Aggression and Justice Involvement: Does Uric Acid Play a Role?
Abstract
:1. Introduction
“The study and treatment of crime should be as individualized as is the study and treatment of disease. Confinement in the name of punishment is completely futile, worthless to society, unjust to the criminal, and utterly wrong”Louis Berman, MD, 1931 [1]
2. Uric Acid and Behavior—Early History
“Again, it has appeared to me that the irritability and bad temper of uric-acidemia, and the cerebral [changes] it brings about, may account for a certain number of murders”Alexander Haig, MD, 1892 [17]
3. Contemporary Research
4. Emerging Mechanisms
5. Uric Acid and the Microbiome
6. Biopsychosocial Context and Neurolaw Biomarkers
- o
- Longitudinal Cohorts: Following children from early life to adulthood to determine whether high uric acid levels, shaped by diet and adversity, predict future risk of aggression and justice involvement. These studies should examine key mechanistic pathways, including the following:
- Blood–brain barrier integrity and its relationship to uric acid penetration.
- Mitochondrial function and ATP production.
- Inflammatory markers and their correlation with behavioral outcomes.
- Gut microbiome composition and diversity.
- Purinergic signaling patterns. This comprehensive approach would help clarify how early-life factors influence both biological vulnerabilities and behavioral trajectories.
- o
- Randomized Trials: Testing whether interventions targeting uric acid (e.g., dietary changes, probiotics, xanthine oxidase inhibitors) tangibly reduce aggression in forensic or high-risk populations.
- o
- Mechanistic Investigations: Using advanced neuroimaging and transcriptomics to clarify how hyperuricemia and purine metabolism affect prefrontal control, emotional regulation, and impulsivity. This includes the incorporation of uric acid into neuro-molecular investigations of criminal behavior [186].
7. Legal Context and Neuroprediction
“When we reflect that a slight excess or deficiency of uric acid or ammonia in the blood shall make the same man at one time religious, moral, continent, and placable, and at another, irascible, unreasonable, licentious, and irreligious…we [should] forgive the offender seventy times seven times, rather than risk the infliction of an unjust punishment” [187]Arthur L. Wigan, MD, 1844
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HPA | Hypothalamic–pituitary–adrenal (HPA) axis |
ATP | Adenosine triphosphate |
fMRI | Functional magnetic resonance imaging |
References
- Anon. Glands and Crime; Times Herald: Olean, BY, USA, 1931; p. 22. [Google Scholar]
- Arford, T.; Madfis, E. Whitewashing criminology: A critical tour of Cesare Lombroso’s Museum of Criminal Anthropology. Crit. Criminol. 2022, 30, 723–740. [Google Scholar] [CrossRef]
- King, S.; Samuel, E.; Taylor, T.F. Biology and the Scientific Revolution. In The Origins of Criminological Theory; Hodwitz, O., Ed.; Routledge: London, UK, 2022; pp. 111–131. [Google Scholar]
- Nassi, A.J.; Abramowitz, S.I. From phrenology to psychosurgery and back again: Biological studies of criminality. Am. J. Orthopsychiatry 1976, 46, 591–607. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, D.H. Biological perspectives in criminology. In Biosocial Theories of Crime; Beaver, K.M., Walsh, A., Eds.; Routledge: London, UK, 2017; pp. 3–48. [Google Scholar]
- Timmis, K.; Karahan, Z.C.; Ramos, J.L.; Koren, O.; Pérez-Cobas, A.E.; Steward, K.; De Lorenzo, V.; Caselli, E.; Douglas, M.; Schwab, C.; et al. Microbes Saving Lives and Reducing Suffering. Microbial biotechnology. Microb. Biotechnol. 2025, 18, e70068. [Google Scholar] [CrossRef] [PubMed]
- Sapolsky, R.M. Determined: A Science of Life Without Free Will; Penguin Press: New York, NY, USA, 2023. [Google Scholar]
- Beaver, K.M. Biosocial Criminology: A Primer; Kendall Hunt Publishing Company: Dubuque, IA, USA, 2019. [Google Scholar]
- Hayes, H. Neurolaw: The Intersection of Science and the Law. Perspectives 2017, 25, 12. [Google Scholar]
- Petoft, A.; Abbasi, M. Current limits of neurolaw: A brief overview. Médecine Droit 2020, 2020, 29–34. [Google Scholar] [CrossRef]
- Rosen, J. The Brain on the Stand. The New York Times Magazine, 11 March 2007; 48–53. [Google Scholar]
- Prescott, S.L.; Holton, K.F.; Lowry, C.A.; Nicholson, J.J.; Logan, A.C. The Intersection of Ultra-Processed Foods, Neuropsychiatric Disorders, and Neurolaw: Implications for Criminal Justice. NeuroSci 2024, 5, 354–377. [Google Scholar] [CrossRef]
- Schneider, E.; O’Riordan, K.J.; Clarke, G.; Cryan, J.F. Feeding gut microbes to nourish the brain: Unravelling the diet–microbiota–gut–brain axis. Nat. Metab. 2024, 6, 1454–1478. [Google Scholar] [CrossRef]
- Podolsky, E. The chemical brew of criminal behavior. J. Crim. Law Criminol. Police Sci. 1955, 45, 675–678. [Google Scholar] [CrossRef]
- Spirer, J. Biochemistry as a Defense. Miami Law Q. 1949, 4, 1–11. [Google Scholar]
- Logan, A.C.; Schoenthaler, S.J. Nutrition, Behavior, and the Criminal Justice System: What Took so Long? An Interview with Dr. Stephen, J. Schoenthaler. Challenges 2023, 14, 37. [Google Scholar] [CrossRef]
- Haig, A. Uric Acid as a Factor in the Causation of Disease; P. Blakiston and Son: Philadelphia, PA, USA, 1892. [Google Scholar]
- Feig, D.I. Sour notes on sweet drinks. J. Pediatr. 2009, 154, 783–784. [Google Scholar] [CrossRef] [PubMed]
- Perlmutter, D. Drop Acid; Little, Brown Spark: New York, NY, USA, 2022. [Google Scholar]
- Ellis, H. A Study of British Genius; Hurst and Blackett, Ltd.: London, UK, 1904. [Google Scholar]
- Spence, D.; Exell, J.S.; Neil, C. A Homiletic and Illustrative Treasury of Religious Thought; Dickinson Publishers: London, UK, 1889. [Google Scholar]
- Berman, L. Crime and the endocrine glands. Am. J. Psychiatry 1932, 89, 215–238. [Google Scholar] [CrossRef]
- Groesbeck, C.; D’Asaro, B.; Nigro, C. Blood histamine and other blood components related to personality traits and criminal behavior in jail inmates. Abstr. Criminol. Penol. 1974, 14, 436. [Google Scholar]
- Spitz, R.T.; Hillbrand, M.; Foster, H.G. Uric acid levels and severity of aggression. Psychol. Rep. 1995, 76, 130. [Google Scholar] [CrossRef]
- Lesch, M.; Nyhan, W.L. A familial disorder of uric acid metabolism and central nervous system function. Am. J. Med. 1964, 36, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Anumonye, A.; Dobson, J.W.; Oppenheim, S.; Sutherland, J.S. Plasma uric acid concentrations among Edinburgh business executives. JAMA 1969, 208, 1141–1144. [Google Scholar] [CrossRef]
- Dunn, J.P.; Brooks, G.W.; Mausner, J.; Rodnan, G.P.; Cobb, S. Social class gradient of serum uric acid levels in males. JAMA 1963, 185, 431–436. [Google Scholar] [CrossRef]
- Montoye, H.J.; Faulkner, J.A.; Dodge, H.J.; Mikkelsen, W.M.; Willis, P.W.; Block, W.D. Serum uric acid concentration among business executives: With observations on other coronary heart disease risk factors. Ann. Intern. Med. 1967, 66, 838–850. [Google Scholar] [CrossRef]
- Brooks, G.W.; Mueller, E. Serum urate concentrations among university professors: Relation to drive, achievement, and leadership. JAMA 1966, 195, 415–418. [Google Scholar] [CrossRef]
- Garrod, A. The Nature and Treatment of Gout and Rheumatic Gout; Walton and Maberly: London, UK, 1859. [Google Scholar]
- Barrera, C.M.; Ruiz, Z.R.; Dunlap, W.P. Uric acid: A participating factor in the symptoms of hyperactivity. Biol. Psychiatry 1988, 24, 344–347. [Google Scholar] [CrossRef]
- Kraut, R.E.; Price, J.D. Machiavellianism in parents and their children. J. Personal. Soc. Psychol. 1976, 33, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Vee, S. And a little child shall lead them. JAMA 1969, 209, 269. [Google Scholar] [CrossRef] [PubMed]
- Rogner, J.; Hardinghaus, W.; Bartram, M.; Wirth, A. Concurrent and predictive correlations between emotions and cardiovascular and metabolic parameters in patients with myocardial infarct. Z. Psychosom. Med. Psychoanal. 1993, 39, 147–159. [Google Scholar]
- Raina, M.K.; Vats, A. Serum uric acid, serum cholesterol and personality. J. Psychosom. Res. 1982, 26, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Manowitz, P.; Amorosa, L.F.; Goldstein, H.S.; Carlton, P.L. Uric acid level increases in humans engaged in gambling: A preliminary report. Biol. Psychol. 1993, 36, 223–229. [Google Scholar] [CrossRef]
- Berman, L. Food and Character; Houghton Mifflin Co.: New York, NY, USA, 1932. [Google Scholar]
- Zacchigna, S.; Giacca, M. The global role of biotechnology for non-communicable disorders. J. Biotechnol. 2018, 283, 115–119. [Google Scholar] [CrossRef]
- Liston, C.; Roberts, A.; Dzirasa, K.; Geschwind, D.; Ahmari, S.E.; Lüscher, C. Understanding the biological basis of psychiatric disease: What’s next? Cell 2022, 185, 1–3. [Google Scholar] [CrossRef]
- Johnson, R.J.; Kang, D.H.; Feig, D.; Kivlighn, S.; Kanellis, J.; Watanabe, S.; Tuttle, K.R.; Rodriguez-Iturbe, B.; Herrera-Acosta, J.; Mazzali, M. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 2003, 41, 1183–1190. [Google Scholar] [CrossRef]
- Fini, M.A.; Elias, A.; Johnson, R.J.; Wright, R.M. Contribution of uric acid to cancer risk, recurrence, and mortality. Clin. Transl. Med. 2012, 1, 1–5. [Google Scholar] [CrossRef]
- Trevisan, M.; O’Leary, E.; Farinaro, E.; Jossa, F.; Galasso, R.; Celentano, E.; Scottoni, A.; Fusco, G.; Panico, S. Short-and long-term association between uric acid and a natural disaster. Psychosom. Med. 1997, 59, 109–113. [Google Scholar] [CrossRef]
- Tao, R.; Li, H. High serum uric acid level in adolescent depressive patients. J. Affect. Disord. 2015, 174, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Cheng, M.; Wang, H.; Yue, J.; Wang, H.; Li, G.; Zheng, L.; Zhong, Z.; Peng, F. Serum uric acid levels and the clinical characteristics of depression. Clin. Biochem. 2012, 45, 49–53. [Google Scholar] [CrossRef]
- Albert, U.; De Cori, D.; Aguglia, A.; Barbaro, F.; Bogetto, F.; Maina, G. Increased uric acid levels in bipolar disorder subjects during different phases of illness. J. Affect. Disord. 2015, 173, 170–175. [Google Scholar] [CrossRef]
- Lorenzi, T.M.; Borba, D.L.; Dutra, G.; Lara, D.R. Association of serum uric acid levels with emotional and affective temperaments. J. Affect. Disord. 2010, 121, 161–164. [Google Scholar] [CrossRef]
- Sutin, A.R.; Cutler, R.G.; Camandola, S.; Uda, M.; Feldman, N.H.; Cucca, F.; Zonderman, A.B.; Mattson, M.P.; Ferrucci, L.; Schlessinger, D.; et al. Impulsivity is associated with uric acid: Evidence from humans and mice. Biol. Psychiatry 2014, 75, 31–37. [Google Scholar] [CrossRef]
- Armon, G. Serum uric acid and the Five Factor Model of personality: Implications for psychopathological and medical conditions. Personal. Individ. Differ. 2016, 97, 277–281. [Google Scholar] [CrossRef]
- Lara, D.R.; Belmonte-de-Abreu, P.; Souza, D.O. Allopurinol for refractory aggression and self-inflicted behaviour. J. Psychopharmacol. 2000, 14, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Lara, D.R.; Cruz, M.R.; Xavier, F.; Souza, D.O.; Moriguchi, E.H. Allopurinol for the treatment of aggressive behaviour in patients with dementia. Int. Clin. Psychopharmacol. 2003, 18, 53–55. [Google Scholar] [PubMed]
- Lara, D.R.; Brunstein, M.G.; Ghisolfi, E.S.; Lobato, M.I.; Belmonte-de-Abreu, P.; Souza, D.O. Allopurinol augmentation for poorly responsive schizophrenia. Int. Clin. Psychopharmacol. 2001, 16, 235–237. [Google Scholar] [CrossRef]
- Suhas, S.; Das, D.; Kumar, C.N. The Dual Advantage of Allopurinol in a Patient With Severe Mania and Gout. Prim. Care Companion CNS Disord. 2024, 26, 56168. [Google Scholar] [CrossRef]
- Jahangard, L.; Soroush, S.; Haghighi, M.; Ghaleiha, A.; Bajoghli, H.; Holsboer-Trachsler, E.; Brand, S. In a double-blind, randomized and placebo-controlled trial, adjuvant allopurinol improved symptoms of mania in in-patients suffering from bipolar disorder. Eur. Neuropsychopharmacol. 2014, 24, 1210–1221. [Google Scholar] [CrossRef] [PubMed]
- Nurmedov, S.; Ibadi, Y.; Noyan, O.; Yilmaz, O.; Kesebir, S.; Dilbaz, N.; Kose, S. Relationship between impulsivity and plasma uric acid levels in patients with substance use disorders. Klin. Psikofarmakol. Bülteni-Bull. Clin. Psychopharmacol. 2016, 26, 223–228. [Google Scholar] [CrossRef]
- Yıldız, S.; Kazğan, A.; Kurt, O.; Korkmaz, S.; Uğur, K. The Correlation Between Serum Uric Acid Level and Certain Clinical Variables in Antisocial Personality Disorder Patients. Neuropsychiatr. Investig. 2021, 59, 45–52. [Google Scholar] [CrossRef]
- Kilicaslan, A.; Yildiz, S.; Kurt, O.; Korkmaz, S. Serum uric acid levels in borderline personality disorder and its relationship with impulsivity. Cukurova Med. J. 2021, 46, 1624–1631. [Google Scholar]
- Kafle, O.P.; Wang, X.; Cheng, S.; Ding, M.; Li, P.; Cheng, B.; Liang, X.; Liu, L.; Du, Y.; Ma, M.; et al. Genetic correlation analysis and transcriptome-wide association study suggest the overlapped genetic mechanism between gout and attention-deficit hyperactivity disorder. Can. J. Psychiatry 2021, 66, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhou, S.; Feng, Y.; Lang, J.; Chen, Y.; Ren, H. The Prevalence of Hyperuricemia and the Association Between Hyperuricemia and Age in Patients with Psychiatric Disorders to a General Hospital: A Cross-Section Study. Int. J. Gen. Med. 2024, 17, 1467–1477. [Google Scholar] [CrossRef]
- Khaled, Y.; Abdelhamid, A.A.; Al-Mazroey, H.; Almannai, A.K.; Fetais, S.; Al-Srami, A.S.; Ahmed, S.; Al-Hajri, N.; Mustafa, A.; Chivese, T.; et al. Higher serum uric acid is associated with poorer cognitive performance in healthy middle-aged people: A cross-sectional study. Intern. Emerg. Med. 2023, 18, 1701–1709. [Google Scholar] [CrossRef]
- Fu, R.; Chen, C.J.; Jinnah, H.A. Genotypic and phenotypic spectrum in attenuated variants of Lesch–Nyhan disease. Mol. Genet. Metab. 2014, 112, 280–285. [Google Scholar] [CrossRef]
- Carr, C.N.; Straley, C.M.; Baugh, T.B. Allopurinol for the treatment of refractory aggression: A case series. Pharmacotherapy 2017, 37, 748–754. [Google Scholar] [CrossRef]
- Kasl, S.V.; Cobb, S.; Brooks, G.W. Changes in serum uric acid and cholesterol levels in men undergoing job loss. JAMA 1968, 206, 1500–1507. [Google Scholar] [CrossRef]
- Shirom, A.; Melamed, S.; Nir-Dotan, M. The relationships among objective and subjective environmental stress levels and serum uric acid: The moderating effect of perceived control. J. Occup. Health Psychol. 2000, 5, 374. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.D.; Goodwin, J.M.; Goodwin, J.S. Effect of social support on stress-related changes in cholesterol level, uric acid level, and immune function in an elderly sample. Am. J. Psychiatry 1985, 142, 735–737. [Google Scholar] [PubMed]
- Mrug, S.; Mrug, M. Uric acid excretion predicts increased aggression in urban adolescents. Physiol. Behav. 2016, 163, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, F.; Crocamo, C.; Bava, M.; Castagna, G.; Di Brita, C.; Riboldi, I.; Trotta, G.; Verrengia, E.; Clerici, M.; Carra, G. Testing the association of serum uric acid levels with behavioral and clinical characteristics in subjects with major affective disorders: A cross-sectional study. Psychiatry Res. 2018, 269, 118–123. [Google Scholar] [CrossRef]
- de Girolamo, G.; Buizza, C.; Sisti, D.; Ferrari, C.; Bulgari, V.; Iozzino, L.; Boero, M.E.; Cristiano, G.; De Francesco, A.; Giobbio, G.M.; et al. Monitoring and predicting the risk of violence in residential facilities. No difference between patients with history or with no history of violence. J. Psychiatr. Res. 2016, 80, 5–13. [Google Scholar] [CrossRef]
- Villasis-Keever, M.; Zurita-Cruz, J.; Areli, P.E.; Mazon-Aguirre, W.A. The relationship of anxiety with cardiometabolic risk factors in adolescents with obesity: Propensity scores. Front. Endocrinol. 2025, 16, 1477006. [Google Scholar] [CrossRef]
- Rosalind, S.R.; Ganesan, R. Uric acid levels in psychiatric population: A cross-sectional study. Int. J. Sci. Dev. Res. 2023, 8, 2147–2151. [Google Scholar]
- Yonetani, Y.; Ishii, M.; Ogawa, Y. Stimulation by catecholamine of purine catabolism in rats and chickens. Jpn. J. Pharmacol. 1979, 29, 211–221. [Google Scholar] [CrossRef]
- Sumi, T.; Umeda, Y.U. Adrenal epinephrine in hyperuricemia induced by hypothalamic stimulation of the rat. Am. J. Physiol.-Endocrinol. Metab. 1979, 236, E212. [Google Scholar] [CrossRef]
- Inaba, R. Changes in the plasma levels of uric acid in rats subjected to immobilization stress. Nippon Eiseigaku Zasshi (Jpn. J. Hyg.) 1983, 38, 748–757. [Google Scholar] [CrossRef]
- Yisireyili, M.; Hayashi, M.; Wu, H.; Uchida, Y.; Yamamoto, K.; Kikuchi, R.; Shoaib Hamrah, M.; Nakayama, T.; Wu Cheng, X.; Matsushita, T.; et al. Xanthine oxidase inhibition by febuxostat attenuates stress-induced hyperuricemia, glucose dysmetabolism, and prothrombotic state in mice. Sci. Rep. 2017, 7, 1266. [Google Scholar] [CrossRef]
- Acevedo, A.M.; Fortier, M.A.; Campos, B.; Brown, Y.C.; Riis, J. Salivary uric acid reactivity and baseline associations with physiological stress response. Psychoneuroendocrinology 2022, 146, 105948. [Google Scholar] [CrossRef] [PubMed]
- Priyanto, A.; Abdillah, A.; Fauziyah, L. The correlation between physical activity and stress and their impact on uric acid levels in older individuals. IJNMS 2023, 7, 387–393. [Google Scholar] [CrossRef]
- Pasquini, S.; Contri, C.; Merighi, S.; Gessi, S.; Borea, P.A.; Varani, K.; Vincenzi, F. Adenosine receptors in neuropsychiatric disorders: Fine regulators of neurotransmission and potential therapeutic targets. Int. J. Mol. Sci. 2022, 23, 1219. [Google Scholar] [CrossRef]
- Salvadore, G.; Viale, C.I.; Luckenbaugh, D.A.; Zanatto, V.C.; Portela, L.V.; Souza, D.O.; Zarate Jr, C.A.; Machado-Vieira, R. Increased uric acid levels in drug-naïve subjects with bipolar disorder during a first manic episode. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 819–821. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G. Purinergic signalling and disorders of the central nervous system. Nat. Rev. Drug Discov. 2008, 7, 575–590. [Google Scholar] [CrossRef]
- Machado-Vieira, R.; Lara, D.R.; Souza, D.O.; Kapczinski, F. Purinergic dysfunction in mania: An integrative model. Med. Hypotheses 2002, 58, 297–304. [Google Scholar] [CrossRef]
- Guo, W.; Yang, Y.; Liu, G.; Zhao, J.; Zhang, Y.; Li, Y.; Yang, B.; Zhu, X.; Li, D.; Qin, X.; et al. The Anti-Neuroinflammatory Effects of Cepharanthine in Uric Acid-Induced Neuroinflammation. J. Ethnopharmacol. 1194. [Google Scholar] [CrossRef]
- Tian, T.; Liu, X.R.; Li, T.T.; Nie, Z.C.; Li, S.J.; Tang, Y.; Gu, C.W.; Xu, W.D.; Jia, H. Detrimental effects of long-term elevated serum uric acid on cognitive function in rats. Sci. Rep. 2021, 11, 6732. [Google Scholar] [CrossRef]
- Joosten, L.A.; Crişan, T.O.; Bjornstad, P.; Johnson, R.J. Asymptomatic hyperuricaemia: A silent activator of the innate immune system. Nat. Rev. Rheumatol. 2020, 16, 75–86. [Google Scholar] [CrossRef]
- Lu, W.; Xu, Y.; Shao, X.; Gao, F.; Li, Y.; Hu, J.; Zuo, Z.; Shao, X.; Zhou, L.; Zhao, Y.; et al. Uric acid produces an inflammatory response through activation of NF-κB in the hypothalamus: Implications for the pathogenesis of metabolic disorders. Sci. Rep. 2015, 5, 12144. [Google Scholar] [CrossRef]
- Goodman, A.M.; Wheelock, M.D.; Harnett, N.G.; Mrug, S.; Granger, D.A.; Knight, D.C. The hippocampal response to psychosocial stress varies with salivary uric acid level. Neuroscience 2016, 339, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Lu, W.; Gao, F.; Li, D.; Hu, J.; Li, Y.; Zuo, Z.; Jie, H.; Zhao, Y.; Cen, X. Uric acid induces cognitive dysfunction through hippocampal inflammation in rodents and humans. J. Neurosci. 2016, 36, 10990–11005. [Google Scholar] [CrossRef] [PubMed]
- Bowman, G.L.; Shannon, J.; Frei, B.; Kaye, J.A.; Quinn, J.F. Uric acid as a CNS antioxidant. J. Alzheimer’s Dis. 2010, 19, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduct. Target. Ther. 2023, 8, 217. [Google Scholar] [CrossRef]
- Wu, S.; Yin, Y.; Du, L. Blood–brain barrier dysfunction in the pathogenesis of major depressive disorder. Cell. Mol. Neurobiol. 2022, 42, 2571–2591. [Google Scholar] [CrossRef]
- Dion-Albert, L.; Binder, L.B.; Daigle, B.; Hong-Minh, A.; Lebel, M.; Menard, C. Sex differences in the blood–brain barrier: Implications for mental health. Front. Neuroendocrinol. 2022, 65, 100989. [Google Scholar]
- Prescott, S.L.; Logan, A.C.; LaFata, E.M.; Naik, A.; Nelson, D.H.; Robinson, M.B.; Soble, L. Crime and nourishment: A narrative review examining ultra-processed foods, brain, and behavior. Dietetics 2024, 3, 318–345. [Google Scholar] [CrossRef]
- Kisucka, J.; Chauhan, A.K.; Zhao, B.Q.; Patten, I.S.; Yesilaltay, A.; Krieger, M.; Wagner, D.D. Elevated levels of soluble P-selectin in mice alter blood-brain barrier function, exacerbate stroke, and promote atherosclerosis. Blood J. Am. Soc. Hematol. 2009, 113, 6015–6022. [Google Scholar] [CrossRef]
- Soderstrom, H.; Blennow, K.; Manhem, A.; Forsman, A. CSF studies in violent offenders, I.I. Blood-brain barrier dysfunction without concurrent inflammation or structure degeneration. J. Neural Transm. 2001, 108, 879–886. [Google Scholar] [CrossRef]
- Song, Y.; Cao, H.; Zuo, C.; Gu, Z.; Huang, Y.; Miao, J.; Fu, Y.; Guo, Y.; Jiang, Y.; Wang, F. Mitochondrial dysfunction: A fatal blow in depression. Biomed. Pharmacother. 2023, 167, 115652. [Google Scholar] [CrossRef]
- Daniels, T.E.; Olsen, E.M.; Tyrka, A.R. Stress and psychiatric disorders: The role of mitochondria. Annu. Rev. Clin. Psychol. 2020, 16, 165–186. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, O.; Strilbytska, O.; Koliada, A.; Storey, K.B. An orchestrating role of mitochondria in the origin and development of post-traumatic stress disorder. Front. Physiol. 2023, 13, 1094076. [Google Scholar] [CrossRef] [PubMed]
- Lanaspa, M.A.; Sanchez-Lozada, L.G.; Choi, Y.J.; Cicerchi, C.; Kanbay, M.; Roncal-Jimenez, C.A.; Ishimoto, T.; Li, N.; Marek, G.; Duranay, M.; et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: Potential role in fructose-dependent and -independent fatty liver. J. Biol. Chem. 2012, 287, 40732–40744. [Google Scholar] [CrossRef] [PubMed]
- Ülgen, D.H.; Ruigrok, S.R.; Sandi, C. Powering the social brain: Mitochondria in social behaviour. Curr. Opin. Neurobiol. 2023, 79, 102675. [Google Scholar] [CrossRef]
- Shi, C.; Guo, H.; Liu, X. High uric acid induced hippocampal mitochondrial dysfunction and cognitive impairment involving intramitochondrial NF-κB inhibitor α/nuclear factor-κB pathway. Neuroreport 2022, 33, 109–115. [Google Scholar] [CrossRef]
- Chu, H.; Zhu, H.; Ma, J.; Jiang, Y.; Cui, C.; Yan, X.; Li, Q.; Zhang, X.; Chen, D.; Li, X.; et al. Mitochondrial Dysfunction and Metabolic Indicators in Patients with Drug-Naive First-Episode Schizophrenia: A Case-Control Study. Neuropsychiatr. Dis. Treat. 2024, 2024, 2433–2442. [Google Scholar] [CrossRef]
- Lin, L.; Zheng, L.J.; Joseph Schoepf, U.; Varga-Szemes, A.; Savage, R.H.; Wang, Y.F.; Zhang, H.; Zhang, X.Y.; Lu, G.M.; Zhang, L.J. Uric acid has different effects on spontaneous brain activities of males and females: A cross-sectional resting-state functional MR imaging study. Front. Neurosci. 2019, 13, 763. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, J.; Wu, S.; Ji, S.; Yang, Y.; Fang, W.; Li, Z.; Lin, J.; Chen, J.; Wu, C.; et al. Serum Uric Acid Levels Associated with Outcomes of Neurodegenerative Disorders and Brain Health: Findings from the UK Biobank. J. Nutr. Health Aging 2024, 28, 100319. [Google Scholar] [CrossRef]
- Lv, H.; Sun, J.; Zhang, T.; Hui, Y.; Li, J.; Zhao, X.; Chen, S.; Liu, W.; Li, X.; Zhao, P.; et al. Associations of serum uric acid variability with neuroimaging metrics and cognitive decline: A population-based cohort study. BMC Med. 2024, 22, 256. [Google Scholar] [CrossRef]
- Sánchez-Lozada, L.G.; Lanaspa, M.A.; Cristóbal-García, M.; García-Arroyo, F.; Soto, V.; Cruz-Robles, D.; Nakagawa, T.; Yu, M.A.; Kang, D.H.; Johnson, R.J. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp. Nephrol. 2012, 121, e71–e78. [Google Scholar] [CrossRef]
- Cai, L.; Liu, Y.; He, L. Investigating genetic causal relationships between blood pressure and anxiety, depressive symptoms, neuroticism and subjective well-being. Gen. Psychiatry 2022, 35, e100877. [Google Scholar] [CrossRef] [PubMed]
- McCubbin, J.A.; Switzer, F.S.; LaDue, M.N.; Ogle, J.H.; Bendigeri, V. Blood pressure-associated emotional dampening and risky behavior: Elevated resting blood pressure predicts risky simulated driving in women. Int. J. Psychophysiol. 2020, 155, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Loveless, J.P.; Sullivan, S.N.; Hall, H.; Danford, J.; Farley, A.; Trogdon, N.; Baldwin, J. Linking Blood Pressure-Associated Emotional Dampening to Trait Empathy. Percept. Mot. Ski. 2023, 130, 2305–2326. [Google Scholar] [CrossRef] [PubMed]
- Bucher, B.S.; Ferrarini, A.; Weber, N.; Bullo, M.; Bianchetti, M.G.; Simonetti, G.D. Primary hypertension in childhood. Curr. Hypertens. Rep. 2013, 15, 444–452. [Google Scholar] [CrossRef]
- Feig, D.I.; Soletsky, B.; Johnson, R.J. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: A randomized trial. JAMA 2008, 300, 924–932. [Google Scholar] [CrossRef]
- Ou, S.H.; Chou, C.L.; Lin, C.W.; Chien, W.C.; Fang, T.C.; Lu, K.C.; Chen, J.S. Association between gout and injury risk: A national retrospective cohort study. Int. J. Environ. Res. Public Health 2020, 17, 3679. [Google Scholar] [CrossRef]
- Dumais, A.; Lesage, A.D.; Lalovic, A.; Séguin, M.; Tousignant, M.; Chawky, N.; Turecki, G. Is Violent Method Suicide A Behav. Marker Lifetime Aggress? Am. J. Psychiatry 2005, 162, 1375–1378. [Google Scholar] [CrossRef]
- Punzi, G.; Ursini, G.; Chen, Q.; Radulescu, E.; Tao, R.; Huuki, L.A.; Di Carlo, P.; Collado-Torres, L.; Shin, J.H.; Catanesi, R.; et al. Genetics and brain transcriptomics of completed suicide. Am. J. Psychiatry 2022, 179, 226–241. [Google Scholar] [CrossRef]
- Immanuel, S.; Kaki, A.; Jetty, R.R.; Vupputuri, S.M.; Ramireddy, K.V. Uric Acid as a Biomarker for Mood Disorders: A Comparative Study of Blood Uric Acid Levels Correlating With the Symptom Severity and Treatment Response. Cureus 2024, 16, e66784. [Google Scholar] [CrossRef]
- Huang, Z.; Xie, N.; Illes, P.; Di Virgilio, F.; Ulrich, H.; Semyanov, A.; Verkhratsky, A.; Sperlagh, B.; Yu, S.G.; Huang, C.; et al. From purines to purinergic signalling: Molecular functions and human diseases. Signal Transduct. Target. Ther. 2021, 6, 162. [Google Scholar] [CrossRef] [PubMed]
- Ushijima, I.; Katsuragi, T.; Furukawa, T. Involvement of adenosine receptor activities in aggressive responses produced by clonidine in mice. Psychopharmacology 1984, 83, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Palmour, R.M.; Lipowski, C.J.; Simon, C.K.; Ervin, F.R. Adenosine analogs inhibit fighting in isolated male mice. Life Sci. 1989, 44, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.P.; de Oliveira, E.D.; Fagundes, A.C.; Hansel, G.; Pedrini, R.O.; Valdameri, A.; Martinelli, E.S.; Schmidt, S.R.; Andrade, C.F.; Lara, D.R.; et al. Allopurinol attenuates postoperative pain and modulates the purinergic system in patients undergoing abdominal hysterectomy: A randomized controlled trial. J. Anesth. 2021, 35, 818–826. [Google Scholar] [CrossRef]
- Huang, Y.; You, Y.; Wang, W.; Chen, Y.H.; Zhang, H.; Li, Q.P.; Liu, L.; Tong, K.; Sun, N.; Hao, J.R.; et al. Adenosine regulates depressive behavior in mice with chronic social defeat stress through gut microbiota. Neuropharmacology 2025, 262, 110209. [Google Scholar] [CrossRef]
- Uzan-Yulzari, A.; Turjeman, S.; Moadi, L.; Getselter, D.; Sharon, E.; Rautava, S.; Isolauri, E.; Khatib, S.; Elliott, E.; Koren, O. A gut reaction? The role of the microbiome in aggression. Brain Behav. Immun. 2024, 122, 301–312. [Google Scholar] [CrossRef]
- Bonaz, B.; Bazin, T.; Pellissier, S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front. Neurosci. 2018, 12, 336468. [Google Scholar] [CrossRef]
- Donoso, F.; Cryan, J.F.; Olavarría-Ramírez, L.; Nolan, Y.M.; Clarke, G. Inflammation, lifestyle factors, and the microbiome-gut-brain Axis: Relevance to depression and antidepressant action. Clin. Pharmacol. Ther. 2023, 113, 246–259. [Google Scholar] [CrossRef]
- Prescott, S.L.; Logan, A.C.; D’Adamo, C.R.; Holton, K.F.; Lowry, C.A.; Marks, J.; Moodie, R.; Poland, B. Nutritional Criminology: Why the Emerging Research on Ultra-Processed Food Matters to Health and Justice. Int. J. Environ. Res. Public Health 2024, 21, 120. [Google Scholar] [CrossRef]
- Borrego-Ruiz, A.; Borrego, J.J. Human gut microbiome, diet, and mental disorders. Int. Microbiol. 2024, 28, 1–15. [Google Scholar] [CrossRef]
- Karaboycheva, G.; Conrad, M.L.; Dörr, P.; Dittrich, K.; Murray, E.; Skonieczna-Żydecka, K.; Kaczmarczyk, M.; Łoniewski, I.; Klawitter, H.; Buss, C.; et al. Altered Gut Microbiota Patterns in Young Children with Recent Maltreatment Exposure. Biomolecules 2024, 14, 1313. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Liu, J.; Chen, W.; He, Y.; Kahaer, M.; Li, R.; Tian, T.; Liu, Y.; Bai, B.; Cui, Y.; et al. Diagnostic model for predicting hyperuricemia based on alterations of the gut microbiome in individuals with different serum uric acid levels. Front. Endocrinol. 2022, 13, 925119. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Zhang, Y.; Sun, J.; Chen, Y.; Wu, H. Mechanism of intestinal flora affecting SLC2A9 transport function to promote the formation of hyperuricemia. Heliyon 2024, 10, e40597. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, T.; Guo, R.; Cui, W.; Yu, W.; Wang, Z.; Jiang, Y.; Jiang, M.; Wang, X.; Liu, C.; et al. Variation of serum uric acid is associated with gut microbiota in patients with diabetes mellitus. Front. Cell. Infect. Microbiol. 2022, 11, 761757. [Google Scholar] [CrossRef]
- Duan, Z.; Fu, J.; Zhang, F.; Cai, Y.; Wu, G.; Ma, W.; Zhou, H.; He, Y. The association between BMI and serum uric acid is partially mediated by gut microbiota. Microbiol. Spectr. 2023, 11, e01140-23. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, X.; Zhang, L.; Meng, F.; Zhou, L.; Pang, X.; Lu, Z.; Lu, Y. Lacticaseibacillus rhamnosus Fmb14 prevents purine induced hyperuricemia and alleviate renal fibrosis through gut-kidney axis. Pharmacol. Res. 2022, 182, 106350. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Ye, J.; Fan, H.; Xiao, C.; Wang, D.; Xia, B.; Zhao, Z.; Zhao, B.; Dai, X.; Liu, X. Lactobacillus plantarum LLY-606 supplementation ameliorates hyperuricemia via modulating intestinal homeostasis and relieving inflammation. Food Funct. 2023, 14, 5663–5677. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, P.; Xiong, S.; Wei, B.; Du, T.; Huang, T.; Yu, Q.; Xie, M.; Xiong, T. Lacticaseibacillus rhamnosus NCUH061012 alleviates hyperuricemia via modulating gut microbiota and intestinal metabolites in mice. Food Biosci. 2024, 58, 103699. [Google Scholar] [CrossRef]
- Liu, X.; Han, C.H.; Mao, T.; Wu, J.; Ke, L.Y.; Guo, Y.J.; Han, R.S.; Tian, Z.B. Commensal Enterococcus faecalis W5 ameliorates hyperuricemia and maintains the epithelial barrier in a hyperuricemia mouse model. J. Dig. Dis. 2024, 25, 44–60. [Google Scholar] [CrossRef]
- Bi, C.; Zhang, L.; Liu, J.; Chen, L. Lactobacillus paracasei 259 alleviates hyperuricemia in rats by decreasing uric acid and modulating the gut microbiota. Front. Nutr. 2024, 11, 1450284. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, J.; Zou, Q.; Wang, W.; Yan, G.; Guo, R.; Yuan, T.; Wang, Y.; Liu, X.; Liu, Z. Tryptophan Metabolism-Regulating Probiotics Alleviate Hyperuricemia by Protecting the Gut Barrier Integrity and Enhancing Colonic Uric Acid Excretion. J. Agric. Food Chem. 2024, 72, 26746–26761. [Google Scholar] [CrossRef]
- Rao, L.; Dong, B.; Chen, Y.; Liao, J.; Wang, C.; Fu, G.; Wan, Y. Study on the mechanism of lactic acid bacteria and their fermentation broth in alleviating hyperuricemia based on metabolomics and gut microbiota. Front. Nutr. 2024, 11, 1495346. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, F.; Wang, J.; Zheng, M.; Yu, F.; Yi, Y. The ameliorative and neuroprotective effects of dietary fibre on hyperuricaemia mice: A perspective from microbiome and metabolome. Br. J. Nutr. 2024, 132, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Zhou, K.; Feng, C.; Bao, Y.; Zhang, Z.; Luo, W.; Li, M. Effect of konjac glucomannan on gut microbiota from hyperuricemia subjects in vitro: Fermentation characteristics and inhibitory xanthine oxidase activity. Front. Nutr. 2024, 11, 1465940. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, Y.S.; Xia, D.Y.; Luo, X.D.; Luo, H.T.; Pan, J.; Ma, W.Q.; Li, J.Z.; Mo, Q.Y.; Tu, Q.; et al. Lactobacillus rhamnosus GG ameliorates hyperuricemia in a novel model. npj Biofilms Microbiomes 2024, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Ernst, J.A.; Sy, E.R. Effect of azlocillin on uric acid levels in serum. Antimicrob. Agents Chemother. 1983, 24, 609–610. [Google Scholar] [CrossRef] [PubMed]
- Logan, A.C.; Katzman, M. Major depressive disorder: Probiotics may be an adjuvant therapy. Med. Hypotheses 2005, 64, 533–538. [Google Scholar] [CrossRef]
- Cheng, S.; Shan, L.; You, Z.; Xia, Y.; Zhao, Y.; Zhang, H.; Zhao, Z. Dietary patterns, uric acid levels, and hyperuricemia: A systematic review and meta-analysis. Food Funct. 2023, 14, 7853–7868. [Google Scholar] [CrossRef]
- Zhou, M.; Huang, X.; Li, R.; Zhang, Z.; Zhang, L.; Gao, X.; Yang, H.; Ma, Y. Association of dietary patterns with blood uric acid concentration and hyperuricemia in northern Chinese adults. Nutr. J. 2022, 21, 42. [Google Scholar] [CrossRef]
- Prescott, S.L.; D’Adamo, C.R.; Holton, K.F.; Ortiz, S.; Overby, N.; Logan, A.C. Beyond plants: The ultra-processing of global diets is harming the health of people, places, and planet. Int. J. Environ. Res. Public Health 2023, 20, 6461. [Google Scholar] [CrossRef]
- Fajardo, V.C.; Barreto, S.M.; Coelho, C.G.; Diniz, M.D.; Molina, M.D.; Ribeiro, A.L.; Telles, R.W. Ultra-processed foods: Cross-sectional and longitudinal association with uric acid and hyperuricemia in ELSA-Brasil. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Gan, S.; Ye, M.; Meng, G.; Zhang, Q.; Liu, L.; Wu, H.; Gu, Y.; Zhang, S.; Wang, Y.; et al. Association between consumption of ultra-processed foods and hyperuricemia: TCLSIH prospective cohort study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1993–2003. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Wilson, W.L.; Bland, S.T.; Lanaspa, M.A. Fructose and uric acid as drivers of a hyperactive foraging response: A clue to behavioral disorders associated with impulsivity or mania? Evol. Hum. Behav. 2021, 42, 194–203. [Google Scholar] [CrossRef]
- Gao, X.; Qi, L.; Qiao, N.; Choi, H.K.; Curhan, G.; Tucker, K.L.; Ascherio, A. Intake of added sugar and sugar-sweetened drink and serum uric acid concentration in US men and women. Hypertension 2007, 50, 306–312. [Google Scholar] [CrossRef]
- Du, L.; Zong, Y.; Li, H.; Wang, Q.; Xie, L.; Yang, B.; Pang, Y.; Zhang, C.; Zhong, Z.; Gao, J. Hyperuricemia and its related diseases: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 212. [Google Scholar] [CrossRef] [PubMed]
- Hieronimus, B.; Medici, V.; Bremer, A.A.; Lee, V.; Nunez, M.V.; Sigala, D.M.; Keim, N.L.; Havel, P.J.; Stanhope, K.L. Synergistic effects of fructose and glucose on lipoprotein risk factors for cardiovascular disease in young adults. Metabolism 2020, 112, 154356. [Google Scholar] [CrossRef]
- Ayoub-Charette, S.; Chiavaroli, L.; Liu, Q.; Khan, T.A.; Zurbau, A.; Au-Yeung, F.; Cheung, A.; Ahmed, A.; Lee, D.; Choo, V.L.; et al. Different food sources of fructose-containing sugars and fasting blood uric acid levels: A systematic review and meta-analysis of controlled feeding trials. J. Nutr. 2021, 151, 2409–2421. [Google Scholar] [CrossRef]
- Choi, J.; Kim, J.H.; Park, M.; Lee, H.J. Effects of Flavonoid-Rich Orange Juice Intervention on Major Depressive Disorder in Young Adults: A Randomized Controlled Trial. Nutrients 2022, 15, 145. [Google Scholar] [CrossRef]
- Gillies, N.A.; Wilson, B.C.; Miller, J.R.; Roy, N.C.; Scholey, A.; Braakhuis, A.J. Effects of a Flavonoid-Rich Blackcurrant Beverage on Markers of the Gut-Brain Axis in Healthy Females: Secondary Findings From a 4-Week Randomized Crossover Control Trial. Curr. Dev. Nutr. 2024, 8, 102158. [Google Scholar] [CrossRef]
- Shi, Y.; Williamson, G. Quercetin lowers plasma uric acid in pre-hyperuricaemic males: A randomised, double-blinded, placebo-controlled, cross-over trial. Br. J. Nutr. 2016, 115, 800–806. [Google Scholar] [CrossRef]
- Di Pierro, F.; Rabbani, F.; Tareen, M.; Nigar, R.; Khan, A.; Zerbinati, N.; Tanda, M.L.; Cazzaniga, M.; Bertuccioli, A.; Falasca, P.; et al. Potential pharmacological effect of Quercetin Phytosome™ in the management of hyperuricemia: Results from real-life clinical studies. Front. Nutr. 2025, 12, 1519459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhou, J.; Zhao, L.; Zhao, Z.; Wang, S.; Zhang, L.; Zhou, F. Ferulic acid supplementation alleviates hyperuricemia in high-fructose/fat diet-fed rats via promoting uric acid excretion and mediating the gut microbiota. Food Funct. 2023, 14, 1710–1725. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zeng, Y.; Wang, R.; Pang, J.; Wang, X.; Pan, Z.; Jin, Y.; Chen, Y.; Yang, Y.; Ling, W. Resveratrol Improves Hyperuricemia and Ameliorates Renal Injury by Modulating the Gut Microbiota. Nutrients 2024, 16, 1086. [Google Scholar] [CrossRef]
- Logan, A.C.; Prescott, S.L.; LaFata, E.M.; Nicholson, J.J.; Lowry, C.A. Beyond auto-brewery: Why dysbiosis and the legalome matter to forensic and legal psychology. Laws 2024, 13, 46. [Google Scholar] [CrossRef]
- Prescott, S.L.; Logan, A.C. The Legalome: Nutritional Psychology and Microbiome Sciences at the Intersection of Criminal Justice, Mens Rea, and Mitigation. Crim. Justice Behav. 2024. [Google Scholar] [CrossRef]
- Logan, A.C.; Nicholson, J.J.; Schoenthaler, S.J.; Prescott, S.L. Neurolaw: Revisiting Huberty v. McDonald’s through the Lens of Nutritional Criminology and Food Crime. Laws 2024, 13, 17. [Google Scholar] [CrossRef]
- Chen, P.; Miao, L.; Zhang, L.; Du, J.; Guo, M.; Shi, D. Association between serum carotenoids and hyperuricemia: A cross-sectional study based on NHANES 2001–2006. Front. Nutr. 2024, 11, 147603. [Google Scholar] [CrossRef]
- Yamamoto, T.; Moriwaki, Y.; Takahashi, S. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid). Clin. Chim. Acta 2005, 356, 35–57. [Google Scholar] [CrossRef]
- Jang, Y.S.; Nerobkova, N.; Yun, I.; Kim, H.; Park, E.C. Association between smoking behavior and serum uric acid among the adults: Findings from a national cross-sectional study. PLoS ONE 2023, 18, e0285080. [Google Scholar] [CrossRef]
- Daskalopoulou, S.S.; Tzovaras, V.; Mikhailidis, D.P.; Elisaf, M. Effect on serum uric acid levels of drugs prescribed for indications other than treating hyperuricaemia. Curr. Pharm. Des. 2005, 11, 4161–4175. [Google Scholar] [CrossRef]
- Turan, Ç.; Ünal, S. The relationship between serum uric acid levels and severity of addiction in individuals with substance use disorders. Eur. Res. J. 2023, 9, 792–799. [Google Scholar] [CrossRef]
- Zhao, F.; Tie, N.; Kwok, L.Y.; Ma, T.; Wang, J.; Man, D.; Yuan, X.; Li, H.; Pang, L.; Shi, H.; et al. Baseline gut microbiome as a predictive biomarker of response to probiotic adjuvant treatment in gout management. Pharmacol. Res. 2024, 209, 107445. [Google Scholar] [CrossRef] [PubMed]
- Seyed-Sadjadi, N.; Berg, J.; Bilgin, A.A.; Grant, R. Visceral fat mass: Is it the link between uric acid and diabetes risk? Lipids Health Dis. 2017, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Copur, S.; Demiray, A.; Kanbay, M. Uric acid in metabolic syndrome: Does uric acid have a definitive role? Eur. J. Intern. Med. 2022, 103, 4–12. [Google Scholar] [CrossRef]
- Kuzuya, M.; Ando, F.; Iguchi, A.; Shimokata, H. Effect of aging on serum uric acid levels: Longitudinal changes in a large Japanese population group. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2002, 57, M660–M664. [Google Scholar] [CrossRef]
- Lucas, T.; Riis, J.L.; Buchalski, Z.; Drolet, C.E.; Dawadi, A.; Granger, D.A. Reactivity of salivary uric acid in response to social evaluative stress in African Americans. Biol. Psychol. 2020, 153, 107882. [Google Scholar] [CrossRef]
- Pan, Z.; Huang, M.; Fang, M.; Xie, X.; Huang, Z. Socioeconomic differences in hyperuricemia and gout: A systematic review and meta-analysis. Endocrine 2020, 69, 286–293. [Google Scholar] [CrossRef]
- Wagels, L.; Habel, U.; Raine, A.; Clemens, B. Neuroimaging, hormonal and genetic biomarkers for pathological aggression—Success or failure? Curr. Opin. Behav. Sci. 2022, 43, 101–110. [Google Scholar] [CrossRef]
- Haller, J. Glucocorticoids and aggression: A tripartite interaction. In Neuroscience of Social Stress; Springer: Cham, Switzerland, 2022; pp. 209–243. [Google Scholar]
- Armstrong, T.A.; Boisvert, D.L.; Wells, J.; Lewis, R.H.; Cooke, E.M.; Woeckener, M.; Kavish, N.; Vietto, N.; Harper, J.M. Testosterone, cortisol, and criminal behavior in men and women. Horm. Behav. 2022, 146, 105260. [Google Scholar] [CrossRef]
- Blankenstein, N.E.; de Rooij, M.; van Ginkel, J.; Wilderjans, T.F.; de Ruigh, E.L.; Oldenhof, H.C.; Zijlmans, J.; Jambroes, T.; Platje, E.; de Vries-Bouw, M.; et al. Neurobiological correlates of antisociality across adolescence and young adulthood: A multi-sample, multi-method study. Psychol. Med. 2023, 53, 1834–1849. [Google Scholar] [CrossRef]
- Montoya, E.R.; Terburg, D.; Bos, P.A.; Van Honk, J. Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motiv. Emot. 2012, 36, 65–73. [Google Scholar] [CrossRef]
- Wang, Y.; Charchar, F.J. Establishment of sex difference in circulating uric acid is associated with higher testosterone and lower sex hormone-binding globulin in adolescent boys. Sci. Rep. 2021, 11, 17323. [Google Scholar] [CrossRef] [PubMed]
- Yahyaoui, R.; Esteva, I.; Haro-Mora, J.J.; Almaraz, M.C.; Morcillo, S.; Rojo-Martínez, G.; Martínez, J.; Gómez-Zumaquero, J.M.; González, I.; Hernando, V.; et al. Effect of long-term administration of cross-sex hormone therapy on serum and urinary uric acid in transsexual persons. J. Clin. Endocrinol. Metab. 2008, 93, 2230–2233. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, H.; Watanabe, M.; Sugimoto, M.; Ariyoshi, Y.; Mahmood, S.; Araki, M.; Ishii, K.; Nasu, Y.; Nagai, A.; Kumon, H. Testosterone replacement elevates the serum uric acid levels in patients with female to male gender identity disorder. Endocr. J. 2013, 60, 1321–1327. [Google Scholar] [CrossRef]
- Goetz, S.M.; Lucas, T.; Granger, D.A. Salivary uric acid dynamics are associated with stress response hormones among African Americans in an urban sample. Psychoneuroendocrinology. 2024, 168, 107120. [Google Scholar] [CrossRef] [PubMed]
- Szymon, R.; Kacper, N.; Jakub, J.; Filip, N.; Czesław, Ż. Salivary markers of aggression—The possible alterations in salivary hormones levels to identify perpetrators of aggression-related violence. Leg. Med. 2024, 71, 102501. [Google Scholar]
- Paiva, T.O.; Buades-Rotger, M.; Baskin-Sommers, A.; Brazil, I.A. The unusual suspects: A systematic search for the molecular and cellular correlates of human aggression. Aggress. Violent Behav. 2024, 79, 102002. [Google Scholar] [CrossRef]
- Yu, T.; Pei, W.; Xu, C.; Zhang, X.; Deng, C. Investigation of peripheral inflammatory biomarkers in association with violence in schizophrenia. BMC Psychiatry 2024, 24, 542. [Google Scholar] [CrossRef]
- Farahany, N.A.; Robinson, G.E. The rise and fall of the “warrior gene” defense. Science 2021, 371, 1320. [Google Scholar] [CrossRef]
- Tanksley, P.T.; Brislin, S.J.; Wertz, J.; de Vlaming, R.; Courchesne-Krak, N.S.; Mallard, T.T.; Raffington, L.L.; Karlsson Linnér, R.; Koellinger, P.; Palmer, A.A.; et al. Do Polygenic Indices Capture “Direct” Effects on Child Externalizing Behavior Problems? Within-Family Analyses in Two Longitudinal Birth Cohorts. Clin. Psychol. Sci. 2024. [Google Scholar] [CrossRef]
- Hagenbeek, F.A.; van Dongen, J.; Pool, R.; Roetman, P.J.; Harms, A.C.; Hottenga, J.J.; Kluft, C.; Colins, O.F.; van Beijsterveldt, C.E.; Fanos, V.; et al. Integrative multi-omics analysis of childhood aggressive behavior. Behav. Genet. 2023, 53, 101–117. [Google Scholar] [CrossRef] [PubMed]
- van Dongen, J.D.; Haveman, Y.; Sergiou, C.S.; Choy, O. Neuroprediction of violence and criminal behavior using neuro-imaging data: From innovation to considerations for future directions. Aggress. Violent Behav. 2024, 80, 102008. [Google Scholar] [CrossRef]
- Al-Juhani, A.; Alzahrani, M.J.; Alnefaie, A.N.; Alnowaisser, L.N.; Alhadi, W.; Alghamdi, J.K.; Bauthman, M.S.; Alnowaisser, L.; Alhadi, W.A. Neuroimaging and brain-based markers identifying neurobiological markers associated with criminal behaviour, personality disorders, and mental health: A narrative review. Cureus 2024, 16, e58814. [Google Scholar] [CrossRef]
- Wigan, A.L. A New View of Insanity; Longman, Brown, Green, and Longmans: London, UK, 1844. [Google Scholar]
- Ji, C.; Li, Y.; Cui, L.; Cai, J.; Shi, J.; Cheng, F.W.; Li, Y.; Curhan, G.C.; Wu, S.; Gao, X. Prenatal earthquake exposure and midlife uric acid levels among Chinese adults. Arthritis Care Res. 2017, 69, 703–708. [Google Scholar] [CrossRef]
- Hu, G.; Jia, G.; Tang, S.; Zheng, P.; Hu, L. Association of low-level blood lead with serum uric acid in US adolescents: A cross-sectional study. Environ. Health 2019, 18, 86. [Google Scholar] [CrossRef] [PubMed]
- Yıldız, S.; Pirinççioğlu, A.G.; Arıca, E. Evaluation of heavy metal (lead, mercury, cadmium, and manganese) levels in blood, plasma, and urine of adolescents with aggressive behavior. Cureus 2023, 15, e33902. [Google Scholar] [CrossRef]
- Glenn, A.L.; Li, Y.; Liu, J. Association between lower-level of environmental lead exposure and reactive and proactive aggression in youth: Sex differences. J. Environ. Sci. Health Part C 2022, 40, 268–281. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Dong, Y.; Chen, X.; Zhang, B.; Chen, X.; Wang, K.; Sun, Y. The impact of psychological stress on physiological indicators in healthcare workers: A cross-sectional study. Front. Public Health 2024, 12, 1393743. [Google Scholar] [CrossRef]
- Sapolsky, R. Life without free will: Does it preclude possibilities? Possibility Stud. Soc. 2024, 2, 272–281. [Google Scholar] [CrossRef]
- Callender, J.S. Neuroscience and Criminal Justice: Time for a “Copernican Revolution? ” Wm. Mary Law Rev. 2021, 63, 1119. [Google Scholar]
- Mishra, P. Neurolaw and Criminal Jurisprudence in India; Routledge: London, UK, 2024. [Google Scholar]
- Jones, O.D.; Goldsmith, T.H. Law and behavioral biology. Colum. Law Rev. 2005, 105, 405. [Google Scholar]
- English, S.; Vallis, M. Moving beyond eat less, move more using willpower: Reframing obesity as a chronic disease impact of the 2020 Canadian obesity guidelines reframed narrative on perceptions of self and the patient–provider relationship. Clin. Obes. 2023, 13, e12615. [Google Scholar] [CrossRef]
- Walsh, S.; Merrick, R.; Brayne, C. The relevance of social and commercial determinants for neurological health. Lancet Neurol. 2022, 21, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.S.; Guan, M.; Mayer, E.A.; Stains, J.; Liu, C.; Vora, P.; Jacobs, J.P.; Lagishetty, V.; Chang, L.; Barry, R.L.; et al. Obesity is associated with a distinct brain-gut microbiome signature that connects Prevotella and Bacteroides to the brain’s reward center. Gut Microbes 2022, 14, 2051999. [Google Scholar] [CrossRef] [PubMed]
- King, C.; Lanaspa, M.A.; Jensen, T.; Tolan, D.R.; Sánchez-Lozada, L.G.; Johnson, R.J. Uric acid as a cause of the metabolic syndrome. Uric Acid Chronic Kidney Dis. 2018, 192, 88–102. [Google Scholar]
- Lopes Cortes, M.; Andrade Louzado, J.; Galvao Oliveira, M.; Moraes Bezerra, V.; Mistro, S.; Souto Medeiros, D.; Arruda Soares, D.; Oliveira Silva, K.; Nicolaevna Kochergin, C.; Honorato dos Santos de Carvalho, V.C.; et al. Unhealthy food and psychological stress: The association between ultra-processed food consumption and perceived stress in working-class young adults. Int. J. Environ. Res. Public Health 2021, 18, 3863. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, M.; Pu, Z.; Xu, G.; Li, X. Relationship between oxidative stress and inflammation in hyperuricemia: Analysis based on asymptomatic young patients with primary hyperuricemia. Medicine 2018, 97, e13108. [Google Scholar] [CrossRef]
- Bedoya, A.; Portnoy, J. Biosocial criminology: History, theory, research evidence, and policy. Victims & Offenders. 2023, 18, 1599–1629. [Google Scholar]
- Gudi-Mindermann, H.; White, M.; Roczen, J.; Riedel, N.; Dreger, S.; Bolte, G. Integrating the social environment with an equity perspective into the exposome paradigm: A new conceptual framework of the Social Exposome. Environ. Res. 2023, 233, 116485. [Google Scholar] [CrossRef]
- Xu, T.; Tang, L.; Lin, X. The effect of perceived discrimination on future dangerousness of probationers in China: An empirical test of crime labeling theory. Int. J. Law Crime Justice 2021, 65, 100470. [Google Scholar] [CrossRef]
- Chesser, B. Therapeutic Jurisprudence; Oxford University Press: London, UK, 2016. [Google Scholar]
- Koike, R.; Kawakami, Y.; Kondo, R.; Onishi, M.; Akiyama, M.; Asai, T.; Arai, H. Effect of Dietary Counseling on Patients with Asymptomatic Hyperuricemia. J. Med. Investig. 2023, 70, 34–40. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Lian, F.; Chen, D.; Qiu, Q.; Xu, H.; Liang, L.; Yang, X. Physical exercises and weight loss in obese patients help to improve uric acid. Oncotarget 2017, 8, 94893. [Google Scholar] [CrossRef]
- Shao, C.; Wang, J.; Liu, J.; Tian, F.; Li, H. Effect of a Health Belief Model-based education program on patients’ belief, physical activity, and serum uric acid: A randomized controlled trial. Patient Prefer. Adherence 2018, 12, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Jayashree, R.; Malini, A.; Rakhshani, A.; Nagendra, H.R.; Gunasheela, S.; Nagarathna, R. Effect of the integrated approach of yoga therapy on platelet count and uric acid in pregnancy: A multicenter stratified randomized single-blind study. Int. J. Yoga 2013, 6, 39–46. [Google Scholar]
- Kumar, S. Yogic practices and diet for reducing uric acid. Int. J. Phys. Educ. Sports Manag. Yogic Sci. 2023, 13, 15–19. [Google Scholar] [CrossRef]
- Xue, T.; Li, H.; Wang, M.T.; Shi, Y.; Shi, K.; Cheng, Y.; Cui, D.H. Mindfulness meditation improves metabolic profiles in healthy and depressive participants. CNS Neurosci. Ther. 2018, 24, 572. [Google Scholar] [CrossRef] [PubMed]
- Machado-Vieira, R.; Soares, J.C.; Lara, D.R.; Luckenbaugh, D.A.; Busnello, J.V.; Marca, G.; Cunha, A.; Souza, D.O.; Zarate, C.A., Jr.; Kapczinski, F. A double-blind, randomized, placebo-controlled 4-week study on the efficacy and safety of the purinergic agents allopurinol and dipyridamole adjunctive to lithium in acute bipolar mania. J. Clin. Psychiatry 2008, 69, 1237–1245. [Google Scholar] [CrossRef]
- Bartoli, F.; Crocamo, C.; Clerici, M.; Carra, G. Allopurinol as add-on treatment for mania symptoms in bipolar disorder: Systematic review and meta-analysis of randomised controlled trials. Br. J. Psychiatry 2017, 210, 10–15. [Google Scholar] [CrossRef]
- Denno, D.W. Human biology and criminal responsibility: Free will of free ride. Univ. Pa. Law Rev. 1988, 137, 615. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Logan, A.C.; Mishra, P. Aggression and Justice Involvement: Does Uric Acid Play a Role? Brain Sci. 2025, 15, 268. https://doi.org/10.3390/brainsci15030268
Logan AC, Mishra P. Aggression and Justice Involvement: Does Uric Acid Play a Role? Brain Sciences. 2025; 15(3):268. https://doi.org/10.3390/brainsci15030268
Chicago/Turabian StyleLogan, Alan C., and Pragya Mishra. 2025. "Aggression and Justice Involvement: Does Uric Acid Play a Role?" Brain Sciences 15, no. 3: 268. https://doi.org/10.3390/brainsci15030268
APA StyleLogan, A. C., & Mishra, P. (2025). Aggression and Justice Involvement: Does Uric Acid Play a Role? Brain Sciences, 15(3), 268. https://doi.org/10.3390/brainsci15030268