Hypertension a Predictive Risk Factor on Progression to Alzheimer’s Disease Using APOEε4 as a Benchmark
Abstract
:1. Introduction
2. Methods
2.1. Study Population and Sample
2.2. Early Hypertension, Early Hypercholesterolemia and Cognitive Decline Rate
2.3. Analysis Methods
3. Results
3.1. More MCI Subjects with Early Hypertension Converts to AD than Those Without Early Hypertension
3.2. Hazard Ratio of Early Hypertension Is Similar to That of APOEε4 as a Risk Factor of MCI Conversion to AD
3.3. MCI Subjects with Early Hypertension or APOEε4 Had Similar Declining Rates of MMSE Scores
3.4. Early Hypercholesterolemia Carries Less Risk Compared to Hypertension or APOEε4
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
APOE | apolipoprotein E |
CDC | Centers for Disease Control and Prevention |
HR | Hazard Ratio |
MCI | Mild Cognitive Impairment |
MMSE | Mini-Mental State Examination |
MoCA | Montreal Cognitive Assessment |
NACC | National Alzheimer’s Coordinating Center |
PSW | propensity score weighted |
SD | standard deviation |
References
- Song, W.; Wu, W.; Zhao, Y.; Xu, H.; Chen, G.; Jin, S.; Chen, J.; Xian, S.; Liang, J. Evidence from a meta-analysis and systematic review reveals the global prevalence of mild cognitive impairment. Front. Aging Neurosci. 2023, 15, 1227112. [Google Scholar] [CrossRef] [PubMed]
- Shigemizu, D.; Akiyama, S.; Higaki, S.; Sugimoto, T.; Sakurai, T.; Boroevich, K.A.; Sharma, A.; Tsunoda, T.; Ochiya, T.; Niida, S.; et al. Prognosis prediction model for conversion from mild cognitive impairment to Alzheimer’s disease created by integrative analysis of multi-omics data. Alzheimer’s Res. Ther. 2020, 12, 145. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Hypertension Cascade: Hypertension Prevalence, Treatment and Control Estimates Among US Adults Aged 18 Years and Older Applying the Criteria from the American College of Cardiology and American Heart Association’s 2017 Hypertension Guideline—NHANES 2015–2018; US Department of Health and Human Services: Atlanta GA, USA, 2021.
- Walker, K.A.; Sharrett, A.R.; Wu, A.; Schneider, A.L.C.; Albert, M.; Lutsey, P.L.; Bandeen-Roche, K.; Coresh, J.; Gross, A.L.; Windham, B.G.; et al. Association of Midlife to Late-Life Blood Pressure Patterns With Incident Dementia. JAMA 2019, 322, 535–545. [Google Scholar] [CrossRef]
- Ou, Y.-N.; Tan, C.-C.; Shen, X.-N.; Xu, W.; Hou, X.-H.; Dong, Q.; Tan, L.; Yu, J.-T. Blood Pressure and Risks of Cognitive Impairment and Dementia. Hypertension 2020, 76, 217–225. [Google Scholar] [CrossRef]
- Peters, R.; Xu, Y.; Fitzgerald, O.; Aung, H.L.; Beckett, N.; Bulpitt, C.; Chalmers, J.; Forette, F.; Gong, J.; Harris, K.; et al. Blood pressure lowering and prevention of dementia: An individual patient data meta-analysis. Eur. Heart J. 2022, 43, 4980–4990. [Google Scholar] [CrossRef]
- Simons, M.; Keller, P.; Dichgans, J.; Schulz, J.B. Cholesterol and Alzheimer’s disease. Neurology 2001, 57, 1089–1093. [Google Scholar] [CrossRef]
- Wu, M.; Zhai, Y.; Liang, X.; Chen, W.; Lin, R.; Ma, L.; Huang, Y.; Zhao, D.; Liang, Y.; Zhao, W.; et al. Connecting the Dots Between Hypercholesterolemia and Alzheimer’s Disease: A Potential Mechanism Based on 27-Hydroxycholesterol. Front. Neurosci. 2022, 16, 842814. [Google Scholar] [CrossRef]
- Beeri, M.S.; Bendlin, B.B. The link between type 2 diabetes and dementia: From biomarkers to treatment. Lancet Diabetes Endocrinol. 2020, 8, 736–738. [Google Scholar] [CrossRef]
- Alster, P.; Dunalska, A.; Migda, B.; Madetko, N.; Królicki, L. The Rate of Decrease in Brain Perfusion in Progressive Supranuclear Palsy and Corticobasal Syndrome May Be Impacted by Glycemic Variability—A Pilot Study. Front. Neurol. 2021, 12, 767480. [Google Scholar] [CrossRef]
- Li, M.; Reisman, J.; Morris-Eppolito, B.; Qian, S.X.; Kazis, L.E.; Wolozin, B.; Goldstein, L.E.; Xia, W. Beneficial association of angiotensin-converting enzyme inhibitors and statins on the occurrence of possible Alzheimer’s disease after traumatic brain injury. Alzheimers Res. Ther. 2020, 12, 33. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Kazis, L.; Xia, W. The comparative effectiveness of monotherapy and combination therapies: Impact of angiotensin receptor blockers on the onset of alzheimer’s disease. JAR Life 2023, 12, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Salomone, S.; Caraci, F.; Leggio, G.M.; Fedotova, J.; Drago, F. New pharmacological strategies for treatment of Alzheimer’s disease: Focus on disease modifying drugs. Br. J. Clin. Pharmacol. 2012, 73, 504–517. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.C.; Bu, G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurol. 2019, 15, 501–518. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021, 20, 68–80. [Google Scholar] [CrossRef]
- NACC Uniform Data Set Researchers Data Dictionary; National Alzheimer’s Coordinating Center: Seattle, WA, USA, 2015.
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Lennon, M.J.; Makkar, S.R.; Crawford, J.D.; Sachdev, P.S. Midlife Hypertension and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2019, 71, 307–316. [Google Scholar] [CrossRef]
- Kazis, E.L.; Miller, R.D.; Skinner, M.K.; Lee, A.; Ren, S.X.; Clark, A.J.; Rogers, H.W.; Spiro, A., 3rd; Selim, A.; Linzer, M.; et al. Patient-reported measures of health: The Veterans Health Study. J. Ambul. Care Manag. 2004, 27, 70–83. [Google Scholar] [CrossRef]
- Pinto, T.C.; Machado, L.; Bulgacov, T.M.; Rodrigues-Júnior, A.L.; Costa, M.L.; Ximenes, R.C.; Sougey, E.B. Is the Montreal Cognitive Assessment (MoCA) screening superior to the Mini-Mental State Examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer’s Disease (AD) in the elderly? Int. Psychogeriatr. 2019, 31, 491–504. [Google Scholar] [CrossRef]
- Rincon, F.; Mayer, S.A. The epidemiology of intracerebral hemorrhage in the United States from 1979 to 2008. Neurocrit. Care 2013, 19, 95–102. [Google Scholar] [CrossRef]
- Waziry, R.; Chibnik, L.B.; Bos, D.; Ikram, M.K.; Hofman, A. Risk of hemorrhagic and ischemic stroke in patients with Alzheimer disease: A synthesis of the literature. Neurology 2020, 94, 265–272. [Google Scholar] [CrossRef] [PubMed]
- An, S.J.; Kim, T.J.; Yoon, B.-W. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: An update. J. Stroke 2017, 19, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Cordonnier, C.; van der Flier, W.M. Brain microbleeds and Alzheimer’s disease: Innocent observation or key player? Brain 2011, 134, 335–344. [Google Scholar] [CrossRef]
- Viswanathan, A.; Greenberg, S.M. Cerebral amyloid angiopathy in the elderly. Ann. Neurol. 2011, 70, 871–880. [Google Scholar] [CrossRef]
- Caceres, J.A.; Goldstein, J.N. Intracranial hemorrhage. Emerg. Med. Clin. N. Am. 2012, 30, 771–794. [Google Scholar] [CrossRef]
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2022, 388, 9–21. [Google Scholar] [CrossRef]
- Shields, L.B.E.; Hust, H.; Cooley, S.D.; Cooper, G.E.; Hart, R.N.; Dennis, B.C.; Freeman, S.W.; Cain, J.F.; Shang, W.Y.; Wasz, K.M.; et al. Initial Experience with Lecanemab and Lessons Learned in 71 Patients in a Regional Medical Center. J. Prev. Alzheimers Dis. 2024, 11, 1549–1562. [Google Scholar] [CrossRef]
MCI Patients | ||
---|---|---|
N = 3052 | ||
Mean | SD | |
Age | 87.79 | 9.64 |
Base MMSE | 27.02 | 2.47 |
N | % | |
Male | 1473 | 48.26 |
Female | 1579 | 51.74 |
Race (white) | 2365 | 77.49 |
Race (Black) | 493 | 16.15 |
Race (Asian) | 79 | 2.59 |
Race (Others) | 115 | 3.77 |
APOE Genotype | ||
APOEε4/4 | 143 | 4.69 |
APOEε3/4 | 721 | 27.65 |
APOEε4/2 | 50 | 1.92 |
APOEε3/3 | 1153 | 44.21 |
APOEε3/2 | 203 | 7.78 |
APOEε2/2 | 10 | 0.38 |
APOE not available | 772 | 29.60 |
Comorbidities | ||
Hypercholesterolemia | 1671 | 55.46 |
Hypertension | 1795 | 59.07 |
Thyroid Disease | 513 | 16.92 |
Diabetes | 507 | 16.68 |
Heart Attack/Cardiac Arrest | 246 | 8.08 |
Stroke | 267 | 8.80 |
Transient Ischemic Attack | 202 | 6.70 |
Alcohol Abuse | 184 | 6.04 |
B12 Deficiency | 129 | 4.32 |
Congestive Heart Failure | 107 | 3.51 |
Seizures | 111 | 3.65 |
Conditions | Number of MCI Subjects at Index | Number of MCI-to-AD Subjects at Study End | % | MCI Conversion Time to AD (Year) (±SD) |
---|---|---|---|---|
MCI with early hypertension | 35 | 18 | 51.43 | 8.09 (5.95) |
MCI without early hypertension | 871 | 233 | 26.75 | 10.30 (4.99) |
Models | Variables | HR | p-Value | 95% CI | |
---|---|---|---|---|---|
Unadjusted Cox model | MCI with hypertension vs. MCI without hypertension | 2.56 | 0.0002 | 1.55 | 4.22 |
Adjusted Cox model | MCI with hypertension vs. MCI without hypertension | 2.77 | <0.0001 | 1.66 | 4.65 |
APOEε4 | 2.30 | <0.0001 | 1.75 | 3.02 | |
PSW doubly robust Cox model (no APOEε4/Early Hypertension as reference) | Early hypertension | 3.71 | <0.0001 | 3.02 | 4.56 |
APOEε4 | 1.70 | <0.0001 | 1.40 | 2.07 | |
Adjusted Interaction Cox model (no APOEε4/Early Hypertension as reference) | Early Hypertension | 3.25 | 0.0001 | 1.75 | 6.04 |
APOEε4 | 2.37 | <0.0001 | 1.79 | 3.14 | |
APOEε4 + Early Hypertension | 4.88 | 0.001 | 1.93 | 12.33 |
N | Mean | Std. | |
---|---|---|---|
No early hypertension | 40 | 0.38 | 0.50 |
Early hypertension | 34 | 0.97 | 1.40 |
No APOEε4 | 52 | 0.50 | 0.85 |
APOEε4 | 22 | 1.03 | 1.39 |
Poisson Model | Variables | B | Standard Error | 95% CI | p-Value | exp^B | 95% CI of exp^B | ||
---|---|---|---|---|---|---|---|---|---|
Unadjusted | Intercept | −2.92 | 0.25 | −3.42 | −2.42 | <0.0001 | 0.05 | 0.03 | 0.09 |
early hypertension vs. none | 1.51 | 0.31 | 0.90 | 2.11 | <0.0001 | 4.52 | 2.47 | 8.28 | |
Adjusted | Intercept | −1.19 | 0.28 | −1.75 | −0.64 | <0.0001 | 0.30 | 0.17 | 0.53 |
early hypertension vs. none | 0.89 | 0.31 | 0.28 | 1.50 | 0.004 | 2.43 | 1.33 | 4.46 |
Models | Variables | Coefficient | Std. Err. | p-Value | HR | 95% CI | |
---|---|---|---|---|---|---|---|
Unadjusted | Early hypercholesterolemia | 1.48 | 0.16 | <0.0001 | 4.38 | 3.15 | 6.07 |
Adjusted | Early hypercholesterolemia | 1.28 | 0.17 | <0.0001 | 3.60 | 2.55 | 5.10 |
APOEε4 | 0.66 | 0.14 | <0.0001 | 1.93 | 1.46 | 2.55 | |
PSW adjusted | Early hypercholesterolemia | 1.35 | 0.09 | <0.0001 | 3.88 | 3.26 | 4.61 |
APOEε4 | 1.31 | 0.23 | <0.0001 | 3.70 | 2.34 | 5.83 | |
Adjusted Interaction | APOEε4 | 0.67 | 0.16 | <0.0001 | 1.95 | 1.43 | 2.67 |
APOEε4 and early hypercholesterolemia | 1.92 | 0.25 | <0.0001 | 6.82 | 4.16 | 11.18 |
N | Mean | Standard Deviation | |
---|---|---|---|
No early hypercholesterolemia | 51 | 0.79 | 0.89 |
Early hypercholesterolemia | 51 | 0.77 | 1.09 |
No APOEε4 | 64 | 0.54 | 0.66 |
APOEε4 | 38 | 1.19 | 1.28 |
Poisson Model | Variables | B | Standard Error | 95% CI | p-Value | exp^B | 95% CI of exp^B | ||
---|---|---|---|---|---|---|---|---|---|
Unadjusted | Intercept | −1.92 | 0.16 | −2.23 | −1.61 | <0.0001 | 0.15 | 0.11 | 0.20 |
Early hypercholesterolemia vs. none | 0.17 | 0.22 | −0.27 | 0.61 | 0.44 | 1.19 | 0.77 | 1.84 | |
Adjusted | Intercept | −2.23 | 0.20 | −2.61 | −1.84 | <0.0001 | 0.11 | 0.07 | 0.16 |
Early hypercholesterolemia vs. none | 0.72 | 0.23 | 0.27 | 1.16 | 0.002 | 2.05 | 1.31 | 3.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, Y.; Kazis, L.; Xia, W. Hypertension a Predictive Risk Factor on Progression to Alzheimer’s Disease Using APOEε4 as a Benchmark. Brain Sci. 2025, 15, 434. https://doi.org/10.3390/brainsci15050434
Li M, Wang Y, Kazis L, Xia W. Hypertension a Predictive Risk Factor on Progression to Alzheimer’s Disease Using APOEε4 as a Benchmark. Brain Sciences. 2025; 15(5):434. https://doi.org/10.3390/brainsci15050434
Chicago/Turabian StyleLi, Mingfei, Ying Wang, Lewis Kazis, and Weiming Xia. 2025. "Hypertension a Predictive Risk Factor on Progression to Alzheimer’s Disease Using APOEε4 as a Benchmark" Brain Sciences 15, no. 5: 434. https://doi.org/10.3390/brainsci15050434
APA StyleLi, M., Wang, Y., Kazis, L., & Xia, W. (2025). Hypertension a Predictive Risk Factor on Progression to Alzheimer’s Disease Using APOEε4 as a Benchmark. Brain Sciences, 15(5), 434. https://doi.org/10.3390/brainsci15050434