CCR2 Regulates Referred Somatic Hyperalgesia by Mediating T-Type Ca2+ Channel Currents of Small-Diameter DRG Neurons in Gastric Ulcer Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gastric Ulcer Mouse Model
2.2. Histopathological Examination
2.3. Detection of Sensitized Points
2.4. Behavioral Tests
2.5. Preparation of Intact Whole-Mount DRG
2.6. Electrophysiological Recordings
2.7. Immunofluorescence Labeling
2.8. CCR2 Antagonist and Agonist Treatment
2.9. Statistical Analysis
3. Results
3.1. Neurogenic Inflammation and Referred Mechanical Hypersensitivity in Somatic Regions Induced by Gastric Ulcer
3.2. Acetic Acid-Induced Inflammation Increases the T-Type Ca2+ Currents (IT-Type) in DRG Neurons with Small Diameters but Not Medium Diameters
3.3. Inhibition of the Chemokine CCR2 Reduces IT-Type in Small-Diameter DRG Neurons and Attenuates Somatic Neurogenic Inflammation and Referred Mechanical Hypersensitivity in Gastric Ulcer Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CCR2 | The C-C chemokine receptor 2 |
GU | Gastric ulcer |
DRG | Dorsal root ganglion |
CNS | Central nervous system |
DRR | Dorsal root reflex |
AR | Axon reflex |
PNS | Peripheral nervous system |
VDCCs | Voltage-dependent Ca2+ channels |
HVA | High-voltage-activated |
LVA | Low-voltage-activated |
IGF-1 | Insulin-like growth factor 1 |
GPCRs | G protein-coupled receptors |
CCL2 | The C-C motif chemokine ligand 2 |
NIH | The National Institutes of Health |
CON | Control |
PFA | Paraformaldehyde |
H&E | Hematoxylin and eosin |
EB | Evan’s Blue |
PBS | Phosphate-buffered saline |
ACSF | Artificial cerebrospinal fluid |
i.p. | Intraperitoneal |
AP | Actin potential |
CGRP | Calcitonin-gene-related peptide |
HA | Histamine |
References
- Jin, Q.; Chang, Y.; Lu, C.; Chen, L.; Wang, Y. Referred pain: Characteristics, possible mechanisms, and clinical management. Front. Neurol. 2023, 14, 1104817. [Google Scholar] [CrossRef] [PubMed]
- Gebhart, G.F.; Bielefeldt, K. Physiology of Visceral Pain. Compr. Physiol. 2016, 6, 1609–1633. [Google Scholar] [CrossRef]
- Li, D.; Ren, Y.; Xu, X.; Zou, X.; Fang, L.; Lin, Q. Sensitization of primary afferent nociceptors induced by intradermal capsaicin involves the peripheral release of calcitonin gene-related Peptide driven by dorsal root reflexes. J. Pain 2008, 9, 1155–1168. [Google Scholar] [CrossRef]
- Hagains, C.E.; Trevino, L.A.; He, J.W.; Liu, H.; Peng, Y.B. Contributions of dorsal root reflex and axonal reflex to formalin-induced inflammation. Brain Res. 2010, 1359, 90–97. [Google Scholar] [CrossRef]
- Abd-Elsayed, A.; Vardhan, S.; Aggarwal, A.; Vardhan, M.; Diwan, S.A. Mechanisms of Action of Dorsal Root Ganglion Stimulation. Int. J. Mol. Sci. 2024, 25, 3591. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Hu, W.; Yang, J.; Ma, S.; Tian, Z.; Cao, Z.; Pan, K.; Jiang, M.; Liu, X.; et al. Peripheral CCL2 induces inflammatory pain via the regulation of Ih currents in small-diameter DRG neurons. Front. Mol. Neurosci. 2023, 16, 1144614. [Google Scholar] [CrossRef]
- Hu, S.; Xiao, Y.; Zhu, L.; Li, L.; Hu, C.Y.; Jiang, X.; Xu, G.Y. Neonatal maternal deprivation sensitizes voltage-gated sodium channel currents in colon-specific dorsal root ganglion neurons in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G311–G321. [Google Scholar] [CrossRef]
- Michel, N.; Narayanan, P.; Shomroni, O.; Schmidt, M. Maturational Changes in Mouse Cutaneous Touch and Piezo2-Mediated Mechanotransduction. Cell Rep. 2020, 32, 107912. [Google Scholar] [CrossRef]
- Qian, A.; Song, D.; Li, Y.; Liu, X.; Tang, D.; Yao, W.; Yuan, Y. Role of voltage-gated Ca2+ channels in rat visceral hypersensitivity change induced by 2,4,6-trinitrobenzene sulfonic acid. Mol. Pain 2013, 9, 15. [Google Scholar] [CrossRef]
- Comunanza, V.; Carbone, E.; Marcantoni, A.; Sher, E.; Ursu, D. Calcium-dependent inhibition of T-type calcium channels by TRPV1 activation in rat sensory neurons. Pflugers Arch. 2011, 462, 709–722. [Google Scholar] [CrossRef]
- Cheong, E.; Shin, H.S. T-type Ca2+ channels in normal and abnormal brain functions. Physiol. Rev. 2013, 93, 961–992. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qin, W.; Qian, Z.; Liu, X.; Wang, H.; Gong, S.; Sun, Y.G.; Snutch, T.P.; Jiang, X.; Tao, J. Peripheral pain is enhanced by insulin-like growth factor 1 through a G protein-mediated stimulation of T-type calcium channels. Sci. Signal 2014, 7, ra94. [Google Scholar] [CrossRef]
- Todorovic, S.M.; Jevtovic-Todorovic, V. Regulation of T-type calcium channels in the peripheral pain pathway. Channels 2007, 1, 238–245. [Google Scholar] [CrossRef]
- Bourinet, E.; Altier, C.; Hildebrand, M.E.; Trang, T.; Salter, M.W.; Zamponi, G.W. Calcium-permeable ion channels in pain signaling. Physiol. Rev. 2014, 94, 81–140. [Google Scholar] [CrossRef] [PubMed]
- Van Steenwinckel, J.; Reaux-Le Goazigo, A.; Pommier, B.; Mauborgne, A.; Dansereau, M.A.; Kitabgi, P.; Sarret, P.; Pohl, M.; Mélik Parsadaniantz, S. CCL2 released from neuronal synaptic vesicles in the spinal cord is a major mediator of local inflammation and pain after peripheral nerve injury. J. Neurosci. 2011, 31, 5865–5875. [Google Scholar] [CrossRef]
- White, F.A.; Jung, H.; Miller, R.J. Chemokines and the pathophysiology of neuropathic pain. Proc. Natl. Acad. Sci. USA 2007, 104, 20151–20158. [Google Scholar] [CrossRef]
- White, F.A.; Miller, R.J. Insights into the regulation of chemokine receptors by molecular signaling pathways: Functional roles in neuropathic pain. Brain Behav. Immun. 2010, 24, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Gosselin, R.D.; Dansereau, M.A.; Pohl, M.; Kitabgi, P.; Beaudet, N.; Sarret, P.; Mélik Parsadaniantz, S. Chemokine network in the nervous system: A new target for pain relief. Curr. Med. Chem. 2008, 15, 2866–2875. [Google Scholar] [CrossRef]
- Bhattamisra, S.K.; Yean Yan, V.L.; Koh Lee, C.; Hui Kuean, C.; Candasamy, M.; Liew, Y.K.; Sahu, P.S. Protective activity of geraniol against acetic acid and Helicobacter pylori-induced gastric ulcers in rats. J. Tradit. Complement. Med. 2018, 9, 206–214. [Google Scholar] [CrossRef]
- Cho, H.S.; Kwon, T.W.; Kim, J.H.; Lee, R.; Bae, C.S.; Kim, H.C.; Kim, J.H.; Choi, S.H.; Cho, I.H.; Nah, S.Y. Gintonin Alleviates HCl/Ethanol- and Indomethacin-Induced Gastric Ulcers in Mice. Int. J. Mol. Sci. 2023, 24, 16721. [Google Scholar] [CrossRef]
- Chaplan, S.R.; Bach, F.W.; Pogrel, J.W.; Chung, J.M.; Yaksh, T.L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 1994, 53, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Han, W.J.; Ma, S.B.; Wu, W.B.; Wang, F.D.; Cao, X.L.; Wang, D.H.; Wu, H.N.; Xie, R.G.; Li, Z.Z.; Wang, F.; et al. Tweety-Homolog 1 Facilitates Pain via Enhancement of Nociceptor Excitability and Spinal Synaptic Transmission. Neurosci. Bull. 2021, 37, 478–496. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Weng, J.; Liu, C.; Liu, S.; Hu, Z.; Xie, X.; Gao, D.; Zhou, Q.; Sun, J.; Xu, R.; et al. Disruption of SLFN11 Deficiency-Induced CCL2 Signaling and Macrophage M2 Polarization Potentiates Anti-PD-1 Therapy Efficacy in Hepatocellular Carcinoma. Gastroenterology 2023, 164, 1261–1278. [Google Scholar] [CrossRef]
- Park, J.; Ryu, D.R.; Li, J.J.; Jung, D.S.; Kwak, S.J.; Lee, S.H.; Yoo, T.H.; Han, S.H.; Lee, J.E.; Kim, D.K.; et al. MCP-1/CCR2 system is involved in high glucose-induced fibronectin and type IV collagen expression in cultured mesangial cells. Am. J. Physiol. Ren. Physiol. 2008, 295, F749–F757. [Google Scholar] [CrossRef]
- Bharali, L.A.; Lisney, S.J. The relationship between unmyelinated afferent type and neurogenic plasma extravasation in normal and reinnervated rat skin. Neuroscience 1992, 47, 703–712. [Google Scholar] [CrossRef]
- Rose, R.D.; Koerber, H.R.; Sedivec, M.J.; Mendell, L.M. Somal action potential duration differs in identified primary afferents. Neurosci. Lett. 1986, 63, 259–264. [Google Scholar] [CrossRef]
- Li, C.L.; Li, K.C.; Wu, D.; Chen, Y.; Luo, H.; Zhao, J.R.; Wang, S.S.; Sun, M.M.; Lu, Y.J.; Zhong, Y.Q.; et al. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res. 2016, 26, 83–102. [Google Scholar] [CrossRef]
- Dansereau, M.A.; Midavaine, É.; Bégin-Lavallée, V.; Belkouch, M.; Beaudet, N.; Longpré, J.M.; Mélik-Parsadaniantz, S.; Sarret, P. Mechanistic insights into the role of the chemokine CCL2/CCR2 axis in dorsal root ganglia to peripheral inflammation and pain hypersensitivity. J. Neuroinflamm. 2021, 18, 79. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, G.; Xu, J. Regular pattern of pain reaction by pressing along the Governor Vessel on the back in patients with digestive system disease. Zhongguo Zhen Jiu (Chin. Acupunct. Moxibustion) 2012, 32, 135–137. [Google Scholar] [PubMed]
- Ben, H.; Rong, P.; Li, L.; Xin, Y.; Feng, H.; Wei, H. Observation on the Pressure-pain Threshold and Superficial Sensitive Points in Patients with Gastric Ulcer or Gastritis. Shanghai J. Acupunct. Moxibustion 2012, 31, 128–130. [Google Scholar]
- Cheng, B.; Shi, H.; Ji, C.; Hui, J.; Li, S.; Hong, J. Distribution of the Activated Acupoints after Acute Gastric Mucosal Injury in the Rat. Zhen Ci Yan Jiu (Acupunct. Res.) 2010, 35, 193–197. [Google Scholar] [CrossRef]
- Shi, H.; Cheng, B.; Li, J.; Shu, L.; Wen, Q.; Gao, Z.; Hong, J. Mast Cell and Substance P Are Involved in the Process of Acupoint Sensitization Induced by Acute Gastric Mucosal Injury. Zhen Ci Yan Jiu (Acupunct. Res.) 2010, 35, 323–329. [Google Scholar] [CrossRef]
- Crawford, L.K.; Caterina, M.J. Functional Anatomy of the Sensory Nervous System: Updates from the Neuroscience Bench. Toxicol. Pathol. 2020, 48, 174–189. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro Matos, S.; Zhang, Z.; Séguéla, P. Peripheral Neuropathy Induces HCN Channel Dysfunction in Pyramidal Neurons of the Medial Prefrontal Cortex. J. Neurosc 2015, 35, 13244–13256. [Google Scholar] [CrossRef]
- Bourinet, E.; Francois, A.; Laffray, S. T-type calcium channels in neuropathic pain. Pain 2016, 157, S15–S22. [Google Scholar] [CrossRef]
- Duzhyy, D.E.; Viatchenko-Karpinski, V.Y.; Khomula, E.V.; Voitenko, N.V.; Belan, P.V. Upregulation of T-type Ca2+ channels in long-term diabetes determines increased excitability of a specific type of capsaicin-insensitive DRG neurons. Mol. Pain 2015, 11, 29. [Google Scholar] [CrossRef]
- Li, Y.; Tatsui, C.E.; Rhines, L.D.; North, R.Y.; Harrison, D.S.; Cassidy, R.M.; Johansson, C.A.; Kosturakis, A.K.; Edwards, D.D.; Zhang, H.; et al. Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain 2017, 158, 417–429. [Google Scholar] [CrossRef]
- Nelson, M.T.; Joksovic, P.M.; Perez-Reyes, E.; Todorovic, S.M. The endogenous redox agent L-cysteine induces T-type Ca2+ channel-dependent sensitization of a novel subpopulation of rat peripheral nociceptors. J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 8766–8775. [Google Scholar] [CrossRef]
- Mogil, J.S.; Yu, L.; Basbaum, A.I. The perception of pain. Pain genes?: Natural variation and transgenic mutants. Annu. Rev. Neurosci. 2000, 23, 777–811. [Google Scholar] [CrossRef]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef]
- Abbadie, C. Chemokines, chemokine receptors, and pain. Trends Immunol. 2005, 26, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Rostène, W.; Dansereau, M.A.; Godefroy, D.; Van Steenwinckel, J.; Reaux-Le Goazigo, A.; Mélik-Parsadaniantz, S.; Apartis, E.; Hunot, S.; Beaudet, N.; Sarret, P. Neurochemokines: A menage a trois providing new insights on the functions of chemokines in the central nervous system. J. Neurochem. 2011, 118, 680–694. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Altier, C.; Zamponi, G.W. CCR2 receptor ligands inhibit Cav3.2 T-type calcium channels. Mol. Pharmacol. 2010, 77, 211–217. [Google Scholar] [CrossRef]
Type | Group | Cm (pF) |
---|---|---|
Small diameter | Control | 23.25 ± 1.74 |
GU | 21.85 ± 2.05 | |
RS102895 (CCR2 antagonist) | 23.46 ± 2.30 | |
CCL2 (CCR2 agonist) | 21.24 ± 1.02 | |
Medium diameter | Control | 33.92 ± 1.76 |
GU | 34.51 ± 1.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Liu, H.; Diao, Z.; Yuan, W.; Wu, Y.; Xue, S.; Gao, X.; Qiao, H. CCR2 Regulates Referred Somatic Hyperalgesia by Mediating T-Type Ca2+ Channel Currents of Small-Diameter DRG Neurons in Gastric Ulcer Mice. Brain Sci. 2025, 15, 255. https://doi.org/10.3390/brainsci15030255
Yuan Z, Liu H, Diao Z, Yuan W, Wu Y, Xue S, Gao X, Qiao H. CCR2 Regulates Referred Somatic Hyperalgesia by Mediating T-Type Ca2+ Channel Currents of Small-Diameter DRG Neurons in Gastric Ulcer Mice. Brain Sciences. 2025; 15(3):255. https://doi.org/10.3390/brainsci15030255
Chicago/Turabian StyleYuan, Ziyan, Huanhuan Liu, Zhijun Diao, Wei Yuan, Yuwei Wu, Simeng Xue, Xinyan Gao, and Haifa Qiao. 2025. "CCR2 Regulates Referred Somatic Hyperalgesia by Mediating T-Type Ca2+ Channel Currents of Small-Diameter DRG Neurons in Gastric Ulcer Mice" Brain Sciences 15, no. 3: 255. https://doi.org/10.3390/brainsci15030255
APA StyleYuan, Z., Liu, H., Diao, Z., Yuan, W., Wu, Y., Xue, S., Gao, X., & Qiao, H. (2025). CCR2 Regulates Referred Somatic Hyperalgesia by Mediating T-Type Ca2+ Channel Currents of Small-Diameter DRG Neurons in Gastric Ulcer Mice. Brain Sciences, 15(3), 255. https://doi.org/10.3390/brainsci15030255