Infarct Growth Rate Predicts Early Neurological Improvement in Ischemic Stroke After Endovascular Thrombectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Baseline Data Collection
2.3. Measurement of IGR
2.4. Definition of ENI
2.5. Statistical Analysis
3. Results
3.1. Participant Baseline Characteristics
3.2. Baseline Characteristics in Fast and Slow Progressors
3.3. The Effect of IGR on ENI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, Y.; Wakhloo, A.K.; Fisher, M. Advances in Acute Ischemic Stroke Therapy. Circ. Res. 2022, 130, 1230–1251. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [PubMed]
- Goyal, M.; Menon, B.K.; Van Zwam, W.H.; Dippel, D.W.J.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.L.M.; Van Der Lugt, A.; De Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
- Meyer, L.; Broocks, G.; Bechstein, M.; Flottmann, F.; Leischner, H.; Brekenfeld, C.; Schön, G.; Deb-Chatterji, M.; Alegiani, A.; Thomalla, G.; et al. Early clinical surrogates for outcome prediction after stroke thrombectomy in daily clinical practice. J. Neurol. Neurosurg. Psychiatry 2020, 91, 1055–1059. [Google Scholar] [CrossRef] [PubMed]
- Kobeissi, H.; Ghozy, S.; Bilgin, C.; Kadirvel, R.; Kallmes, D.F. Early neurological improvement as a predictor of outcomes after endovascular thrombectomy for stroke: A systematic review and meta-analysis. J. NeuroInterventional Surg. 2023, 15, 547–551. [Google Scholar] [CrossRef]
- Guenego, A.; Bourcier, R.; Guillen, M.; Weisenburger-Lile, D.; Lapergue, B.; Gory, B.; Richard, S.; Ducroux, C.; Piotin, M.; Blanc, R.; et al. Neurological improvement predicts clinical outcome after acute basilar artery stroke thrombectomy. Eur. J. Neurol. 2021, 28, 117–123. [Google Scholar] [CrossRef]
- Olivot, J.-M.; Sissani, L.; Meseguer, E.; Inoue, M.; Labreuche, J.; Mlynash, M.; Amarenco, P.; Mazighi, M. Impact of Initial Diffusion-Weighted Imaging Lesion Growth Rate on the Success of Endovascular Reperfusion Therapy. Stroke 2016, 47, 2305–2310. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, H.; Chen, C.; Bivard, A.; Butcher, K.; Garcia-Esperon, C.; Spratt, N.J.; Levi, C.R.; Parsons, M.W.; Li, G.; et al. Stroke Patients With Faster Core Growth Have Greater Benefit From Endovascular Therapy. Stroke 2021, 52, 3998–4006. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Z.; Chen, S.; E, Y.; Qi, J.; Xie, Y.; Su, M.; Zhang, Y.; Jiang, T.; Zhang, X. Early infarct growth rate is associated with symptomatic intracranial hemorrhage after endovascular thrombectomy. Ther. Adv. Neurol. Disord. 2024, 17, 17562864241306561. [Google Scholar] [CrossRef]
- Seners, P.; Yuen, N.; Olivot, J.-M.; Mlynash, M.; Heit, J.J.; Christensen, S.; Escribano-Paredes, J.B.; Carrera, E.; Strambo, D.; Michel, P.; et al. Factors Associated With Fast Early Infarct Growth in Patients With Acute Ischemic Stroke With a Large Vessel Occlusion. Neurology 2023, 101, E2126–E2137. [Google Scholar] [CrossRef]
- Wheeler, H.M.; Mlynash, M.; Inoue, M.; Tipirnini, A.; Liggins, J.; Bammer, R.; Lansberg, M.G.; Kemp, S.; Zaharchuk, G.; Straka, M.; et al. The growth rate of early DWI lesions is highly variable and associated with penumbral salvage and clinical outcomes following endovascular reperfusion. Int. J. Stroke 2015, 10, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Sarraj, A.; Hassan, A.; Grotta, J.; Blackburn, S.; Day, A.; Abraham, M.; Sitton, C.; Dannenbaum, M.; Cai, C.; Pujara, D.; et al. Early Infarct Growth Rate Correlation With Endovascular Thrombectomy Clinical Outcomes: Analysis From the SELECT Study. Stroke 2021, 52, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke A J. Cereb. Circ. 1993, 24, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Zaidat, O.; Yoo, A.; Khatri, P.; Tomsick, T.; von Kummer, R.; Saver, J.; Marks, M.P.; Prabhakaran, S.; Kallmes, D.F.; Fitzsimmons, B.-F.M.; et al. Recommendations on angiographic revascularization grading standards for acute ischemic stroke: A consensus statement. Stroke 2013, 44, 2650–2663. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, K.; Wang, H.; Gong, P.; Jiang, T.; Xie, Y.; Sheng, L.; Liu, D.; Liu, X.; Xu, G. Nomogram to Predict Mortality of Endovascular Thrombectomy for Ischemic Stroke Despite Successful Recanalization. J. Am. Hearth Assoc. 2020, 9, e014899. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Peng, M.; Feng, C.; Wang, H.; Gong, P.; Jiang, T.; Xie, Y.; Yang, D.; Yuan, K.; Chen, J.; et al. Nomogram predicting early neurological improvement in ischaemic stroke patients treated with endovascular thrombectomy. Eur. J. Neurol. 2021, 28, 152–160. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, Y.; Wang, H.; Yang, D.; Jiang, T.; Yuan, K.; Gong, P.; Xu, P.; Li, Y.; Chen, J.; et al. Symptomatic Intracranial Hemorrhage After Mechanical Thrombectomy in Chinese Ischemic Stroke Patients: The ASIAN Score. Stroke 2020, 51, 2690–2696. [Google Scholar] [CrossRef]
- Malikova, H.; Kremenova, K.; Lukavsky, J.; Holesta, M.; Lauer, D.; Koznar, B.; Weichet, J. Early and late infarct growth rate in ischemic stroke patients after successful endovascular treatment in early time window: Correlation of imaging and clinical factors with clinical outcome. Quant. Imaging Med. Surg. 2023, 13, 5770–5782. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef]
- Faizy, T.D.; Mlynash, M.; Kabiri, R.; Christensen, S.; Kuraitis, G.; Meyer, L.; Bechstein, M.; Van Horn, N.; Lansberg, M.G.; Albers, G.; et al. Favourable arterial, tissue-level and venous collaterals correlate with early neurological improvement after successful thrombectomy treatment of acute ischaemic stroke. J. Neurol. Neurosurg. Psychiatry 2022, 93, 701–706. [Google Scholar] [CrossRef]
- Li, Y.; van Landeghem, N.; Demircioglu, A.; Köhrmann, M.; Kellner, E.; Milles, L.; Stolte, B.; Totzeck, A.; Dammann, P.; Wrede, K.; et al. Predictors of Early Neurological Improvement in Patients with Anterior Large Vessel Occlusion and Successful Reperfusion Following Endovascular Thrombectomy-Does CT Perfusion Imaging Matter? Clin. Neuroradiol. 2022, 32, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Ichijo, M.; Iwasawa, E.; Numasawa, Y.; Miki, K.; Ishibashi, S.; Tomita, M.; Tomimitsu, H.; Kamata, T.; Fujigasaki, H.; Shintani, S.; et al. Significance of Development and Reversion of Collaterals on MRI in Early Neurologic Improvement and Long-Term Functional Outcome after Intravenous Thrombolysis for Ischemic Stroke. Am. J. Neuroradiol. 2015, 36, 1839–1845. [Google Scholar] [CrossRef]
- Pu, J.; Wang, H.; Tu, M.; Zi, W.; Hao, Y.; Yang, D.; Liu, W.; Wan, Y.; Geng, Y.; Lin, M.; et al. Combination of 24-Hour and 7-Day Relative Neurological Improvement Strongly Predicts 90-Day Functional Outcome of Endovascular Stroke Therapy. J. Stroke Cerebrovasc. Dis. 2018, 27, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.-D.; Chen, C.-C.V.; Shen, C.-C.; Chin, L.-T.; Ma, H.-I.; Chuang, H.-Y.; Cho, D.-Y.; Chu, C.-H.; Chang, C. Hyperglycemia exacerbates intracerebral hemorrhage via the downregulation of aquaporin-4: Temporal assessment with magnetic resonance imaging. Stroke 2013, 44, 1682–1689. [Google Scholar] [CrossRef]
- Ter Schiphorst, A.; Peres, R.; Dargazanli, C.; Blanc, R.; Gory, B.; Richard, S.; Marnat, G.; Sibon, I.; Guillon, B.; Bourcier, R.; et al. Endovascular treatment of ischemic stroke due to isolated internal carotid artery occlusion: ETIS registry data analysis. J. Neurol. 2022, 269, 4383–4395. [Google Scholar] [CrossRef]
- Romoli, M.; Mosconi, M.G.; Pierini, P.; Alberti, A.; Venti, M.; Caso, V.; Vidale, S.; Lotti, E.M.; Longoni, M.; Calabresi, P.; et al. Reperfusion strategies in stroke due to isolated cervical internal carotid artery occlusion: Systematic review and treatment comparison. Neurol. Sci. 2021, 42, 2301–2308. [Google Scholar] [CrossRef]
- He, G.; Fang, H.; Xue, B.; Wei, L.; Lu, H.; Deng, J.; Zhu, Y. Impact of leukoaraiosis on the infarct growth rate and clinical outcome in acute large vessel occlusion stroke after endovascular thrombectomy. Eur. Stroke J. 2024, 9, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Uniken Venema, S.M.; Dankbaar, J.W.; van der Lugt, A.; Dippel, D.W.J.; van der Worp, H.B. Cerebral Collateral Circulation in the Era of Reperfusion Therapies for Acute Ischemic Stroke. Stroke 2022, 53, 3222–3234. [Google Scholar] [CrossRef]
- Shi, Z.; Li, J.; Zhao, M.; Zhang, M.; Wang, T.; Chen, L.; Liu, Q.; Wang, H.; Lu, J.; Zhao, X. Baseline Cerebral Ischemic Core Quantified by Different Automatic Software and Its Predictive Value for Clinical Outcome. Front. Neurosci. 2021, 15, 608799. [Google Scholar] [CrossRef]
Variables | All Patients (n = 407) | Fast Progressors (n = 126) | Slow Progressors (n = 281) | p Value |
---|---|---|---|---|
Demographic characteristics | ||||
Age, years | 69.3 ± 12.5 | 68.6 ± 13.4 | 69.6 ± 12.2 | 0.462 |
Male, n (%) | 257 (63.1) | 85 (67.5) | 172 (61.2) | 0.227 |
Vascular risk factors, n (%) | ||||
Hypertension | 300 (73.7) | 94 (74.6) | 206 (73.3) | 0.784 |
Diabetes mellitus | 139 (34.2) | 50 (39.7) | 89 (31.7) | 0.115 |
Hyperlipidemia | 52 (12.8) | 15 (11.9) | 37 (13.2) | 0.724 |
Smoking | 164 (40.3) | 52 (41.3) | 112 (39.9) | 0.788 |
Coronary heart disease | 64 (15.7) | 21 (16.7) | 43 (15.3) | 0.727 |
Systolic blood pressure, mmHg | 141.1 ± 22.2 | 140.6 ± 22.6 | 141.3 ± 20.1 | 0.766 |
Diastolic blood pressure, mmHg | 84.8 ± 13.6 | 85.0 ± 14.3 | 84.8 ± 13.3 | 0.850 |
Time from onset to perfusion imaging acquisition, h | 4.2 (2.0, 8.9) | 2.2 (1.3, 4.0) | 5.7 (2.8, 10.8) | 0.001 |
Ischemic core volume, mL | 17.0 (4.5, 49.0) | 61.0 (33.9, 110.5) | 8.7 (2.9, 20.5) | 0.001 |
IGR, mL/h | 3.6 (0.9, 13.1) | 23.9 (14.3, 46.4) | 1.7 (0.5, 4.0) | 0.001 |
Early neurological improvement, n (%) | 149 (36.6) | 31 (24.6) | 118 (42.0) | 0.001 |
Baseline NIHSS, score | 12.0 (9.0, 16.0) | 14.0 (10.0, 18.0) | 12.0 (8.0, 16.0) | 0.001 |
Baseline ASPECTS, score | 8.8 ± 1.1 | 8.5 ± 1.2 | 9.0 ± 1.0 | 0.001 |
Prior anticoagulant therapy, n (%) | 59 (14.5) | 20 (15.9) | 39 (13.9) | 0.597 |
“Wake-up” stroke, n (%) | 120 (29.6) | 26 (20.6) | 94 (33.7) | 0.008 |
Stroke subtypes, n (%) | 0.067 | |||
Large artery atherosclerosis | 206 (50.6) | 53 (42.1) | 153 (54.4) | |
Cardiac embolism | 152 (37.3) | 56 (44.4) | 96 (34.2) | |
Others/unknown | 49 (12.1) | 17 (13.5) | 32 (11.4) | |
Prior IVT treatment, n (%) | 145 (35.6) | 59 (46.8) | 86 (30.6) | 0.002 |
Poor collateral circulation, n (%) | 205 (50.4) | 78 (61.9) | 127 (45.2) | 0.002 |
Successful reperfusion, n (%) | 376 (92.4) | 117 (92.9) | 259 (92.2) | 0.809 |
Emergency stent implantation, n (%) | 53 (13.0) | 21 (16.7) | 32 (11.4) | 0.143 |
Time from onset to revascularization, h | 6.3 (4.0, 11.1) | 4.3 (3.2, 6.3) | 7.9 (4.7, 12.2) | 0.001 |
Occlusive site, n (%) | 0.014 | |||
Internal carotid artery | 142 (35.0) | 55 (43.7) | 87 (31.1) | |
Middle cerebral artery | 264 (65.0) | 71 (56.3) | 193 (68.9) | |
mRS score at 90 days, score | 2.0 (0, 4.0) | 3.0 (1.0, 5.0) | 2.0 (0, 4.0) | 0.007 |
Laboratory data | ||||
Baseline blood glucose levels, mmol/L | 7.0 ± 2.4 | 7.3 ± 2.3 | 6.9 ± 2.4 | 0.115 |
Hs-CRP levels, mg/L | 10.9 (4.0, 26.4) | 12.6 (3.6, 21.4) | 8.9 (4.4, 26.9) | 0.783 |
Variables | With ENI (n = 149) | Without ENI (n = 258) | p Value |
---|---|---|---|
Demographic characteristics | |||
Age, years | 68.2 ± 12.8 | 70.0 ± 12.3 | 0.151 |
Male, n (%) | 101 (67.8) | 156 (60.5) | 0.140 |
Medical history, n (%) | |||
Hypertension | 103 (69.1) | 197 (76.4) | 0.110 |
Diabetes mellitus | 44 (29.5) | 95 (36.8) | 0.135 |
Hyperlipidemia | 20 (13.4) | 32 (12.4) | 0.767 |
Smoking | 65 (43.6) | 99 (38.4) | 0.298 |
Coronary heart disease | 28 (18.8) | 36 (14.0) | 0.196 |
Systolic blood pressure, mmHg | 139.1 ± 21.5 | 142.3 ± 22.6 | 0.168 |
Diastolic blood pressure, mmHg | 84.5 ± 14.3 | 85.1 ± 13.2 | 0.666 |
Time from onset to perfusion imaging acquisition, h | 4.0 (2.1, 8.9) | 4.6 (1.9, 8.9) | 0.873 |
Ischemic core volume, mL | 7.7 (2.9, 23.0) | 24.8 (8.9, 61.0) | 0.001 |
IGR, mL/h | 1.7 (0.5, 6.9) | 6.1 (1.6, 16.7) | 0.001 |
Baseline NIHSS, score | 13.0 (9.0, 17.0) | 12.0 (8.0, 16.0) | 0.158 |
Baseline ASPECTS, score | 9.1 ± 0.9 | 8.7 ± 1.2 | 0.001 |
Prior anticoagulant therapy, n (%) | 20 (13.4) | 39 (15.1) | 0.640 |
“Wake-up” stroke, n (%) | 39 (26.2) | 81 (31.6) | 0.245 |
Stroke subtypes, n (%) | 0.008 | ||
Large artery atherosclerosis | 61 (40.9) | 145 (56.2) | |
Cardiac embolism | 64 (43.0) | 88 (34.1) | |
Others/unknown | 24 (16.1) | 25 (9.7) | |
Prior IVT treatment, n (%) | 55 (36.9) | 90 (34.9) | 0.681 |
Poor collateral circulation, n (%) | 71 (47.7) | 134 (51.9) | 0.405 |
Successful reperfusion, n (%) | 145 (97.3) | 231 (89.5) | 0.004 |
Emergency stent implantation, n (%) | 16 (10.7) | 32 (14.3) | 0.298 |
Time from onset to revascularization, h | 6.2 (3.7, 11.5) | 6.3 (4.2, 10.9) | 0.606 |
Occlusive site, n (%) | 0.029 | ||
Internal carotid artery | 42 (28.2) | 100 (38.9) | |
Middle cerebral artery | 107 (71.8) | 157 (61.1) | |
mRS score at 90 days, score | 0 (0, 2.0) | 3.0 (1.0, 5.0) | 0.001 |
Laboratory data | |||
Baseline blood glucose levels, mmol/L | 6.4 ± 1.9 | 7.4 ± 2.5 | 0.001 |
Hs-CRP levels, mg/L | 8.2 (3.5, 23.0) | 12.7 (4.2, 28.4) | 0.249 |
Variables | Unadjusted Model | Model 1 | Model 2 | |||
---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
IGR (as continuous variable) | 0.986 (0.975–0.997) | 0.011 | 0.985 (0.974–0.996) | 0.008 | 0.985 (0.973–0.996) | 0.010 |
IGR, per 5 mL/h increase | 0.936 (0.886–0.989) | 0.018 | 0.934 (0.884–0.986) | 0.014 | 0.927 (0.875–0.982) | 0.011 |
IGR | ||||||
Slow progressors | Reference | Reference | Reference | |||
Fast progressors | 0.451 (0.282–0.721) | 0.001 | 0.434 (0.270–0.698) | 0.001 | 0.442 (0.269–0.729) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Chen, S.; Wei, B.; E, Y.; Qi, J.; Zhang, X.; Jiang, T. Infarct Growth Rate Predicts Early Neurological Improvement in Ischemic Stroke After Endovascular Thrombectomy. Brain Sci. 2025, 15, 303. https://doi.org/10.3390/brainsci15030303
Huang Z, Chen S, Wei B, E Y, Qi J, Zhang X, Jiang T. Infarct Growth Rate Predicts Early Neurological Improvement in Ischemic Stroke After Endovascular Thrombectomy. Brain Sciences. 2025; 15(3):303. https://doi.org/10.3390/brainsci15030303
Chicago/Turabian StyleHuang, Zhihang, Shuaiyu Chen, Bin Wei, Yan E, Jingwen Qi, Xiaohao Zhang, and Teng Jiang. 2025. "Infarct Growth Rate Predicts Early Neurological Improvement in Ischemic Stroke After Endovascular Thrombectomy" Brain Sciences 15, no. 3: 303. https://doi.org/10.3390/brainsci15030303
APA StyleHuang, Z., Chen, S., Wei, B., E, Y., Qi, J., Zhang, X., & Jiang, T. (2025). Infarct Growth Rate Predicts Early Neurological Improvement in Ischemic Stroke After Endovascular Thrombectomy. Brain Sciences, 15(3), 303. https://doi.org/10.3390/brainsci15030303