; Brown, W.A. Symptom Reduction and Suicide Risk in Patients Treated with Placebo in Antidepressant Clinical Trials: An Analysis of the Food and Drug Administration Database. Arch. Gen. Psychiatry 2000, 57, 311–317. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.R.; Leventhal, R.M.; Brown, W.A. Symptom Reduction and Suicide Risk in Patients Treated with Placebo in Antidepressant Clinical Trials: A Replication Analysis of the Food and Drug Administration Database. Int. J. Neuropsychopharmacol. 2001, 4, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Khan, S.; Kolts, R.; Brown, W.A. Suicide Rates in Clinical Trials of SSRIs, Other Antidepressants, and Placebo: Analysis of FDA Reports. Am. J. Psychiatry 2003, 160, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; Ceban, F.; Lui, L.M.W.; Lee, Y.; Teopiz, K.M.; Rodrigues, N.B.; Lipsitz, O.; Gill, H.; Subramaniapillai, M.; Mansur, R.B.; et al. Molecular Mechanisms of Psilocybin and Implications for the Treatment of Depression. CNS Drugs 2022, 36, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Geiger, H.A.; Wurst, M.G.; Daniels, R.N. DARK Classics in Chemical Neuroscience: Psilocybin. ACS Chem. Neurosci. 2018, 9, 2438–2447. [Google Scholar] [CrossRef] [PubMed]
- Vollenweider, F.X.; Vollenweider-Scherpenhuyzen, M.F.; Bäbler, A.; Vogel, H.; Hell, D. Psilocybin Induces Schizophrenia-like Psychosis in Humans via a Serotonin-2 Agonist Action. Neuroreport 1998, 9, 3897–3902. [Google Scholar] [CrossRef] [PubMed]
- Moliner, R.; Girych, M.; Brunello, C.A.; Kovaleva, V.; Biojone, C.; Enkavi, G.; Antenucci, L.; Kot, E.F.; Goncharuk, S.A.; Kaurinkoski, K.; et al. Psychedelics Promote Plasticity by Directly Binding to BDNF Receptor TrkB. Nat. Neurosci. 2023, 26, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Lamanna, J.; Isotti, F.; Ferro, M.; Spadini, S.; Racchetti, G.; Musazzi, L.; Malgaroli, A. Occlusion of Dopamine-Dependent Synaptic Plasticity in the Prefrontal Cortex Mediates the Expression of Depressive-like Behavior and Is Modulated by Ketamine. Sci. Rep. 2022, 12, 11055. [Google Scholar] [CrossRef] [PubMed]
- Krystal, J.H.; Kavalali, E.T.; Monteggia, L.M. Ketamine and Rapid Antidepressant Action: New Treatments and Novel Synaptic Signaling Mechanisms. Neuropsychopharmacology 2024, 49, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Carhart-Harris, R.; Giribaldi, B.; Watts, R.; Baker-Jones, M.; Murphy-Beiner, A.; Murphy, R.; Martell, J.; Blemings, A.; Erritzoe, D.; Nutt, D.J. Trial of Psilocybin versus Escitalopram for Depression. N. Engl. J. Med. 2021, 384, 1402–1411. [Google Scholar] [CrossRef]
- Nikolin, S.; Rodgers, A.; Schwaab, A.; Bahji, A.; Zarate, C.J.; Vazquez, G.; Loo, C. Ketamine for the Treatment of Major Depression: A Systematic Review and Meta-Analysis. EClinicalMedicine 2023, 62, 102127. [Google Scholar] [CrossRef]
- Yavi, M.; Lee, H.; Henter, I.D.; Park, L.T.; Zarate, C.A.J. Ketamine Treatment for Depression: A Review. Discov. Ment. Health 2022, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Psiuk, D.; Nowak, E.M.; Dycha, N.; Łopuszańska, U.; Kurzepa, J.; Samardakiewicz, M. Esketamine and Psilocybin-The Comparison of Two Mind-Altering Agents in Depression Treatment: Systematic Review. Int. J. Mol. Sci. 2022, 23, 1450. [Google Scholar] [CrossRef]
- Kopra, E.I.; Ferris, J.A.; Winstock, A.R.; Young, A.H.; Rucker, J.J. Adverse Experiences Resulting in Emergency Medical Treatment Seeking Following the Use of Magic Mushrooms. J. Psychopharmacol. 2022, 36, 965–973. [Google Scholar] [CrossRef]
- Yerubandi, A.; Thomas, J.E.; Bhuiya, N.M.M.A.; Harrington, C.; Villa Zapata, L.; Caballero, J. Acute Adverse Effects of Therapeutic Doses of Psilocybin: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2024, 7, e245960. [Google Scholar] [CrossRef]
- Johnson, M.W.; Griffiths, R.R.; Hendricks, P.S.; Henningfield, J.E. The Abuse Potential of Medical Psilocybin According to the 8 Factors of the Controlled Substances Act. Neuropharmacology 2018, 142, 143–166. [Google Scholar] [CrossRef] [PubMed]
- van Amsterdam, J.; Opperhuizen, A.; van den Brink, W. Harm Potential of Magic Mushroom Use: A Review. Regul. Toxicol. Pharmacol. RTP 2011, 59, 423–429. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente Revenga, M.; Jaster, A.M.; McGinn, J.; Silva, G.; Saha, S.; González-Maeso, J. Tolerance and Cross-Tolerance among Psychedelic and Nonpsychedelic 5-HT(2A) Receptor Agonists in Mice. ACS Chem. Neurosci. 2022, 13, 2436–2448. [Google Scholar] [CrossRef]
- Brown, R.T.; Nicholas, C.R.; Cozzi, N.V.; Gassman, M.C.; Cooper, K.M.; Muller, D.; Thomas, C.D.; Hetzel, S.J.; Henriquez, K.M.; Ribaudo, A.S.; et al. Pharmacokinetics of Escalating Doses of Oral Psilocybin in Healthy Adults. Clin. Pharmacokinet. 2017, 56, 1543–1554. [Google Scholar] [CrossRef]
- Husain, M.I.; Blumberger, D.M.; Castle, D.J.; Ledwos, N.; Fellows, E.; Jones, B.D.M.; Ortiz, A.; Kloiber, S.; Wang, W.; Rosenblat, J.D.; et al. Psilocybin for Treatment-Resistant Depression without Psychedelic Effects: Study Protocol for a 4-Week, Double-Blind, Proof-of-Concept Randomised Controlled Trial. BJPsych Open 2023, 9, e134. [Google Scholar] [CrossRef]
- Rucker, J.; Jafari, H.; Mantingh, T.; Bird, C.; Modlin, N.L.; Knight, G.; Reinholdt, F.; Day, C.; Carter, B.; Young, A. Psilocybin-Assisted Therapy for the Treatment of Resistant Major Depressive Disorder (PsiDeR): Protocol for a Randomised, Placebo-Controlled Feasibility Trial. BMJ Open 2021, 11, e056091. [Google Scholar] [CrossRef]
- Dodd, S.; Norman, T.R.; Eyre, H.A.; Stahl, S.M.; Phillips, A.; Carvalho, A.F.; Berk, M. Psilocybin in Neuropsychiatry: A Review of Its Pharmacology, Safety, and Efficacy. CNS Spectr. 2022, 28, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Breeksema, J.J.; Niemeijer, A.; Krediet, E.; Karsten, T.; Kamphuis, J.; Vermetten, E.; van den Brink, W.; Schoevers, R. Patient Perspectives and Experiences with Psilocybin Treatment for Treatment-Resistant Depression: A Qualitative Study. Sci. Rep. 2024, 14, 2929. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Richards, W.; Griffiths, R. Human Hallucinogen Research: Guidelines for Safety. J. Psychopharmacol. 2008, 22, 603–620. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-L.; Liang, C.-S.; Yang, F.-C.; Tu, Y.-K.; Hsu, C.-W.; Carvalho, A.F.; Stubbs, B.; Thompson, T.; Tsai, C.-K.; Yeh, T.-C.; et al. Trajectory of Antidepressant Effects after Single- or Two-Dose Administration of Psilocybin: A Systematic Review and Multivariate Meta-Analysis. J. Clin. Med. 2022, 11, 938. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A Comparison Study of Specificity and Sensitivity in Three Search Tools for Qualitative Systematic Reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef] [PubMed]
- Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomised Studies of Interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring Inconsistency in Meta-Analyses. BMJ 2003, 327, 557. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629. [Google Scholar] [CrossRef]
- Agrawal, M.; Richards, W.; Beaussant, Y.; Shnayder, S.; Ameli, R.; Roddy, K.; Stevens, N.; Richards, B.; Schor, N.; Honstein, H.; et al. Psilocybin-Assisted Group Therapy in Patients with Cancer Diagnosed with a Major Depressive Disorder. Cancer 2024, 130, 1137–1146. [Google Scholar] [CrossRef]
- Griffiths, R.R.; Johnson, M.W.; Carducci, M.A.; Umbricht, A.; Richards, W.A.; Richards, B.D.; Cosimano, M.P.; Klinedinst, M.A. Psilocybin Produces Substantial and Sustained Decreases in Depression and Anxiety in Patients with Life-Threatening Cancer: A Randomized Double-Blind Trial. J. Psychopharmacol. 2016, 30, 1181–1197. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.; Bossis, A.; Guss, J.; Agin-Liebes, G.; Malone, T.; Cohen, B.; Mennenga, S.E.; Belser, A.; Kalliontzi, K.; Babb, J.; et al. Rapid and Sustained Symptom Reduction Following Psilocybin Treatment for Anxiety and Depression in Patients with Life-Threatening Cancer: A Randomized Controlled Trial. J. Psychopharmacol. 2016, 30, 1165–1180. [Google Scholar] [CrossRef]
- Barba, T.; Buehler, S.; Kettner, H.; Radu, C.; Cunha, B.G.; Nutt, D.J.; Erritzoe, D.; Roseman, L.; Carhart-Harris, R. Effects of Psilocybin versus Escitalopram on Rumination and Thought Suppression in Depression. BJPsych Open 2022, 8, e163. [Google Scholar] [CrossRef] [PubMed]
- Doss, M.K.; Považan, M.; Rosenberg, M.D.; Sepeda, N.D.; Davis, A.K.; Finan, P.H.; Smith, G.S.; Pekar, J.J.; Barker, P.B.; Griffiths, R.R.; et al. Psilocybin Therapy Increases Cognitive and Neural Flexibility in Patients with Major Depressive Disorder. Transl. Psychiatry 2021, 11, 574. [Google Scholar] [CrossRef]
- Goodwin, G.M.; Aaronson, S.T.; Alvarez, O.; Atli, M.; Bennett, J.C.; Croal, M.; DeBattista, C.; Dunlop, B.W.; Feifel, D.; Hellerstein, D.J.; et al. Single-Dose Psilocybin for a Treatment-Resistant Episode of Major Depression: Impact on Patient-Reported Depression Severity, Anxiety, Function, and Quality of Life. J. Affect. Disord. 2023, 327, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Roseman, L.; Nutt, D.J.; Carhart-Harris, R.L. Quality of Acute Psychedelic Experience Predicts Therapeutic Efficacy of Psilocybin for Treatment-Resistant Depression. Front. Pharmacol. 2017, 8, 974. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Bolstridge, M.; Rucker, J.; Day, C.M.J.; Erritzoe, D.; Kaelen, M.; Bloomfield, M.; Rickard, J.A.; Forbes, B.; Feilding, A.; et al. Psilocybin with Psychological Support for Treatment-Resistant Depression: An Open-Label Feasibility Study. Lancet Psychiatry 2016, 3, 619–627. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Roseman, L.; Bolstridge, M.; Demetriou, L.; Pannekoek, J.N.; Wall, M.B.; Tanner, M.; Kaelen, M.; McGonigle, J.; Murphy, K.; et al. Psilocybin for Treatment-Resistant Depression: fMRI-Measured Brain Mechanisms. Sci. Rep. 2017, 7, 13187. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Bolstridge, M.; Day, C.M.J.; Rucker, J.; Watts, R.; Erritzoe, D.E.; Kaelen, M.; Giribaldi, B.; Bloomfield, M.; Pilling, S.; et al. Psilocybin with Psychological Support for Treatment-Resistant Depression: Six-Month Follow-Up. Psychopharmacology 2018, 235, 399–408. [Google Scholar] [CrossRef]
- Davis, A.K.; Barrett, F.S.; May, D.G.; Cosimano, M.P.; Sepeda, N.D.; Johnson, M.W.; Finan, P.H.; Griffiths, R.R. Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder: A Randomized Clinical Trial. JAMA Psychiatry 2021, 78, 481–489. [Google Scholar] [CrossRef]
- Goodwin, G.M.; Croal, M.; Feifel, D.; Kelly, J.R.; Marwood, L.; Mistry, S.; O’Keane, V.; Peck, S.K.; Simmons, H.; Sisa, C.; et al. Psilocybin for Treatment Resistant Depression in Patients Taking a Concomitant SSRI Medication. Neuropsychopharmacology 2023, 48, 1492–1499. [Google Scholar] [CrossRef]
- Goodwin, G.M.; Aaronson, S.T.; Alvarez, O.; Arden, P.C.; Baker, A.; Bennett, J.C.; Bird, C.; Blom, R.E.; Brennan, C.; Brusch, D.; et al. Single-Dose Psilocybin for a Treatment-Resistant Episode of Major Depression. N. Engl. J. Med. 2022, 387, 1637–1648. [Google Scholar] [CrossRef]
- Gukasyan, N.; Davis, A.K.; Barrett, F.S.; Cosimano, M.P.; Sepeda, N.D.; Johnson, M.W.; Griffiths, R.R. Efficacy and Safety of Psilocybin-Assisted Treatment for Major Depressive Disorder: Prospective 12-Month Follow-Up. J. Psychopharmacol. 2022, 36, 151–158. [Google Scholar] [CrossRef]
- Lyons, T.; Carhart-Harris, R.L. More Realistic Forecasting of Future Life Events After Psilocybin for Treatment-Resistant Depression. Front. Psychol. 2018, 9, 1721. [Google Scholar] [CrossRef]
- Raison, C.L.; Sanacora, G.; Woolley, J.; Heinzerling, K.; Dunlop, B.W.; Brown, R.T.; Kakar, R.; Hassman, M.; Trivedi, R.P.; Robison, R.; et al. Single-Dose Psilocybin Treatment for Major Depressive Disorder: A Randomized Clinical Trial. JAMA 2023, 330, 843–853. [Google Scholar] [CrossRef]
- Sloshower, J.; Skosnik, P.D.; Safi-Aghdam, H.; Pathania, S.; Syed, S.; Pittman, B.; D’Souza, D.C. Psilocybin-Assisted Therapy for Major Depressive Disorder: An Exploratory Placebo-Controlled, Fixed-Order Trial. J. Psychopharmacol. 2023, 37, 698–706. [Google Scholar] [CrossRef]
- Von Rotz, R.; Schindowski, E.M.; Jungwirth, J.; Schuldt, A.; Rieser, N.M.; Zahoranszky, K.; Seifritz, E.; Nowak, A.; Nowak, P.; Jäncke, L.; et al. Single-Dose Psilocybin-Assisted Therapy in Major Depressive Disorder: A Placebo-Controlled, Double-Blind, Randomised Clinical Trial. EClinicalMedicine 2023, 56, 101809. [Google Scholar] [CrossRef]
- Fang, S.; Yang, X.; Zhang, W. Efficacy and Acceptability of Psilocybin for Primary or Secondary Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Psychiatry 2024, 15, 1359088. [Google Scholar] [CrossRef]
- Haikazian, S.; Chen-Li, D.C.J.; Johnson, D.E.; Fancy, F.; Levinta, A.; Husain, M.I.; Mansur, R.B.; McIntyre, R.S.; Rosenblat, J.D. Psilocybin-Assisted Therapy for Depression: A Systematic Review and Meta-Analysis. Psychiatry Res. 2023, 329, 115531. [Google Scholar] [CrossRef]
- Metaxa, A.-M.; Clarke, M. Efficacy of Psilocybin for Treating Symptoms of Depression: Systematic Review and Meta-Analysis. BMJ 2024, 385, e078084. [Google Scholar] [CrossRef]
- Li, N.-X.; Hu, Y.-R.; Chen, W.-N.; Zhang, B. Dose Effect of Psilocybin on Primary and Secondary Depression: A Preliminary Systematic Review and Meta-Analysis. J. Affect. Disord. 2022, 296, 26–34. [Google Scholar] [CrossRef]
- Perez, N.; Langlest, F.; Mallet, L.; De Pieri, M.; Sentissi, O.; Thorens, G.; Seragnoli, F.; Zullino, D.; Kirschner, M.; Kaiser, S.; et al. Psilocybin-Assisted Therapy for Depression: A Systematic Review and Dose-Response Meta-Analysis of Human Studies. Eur. Neuropsychopharmacol. 2023, 76, 61–76. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, J.; Pan, S.; Su, H.; Li, H.; Wang, J. Meta-Analysis of the Efficacy and Safety of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Depression. Shanghai Arch. Psychiatry 2017, 29, 328–342. [Google Scholar] [CrossRef]
- Brini, S.; Brudasca, N.I.; Hodkinson, A.; Kaluzinska, K.; Wach, A.; Storman, D.; Prokop-Dorner, A.; Jemioło, P.; Bala, M.M. Efficacy and Safety of Transcranial Magnetic Stimulation for Treating Major Depressive Disorder: An Umbrella Review and Re-Analysis of Published Meta-Analyses of Randomised Controlled Trials. Clin. Psychol. Rev. 2023, 100, 102236. [Google Scholar] [CrossRef]
- Alnefeesi, Y.; Chen-Li, D.; Krane, E.; Jawad, M.Y.; Rodrigues, N.B.; Ceban, F.; Di Vincenzo, J.D.; Meshkat, S.; Ho, R.C.M.; Gill, H.; et al. Real-World Effectiveness of Ketamine in Treatment-Resistant Depression: A Systematic Review & Meta-Analysis. J. Psychiatr. Res. 2022, 151, 693–709. [Google Scholar] [CrossRef]
- Saccenti, D.; Lodi, L.; Moro, A.S.; Scaini, S.; Forresi, B.; Lamanna, J.; Ferro, M. Novel Approaches for the Treatment of Post-Traumatic Stress Disorder: A Systematic Review of Non-Invasive Brain Stimulation Interventions and Insights from Clinical Trials. Brain Sci. 2024, 14, 210. [Google Scholar] [CrossRef]
- Button, K.S.; Ioannidis, J.P.A.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.J.; Munafò, M.R. Power Failure: Why Small Sample Size Undermines the Reliability of Neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef]
- Bender, D.; Hellerstein, D.J. Assessing the Risk–Benefit Profile of Classical Psychedelics: A Clinical Review of Second-Wave Psychedelic Research. Psychopharmacology 2022, 239, 1907–1932. [Google Scholar] [CrossRef]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major Depressive Disorder. Nat. Rev. Dis. Primers 2016, 2, 16065. [Google Scholar] [CrossRef]
- Bangasser, D.A.; Valentino, R.J. Sex Differences in Stress-Related Psychiatric Disorders: Neurobiological Perspectives. Front. Neuroendocrinol. 2014, 35, 303–319. [Google Scholar] [CrossRef]
- Moro, A.S.; Saccenti, D.; Vergallito, A.; Gregori Grgič, R.; Grazioli, S.; Pretti, N.; Crespi, S.; Malgaroli, A.; Scaini, S.; Ruggiero, G.M.; et al. Evaluating the Efficacy of Transcranial Magnetic Stimulation in Symptom Relief and Cognitive Function in Obsessive–Compulsive Disorder, Substance Use Disorder, and Depression: An Insight from a Naturalistic Observational Study. Appl. Sci. 2024, 14, 6178. [Google Scholar] [CrossRef]
- Moro, A.S.; Saccenti, D.; Ferro, M.; Scaini, S.; Malgaroli, A.; Lamanna, J. Neural Correlates of Delay Discounting in the Light of Brain Imaging and Non-Invasive Brain Stimulation: What We Know and What Is Missed. Brain Sci. 2023, 13, 403. [Google Scholar] [CrossRef]
- Moro, A.S.; Saccenti, D.; Seccia, A.; Ferro, M.; Malgaroli, A.; Lamanna, J. Poke And Delayed Drink Intertemporal Choice Task (POKE-ADDICT): An Open-Source Behavioral Apparatus for Intertemporal Choice Testing in Rodents. Anim. Models Exp. Med. 2023, 6, 619–626. [Google Scholar] [CrossRef]
- Amlung, M.; Marsden, E.; Holshausen, K.; Morris, V.; Patel, H.; Vedelago, L.; Naish, K.R.; Reed, D.D.; McCabe, R.E. Delay Discounting as a Transdiagnostic Process in Psychiatric Disorders: A Meta-Analysis. JAMA Psychiatry 2019, 76, 1176–1186. [Google Scholar] [CrossRef]
- Moro, A.S.; Saccenti, D.; Vergallito, A.; Scaini, S.; Malgaroli, A.; Ferro, M.; Lamanna, J. Transcranial Direct Current Stimulation (tDCS) over the Orbitofrontal Cortex Reduces Delay Discounting. Front. Behav. Neurosci. 2023, 17, 1239463. [Google Scholar] [CrossRef]
- Drueke, B.; Gauggel, S.; Weise, L.; Forkmann, T.; Mainz, V. Metacognitive Judgements and Abilities in Patients with Affective Disorders. Curr. Psychol. 2022, 42, 16987–16999. [Google Scholar] [CrossRef]
- Saccenti, D.; Moro, A.S.; Sassaroli, S.; Malgaroli, A.; Ferro, M.; Lamanna, J. Neural Correlates of Metacognition: Disentangling the Brain Circuits Underlying Prospective and Retrospective Second-Order Judgments through Noninvasive Brain Stimulation. J. Neurosci. Res. 2024, 102, e25330. [Google Scholar] [CrossRef]
- Mograbi, D.C.; Rodrigues, R.; Bienemann, B.; Huntley, J. Brain Networks, Neurotransmitters and Psychedelics: Towards a Neurochemistry of Self-Awareness. Curr. Neurol. Neurosci. Rep. 2024, 24, 323–340. [Google Scholar] [CrossRef]
- Ferro, M.; Lamanna, J.; Spadini, S.; Nespoli, A.; Sulpizio, S.; Malgaroli, A. Synaptic Plasticity Mechanisms behind TMS Efficacy: Insights from Its Application to Animal Models. J. Neural Transm. 2022, 129, 25–36. [Google Scholar] [CrossRef]
ID | Sample Size (n) | % Female | Age, Mean (DS) | Diagnosis with Severity |
---|---|---|---|---|
Carhart-Harris et al., 2016 [59] | 12 | 50% | 42.6 (10.2) | TRD: moderate-severe, HAMD = 19.2 |
Carhart-Harris et al., 2017 [60] | 19 | 21% | 42.8 (10.1) | TRD: severe, QIDS = 18.9 |
Carhart-Harris et al., 2018 [61] | 20 | 30% | 44.1 (11) | TRD: severe, BDI = 34.5 |
Lyons and Carhart-Harris, 2018 [66] | 15 | 27% | 45.4 (2.9) | TRD: moderate-severe, BDI = 34.3 |
Carhart-Harris et al., 2021 [30] | 59 | 34%. | 41.2 | MDD: moderate-severe, BDI = 29.1 |
Davis et al., 2021 [62] | 24 | 67% | 39.8 (12.2) | MDD: moderate-severe, HAMD = 22.8 |
Goodwin et al., 2022 [64] | 233 | 52% | 39.8 (12.2) | MDD: moderate (30%), Severe (68%) |
Gukasyan et al., 2022 [65] | 24 | 67% | 39.8 (12.2) | MDD: moderate-severe, HAMD = 22.8 |
Goodwin et al., 2023 [63] | 19 | 58% | 42.2 (10.8) | TRD: moderate; MADRS = 31.7 |
Raison et al., 2023 [67] | 104 | 50% | 41.1 (11.3) | MDD: moderate-severe, MADRS = 35.25 |
Sloshower et al., 2023 [68] | 19 | 68% | 42.8 (13.8) | MDD: moderate-severe, HAMD = 22.57 |
von Rotz et al., 2023 [69] | 52 | 63%. | 36.75 | MDD: moderate, BDI = 27.35 |
ID | Study Design | Treatments | Psilocybin Dosage | Control (Dosage) | Clinical Measures | Effects |
---|---|---|---|---|---|---|
Goodwin et al. (2022) [64] | RCT | Three preparatory meetings, one dose of psilocybin with music, and two psychological integration sessions | 10 mg or 25 mg | Psilocybin (1 mg) | MADRS | Mean MADRS scores decreased by 12 points in the first group (25 mg), by 7.9 points in the second group (10 mg), and by 5.4 in the third group (1 mg) at 3 weeks after treatment |
Goodwin et al. (2023) [63] | Open-label | Three preparatory meetings, one dose of psilocybin with music, and two integration sessions | 25 mg | - | MADRS, QIDS | Mean MADRS scores decreased by 14.9 points at week 3 weeks after treatment |
Raison et al. (2023) [67] | RCT | Preparatory sessions totaling 6–8 h, one dose of psilocybin or niacin with music, followed by 4 h integration sessions | 25 mg | Niacin (100 mg) | MADRS | Significant reduction in mean MADRS scores in the treatment group (−19.1) compared to controls (−6.8) from baseline to 43 days after treatment |
Sloshower et al. (2023) [68] | Placebo-controlledwithin-subjects | 2 h preparatory sessions, a single dose of psilocybin or placebo, and two sessions of psychotherapy | 0.3 mg/kg | Placebo | HAMD, QIDS | Greater reduction in mean QIDS scores following psilocybin administration (∆ = 6.3–8.7) than placebo (∆ = 4.4–5.8) at 2 weeks after treatment |
von Rotz et al. (2023) [69] | RCT | Two preparatory sessions, one dose of psilocybin or placebo, and three integration sessions | 0.215 mg/kg | Placebo | MADRS, BDI | Reduction in mean MADRS scores in the treatment group (−13.2) compared to baseline, with an effect size significantly larger than placebo at 2 weeks after treatment |
ID | Study Design | Treatments | First Psilocybin Dosage | Second Psilocybin Dosage | Control (Dosage) | Clinical Measures | Effects |
---|---|---|---|---|---|---|---|
Carhart-Harris et al. (2016) [59] | Open-label | Preparatory sessions totaling 4 h, two doses of psilocybin with music, 1-week apart, and two integration sessions | 10 mg | 25 mg | - | QIDS, BDI, HAMD, MADRS | Decrease in QIDS scores compared to baseline (−11.8) at 1-week after treatment. A further decrement in mean QIDS scores (−9.2) was observed at 3-month follow-up |
Carhart-Harris et al. (2017) [60] | Open-label | Preparatory sessions totaling 4 h, two doses of psilocybin with music, 1-week apart, and two integration sessions | 10 mg | 25 mg | - | QIDS | Reduced QIDS scores compared to baseline (−8.0) at 5 weeks after treatment |
Carhart-Harris et al. (2018) [61] | Open-label | Preparatory sessions totaling 4 h, two doses of psilocybin with music, 1-week apart. After each dose, an integrative session was conducted | 10 mg | 25 mg | - | QIDS, BDI, HAMD | Reduction in mean QIDS scores compared to baseline at 1-week, 2 weeks, 3 weeks, 5 weeks, and 3 months after treatment. BDI scores were significantly lower compared to baseline at 1-week, 3-months, and 6-months after treatment |
Lyons and Carhart-Harris (2018) [66] | Open-label | Preparatory sessions totaling 4 h, two doses of psilocybin with music, 1-week apart, and two integration sessions | 10 mg | 25 mg | - | BDI, HAMD | Decrease in BDI scores (−22.2) compared to baseline at 1-week after treatment |
Carhart-Harris et al. (2021) [30] | RCT | Preparatory sessions totaling 3 h, two doses of psilocybin or escitalopram, 3 weeks apart, and an integrative session | 25 mg | 25 mg | Psilocybin (1 mg) | QIDS, BDI, HAMD, MADRS | At 6 weeks, the mean QIDS change score compared to baseline was −6.0 in the escitalopram group and −8.0 in the psilocybin group |
Davis et al. (2021) [62] | Randomized waiting-list | Preparatory sessions totaling 8 h, two doses of psilocybin with music, spaced ~2 weeks apart, and two integration sessions | 20 mg | 30 mg | Waiting list | HAMD, QIDS | Mean HAMD scores decreased in the immediate treatment group compared to baseline at 1-week (−8.0) and 1-month (8.5) after treatment. Mean HAMD scores remained stable in subjects belonging to the waiting list |
Gukasyan et al. (2022) [65] | Follow-up | Preparatory sessions totaling 8 h, two doses of psilocybin with music, spaced ~2 weeks apart, and two integration sessions | 20 mg | 30 mg | - | HAMD, QIDS | Mean HAMD scores decreased in both immediate and delayed treatment groups compared to baseline at 1-week, 1-month, 3-months, 6-months, and 12-months after treatment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvetti, G.; Saccenti, D.; Moro, A.S.; Lamanna, J.; Ferro, M. Comparison between Single-Dose and Two-Dose Psilocybin Administration in the Treatment of Major Depression: A Systematic Review and Meta-Analysis of Current Clinical Trials. Brain Sci. 2024, 14, 829. https://doi.org/10.3390/brainsci14080829
Salvetti G, Saccenti D, Moro AS, Lamanna J, Ferro M. Comparison between Single-Dose and Two-Dose Psilocybin Administration in the Treatment of Major Depression: A Systematic Review and Meta-Analysis of Current Clinical Trials. Brain Sciences. 2024; 14(8):829. https://doi.org/10.3390/brainsci14080829
Chicago/Turabian StyleSalvetti, Gianmarco, Daniele Saccenti, Andrea Stefano Moro, Jacopo Lamanna, and Mattia Ferro. 2024. "Comparison between Single-Dose and Two-Dose Psilocybin Administration in the Treatment of Major Depression: A Systematic Review and Meta-Analysis of Current Clinical Trials" Brain Sciences 14, no. 8: 829. https://doi.org/10.3390/brainsci14080829
APA StyleSalvetti, G., Saccenti, D., Moro, A. S., Lamanna, J., & Ferro, M. (2024). Comparison between Single-Dose and Two-Dose Psilocybin Administration in the Treatment of Major Depression: A Systematic Review and Meta-Analysis of Current Clinical Trials. Brain Sciences, 14(8), 829. https://doi.org/10.3390/brainsci14080829