Sleep Benefits Prose Memory Consolidation in University Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Prose Memory Task
2.4. Sleep Recordings
- Sleep continuity: total frequency of awakenings per hour of AST;
- Sleep stability: arousal frequency per hour of AST (arousals are defined as all transitions to shallower NREM sleep stages and from REM sleep to N1); state transition frequency per hour of TST (state transitions are defined as all transitions from one state to another); frequency of ‘Functional Uncertainty’ periods per hour of TST (‘FU’ periods; defined as periods in which a minimum of three state transitions follow one another with no longer than 1.5 min intervals; [33]);
- Sleep organization: total time spent in sleep cycles over TST (TCT%), where sleep cycles are defined as sequences of NREM and REM sleep (each lasting at least 10 min) not interrupted by periods of wake longer than 2 min.
2.5. Data Analysis
3. Results
3.1. Memory Performance
3.2. Sleep Features and Correlations with Memory Performance
3.3. Sleepiness Levels
3.4. Final Questions About the Text
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diekelmann, S.; Born, J. The memory function of sleep. Nat. Rev. Neurosci. 2010, 11, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Rasch, B.; Born, J. About Sleep’s Role in Memory. Physiol. Rev. 2013, 93, 681–766. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, J.G.; Dallenbach, K.M. Obliviscence during Sleep and Waking. Am. J. Psychol. 1924, 35, 605. [Google Scholar] [CrossRef]
- Conte, F.; Ficca, G. Caveats on psychological models of sleep and memory: A compass in an overgrown scenario. Sleep Med. Rev. 2013, 17, 105–121. [Google Scholar] [CrossRef]
- Fischer, S.; Drosopoulos, S.; Tsen, J.; Born, J. Implicit Learning-Explicit Knowing: A Role for Sleep in Memory System Interaction. J. Cogn. Neurosci. 2006, 18, 311–319. [Google Scholar] [CrossRef]
- Smith, C.T.; Nixon, M.R.; Nader, R.S. Posttraining increases in REM sleep intensity implicate REM sleep in memory processing and provide a biological marker of learning potential. Learn. Mem. 2004, 11, 714–719. [Google Scholar] [CrossRef]
- Brand, S.; Opwis, K.; Hatzinger, M.; Holsboer-Trachsler, E. REM sleep is related to the transfer of implicit procedural knowledge following metacognitive learning. Somnologie—Schlafforschung Schlafmed. 2010, 14, 213–220. [Google Scholar] [CrossRef]
- Sharon, O.; Ben Simon, E.; Shah, V.D.; Desel, T.; Walker, M.P. The new science of sleep: From cells to large-scale societies. PLoS Biol. 2024, 22, e3002684. [Google Scholar] [CrossRef]
- Marshall, L.; Born, J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn. Sci. 2007, 11, 442–450. [Google Scholar] [CrossRef]
- Huber, R.; Felice Ghilardi, M.; Massimini, M.; Tononi, G. Local sleep and learning. Nature 2004, 430, 78–81. [Google Scholar] [CrossRef]
- Stickgold, R.; Walker, M.P. Sleep-dependent memory consolidation and reconsolidation. Sleep Med. 2007, 8, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, L.M.J.; Lüthi, A. Sleep Spindles: Mechanisms and Functions. Physiol. Rev. 2020, 100, 805–868. [Google Scholar] [CrossRef] [PubMed]
- Gais, S.; Albouy, G.; Boly, M.; Dang-Vu, T.T.; Darsaud, A.; Desseilles, M.; Rauchs, G.; Schabus, M.; Sterpenich, V.; Vandewalle, G.; et al. Sleep transforms the cerebral trace of declarative memories. Proc. Natl. Acad. Sci. USA 2007, 104, 18778–18783. [Google Scholar] [CrossRef] [PubMed]
- Empson, J.A.C.; Clarke, P.R.F. Rapid Eye Movements and Remembering. Nature 1970, 227, 287–288. [Google Scholar] [CrossRef]
- Tilley, A.J.; Empson, J.A.C. REM sleep and memory consolidation. Biol. Psychol. 1978, 6, 293–300. [Google Scholar] [CrossRef]
- Bartlett, F.C. Remembering: A Study in Experimental and Social Psychology; Cambridge University Press: New York, NY, USA, 1932; pp. xix, 317. ISBN 0-521-48278-X. [Google Scholar]
- Cousins, J.N.; Wong, K.F.; Chee, M.W.L. Multi-Night Sleep Restriction Impairs Long-Term Retention of Factual Knowledge in Adolescents. J. Adolesc. Health 2019, 65, 549–557. [Google Scholar] [CrossRef]
- Lo, J.C.; Bennion, K.A.; Chee, M.W.L. Sleep restriction can attenuate prioritization benefits on declarative memory consolidation. J. Sleep Res. 2016, 25, 664–672. [Google Scholar] [CrossRef]
- Conte, F.; De Rosa, O.; Albinni, B.; Mango, D.; Coppola, A.; Malloggi, S.; Giangrande, D.; Giganti, F.; Barbato, G.; Ficca, G. Learning Monologues at Bedtime Improves Sleep Quality in Actors and Non-Actors. Int. J. Environ. Res. Public. Health 2021, 19, 11. [Google Scholar] [CrossRef]
- Bäuml, K.-H.T.; Holterman, C.; Abel, M. Sleep can reduce the testing effect: It enhances recall of restudied items but can leave recall of retrieved items unaffected. J. Exp. Psychol. Learn. Mem. Cogn. 2014, 40, 1568–1581. [Google Scholar] [CrossRef]
- Tucker, M.A.; Fishbein, W. Enhancement of Declarative Memory Performance Following a Daytime Nap Is Contingent on Strength of Initial Task Acquisition. Sleep 2008, 31, 197–203. [Google Scholar] [CrossRef]
- Németh, D.; Gerbier, E.; Born, J.; Rickard, T.; Diekelmann, S.; Fogel, S.; Genzel, L.; Prehn-Kristensen, A.; Payne, J.; Dresler, M.; et al. Optimizing the methodology of human sleep and memory research. Nat. Rev. Psychol. 2024, 3, 123–137. [Google Scholar] [CrossRef]
- Curcio, G.; Tempesta, D.; Scarlata, S.; Marzano, C.; Moroni, F.; Rossini, P.M.; Ferrara, M.; De Gennaro, L. Validity of the Italian version of the Pittsburgh Sleep Quality Index (PSQI). Neurol. Sci. 2013, 34, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Sica, C.; Ghisi, M. The Italian versions of the Beck Anxiety Inventory and the Beck Depression Inventory-II: Psychometric properties and discriminant power. In Leading-Edge Psychological Tests and Testing Research; Nova Science Publishers: Hauppauge, NY, USA, 2007; pp. 27–50. ISBN 1-60021-571-8. [Google Scholar]
- Akerstedt, T.; Gillberg, M. Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef]
- Rogers, B. TOEFL CBT Success; Peterson’s: Princeton, NJ, USA, 2001. [Google Scholar]
- Roediger, H.L.; Karpicke, J.D. Test-Enhanced Learning: Taking Memory Tests Improves Long-Term Retention. Psychol. Sci. 2006, 17, 249–255. [Google Scholar] [CrossRef]
- Arnal, P.J.; Thorey, V.; Debellemaniere, E.; Ballard, M.E.; Bou Hernandez, A.; Guillot, A.; Jourde, H.; Harris, M.; Guillard, M.; Van Beers, P.; et al. The Dreem Headband compared to polysomnography for electroencephalographic signal acquisition and sleep staging. Sleep 2020, 43, zsaa097. [Google Scholar] [CrossRef]
- Iber, C.; Ancoli-Israel, S.; Chesson, A.; Quan, S.F. The AASM Manual for the Scoring of Sleep and Associated Events; American Academy of Sleep Medicine: Darien, IL, USA, 2007. [Google Scholar]
- Debellemaniere, E.; Chambon, S.; Pinaud, C.; Thorey, V.; Dehaene, D.; Léger, D.; Chennaoui, M.; Arnal, P.J.; Galtier, M.N. Performance of an Ambulatory Dry-EEG Device for Auditory Closed-Loop Stimulation of Sleep Slow Oscillations in the Home Environment. Front. Hum. Neurosci. 2018, 12, 88. [Google Scholar] [CrossRef]
- Thorey, V.; Harris, M.; Guillot, A.; Hernandez, A.B.; Arnal, P.J. The dreem2 headband as an alternative to polysomnography for EEG signal acquisition, breathing and heart rate monitoring and sleep staging in healthy subjects. Sleep Med. 2019, 64, S383. [Google Scholar] [CrossRef]
- Conte, F.; Cerasuolo, M.; Fusco, G.; Giganti, F.; Inserra, I.; Malloggi, S.; Di Iorio, I.; Ficca, G. Sleep continuity, stability and organization in good and bad sleepers. J. Health Psychol. 2021, 26, 2131–2142. [Google Scholar] [CrossRef]
- Salzarulo, P.; Formicola, G.; Lombardo, P.; Gori, S.; Rossi, L.; Murri, L.; Cipolli, C. Functional uncertainty, aging and memory processes during sleep. Acta Neurol. Belg. 1997, 97, 118–122. [Google Scholar]
- Payne, J.D.; Schacter, D.L.; Propper, R.E.; Huang, L.-W.; Wamsley, E.J.; Tucker, M.A.; Walker, M.P.; Stickgold, R. The role of sleep in false memory formation. Neurobiol. Learn. Mem. 2009, 92, 327–334. [Google Scholar] [CrossRef]
- Conte, F.; Cerasuolo, M.; Giganti, F.; Ficca, G. Sleep enhances strategic thinking at the expense of basic procedural skills consolidation. J. Sleep Res. 2020, 29, e13034. [Google Scholar] [CrossRef]
- Salzarulo, P.; Fagioli, I. Sleep for development or development for waking?—Some speculations from a human perspective. Behav. Brain Res. 1995, 69, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Fagioli, I.; Ricour, C.; Salomon, F.; Salzarulo, P. Weight changes and sleep organisation in infants. Early Hum. Dev. 1981, 5, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Bliss, T.V.; Collingridge, G.L. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993, 361, 31–39. [Google Scholar] [CrossRef]
- Ficca, G.; Lombardo, P.; Rossi, L.; Salzarulo, P. Morning recall of verbal material depends on prior sleep organization. Behav. Brain Res. 2000, 112, 159–163. [Google Scholar] [CrossRef]
- Ficca, G.; Salzarulo, P. What in sleep is for memory. Sleep Med. 2004, 5, 225–230. [Google Scholar] [CrossRef]
- Cerasuolo, M.; Conte, F.; Cellini, N.; Fusco, G.; Giganti, F.; Malloggi, S.; Ficca, G. The effect of complex cognitive training on subsequent night sleep. J. Sleep Res. 2020, 29, e12929. [Google Scholar] [CrossRef]
- Hilditch, C.J.; McHill, A.W. Sleep inertia: Current insights. Nat. Sci. Sleep 2019, 11, 155–165. [Google Scholar] [CrossRef]
Sleep Architecture | |
---|---|
SOL | 15.06 ± 4.86 |
TIB | 436.13 ± 58.32 |
TST | 421.69 ± 58.88 |
AST | 404.19 ± 57.40 |
N1% | 5.83 ± 4.75 |
N2% | 45.61 ± 3.96 |
N3% | 22.77 ± 6.04 |
REM% | 24.89 ± 6.40 |
WASO (min) | 16.50 ± 9.38 |
SEI% | 92.59 ± 2.69 |
Sleep Continuity, Stability, and Organization | |
Arousal (fq) | 2.921 ± 0.87 |
Awakenings (fq) | 3.123 ± 1.49 |
State transitions (fq) | 15.664 ± 5.00 |
FU (fq) | 1.044 ± 0.58 |
TCT% | 46.30 ± 25.99 |
Text 1 | Text 2 | t | p | |
---|---|---|---|---|
Q1—Interest | 4.00 ± 1.75 | 3.50 ± 1.00 | 1.76 | 0.095 |
Q2—Perceived difficulty | 3.00 ± 2.00 | 2.00 ± 1.75 | 1.82 | 0.085 |
Q3—Prior knowledge | 3.50 ± 2.00 | 1.00 ± 0.00 | 3.29 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conte, F.; Malloggi, S.; De Rosa, O.; Ficca, G.; Righi, S.; Viggiano, M.P.; Giganti, F. Sleep Benefits Prose Memory Consolidation in University Students. Brain Sci. 2025, 15, 265. https://doi.org/10.3390/brainsci15030265
Conte F, Malloggi S, De Rosa O, Ficca G, Righi S, Viggiano MP, Giganti F. Sleep Benefits Prose Memory Consolidation in University Students. Brain Sciences. 2025; 15(3):265. https://doi.org/10.3390/brainsci15030265
Chicago/Turabian StyleConte, Francesca, Serena Malloggi, Oreste De Rosa, Gianluca Ficca, Stefania Righi, Maria Pia Viggiano, and Fiorenza Giganti. 2025. "Sleep Benefits Prose Memory Consolidation in University Students" Brain Sciences 15, no. 3: 265. https://doi.org/10.3390/brainsci15030265
APA StyleConte, F., Malloggi, S., De Rosa, O., Ficca, G., Righi, S., Viggiano, M. P., & Giganti, F. (2025). Sleep Benefits Prose Memory Consolidation in University Students. Brain Sciences, 15(3), 265. https://doi.org/10.3390/brainsci15030265