Quantity and Quality Matter: Different Neuroanatomical Substrates of Apathy in Alzheimer’s Disease and Behavioural Variant Frontotemporal Dementia †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Neuropsychological Evaluation
2.2. Neuroimaging
2.3. Statistical Analyses
3. Results
3.1. Sociodemograpgic and Cognitive Outcomes
3.2. Brain Regions Associated with Apathy
3.2.1. The Alzheimer’s Disease (AD) Group
3.2.2. The Behavioural Variant Frontotemporal Dementia (bvFTD) Group
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Heron, C.; Holroyd, C.B.; Salamone, J.; Husain, M. Brain mechanisms underlying apathy. J. Neurol. Neurosurg. Psychiatry 2019, 90, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Robert, P.; Lanctôt, K.L.; Agüera-Ortiz, L.; Aalten, P.; Bremond, F.; Defrancesco, M.; Hanon, C.; David, R.; Dubois, B.; Dujardin, K.; et al. Is it time to revise the diagnostic criteria for apathy in brain disorders? The 2018 international consensus group. Eur. Psychiatry 2018, 54, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.S.; Robert, P.; Ereshefsky, L.; Adler, L.; Bateman, D.; Cummings, J.; DeKosky, S.T.; Fischer, C.E.; Husain, M.; Ismail, Z.; et al. Diagnostic criteria for apathy in neurocognitive disorders. Alzheimer’s Dement. 2021, 17, 1892–1904. [Google Scholar] [CrossRef]
- Dickson, S.S.; Husain, M. Are there distinct dimensions of apathy? The argument for reappraisal. Cortex 2022, 149, 246–256. [Google Scholar] [CrossRef]
- Leung, D.K.Y.; Chan, W.C.; Spector, A.; Wong, G.H.Y. Prevalence of depression, anxiety, and apathy symptoms across dementia stages: A systematic review and meta-analysis. Int. J. Geriatr. Psychiatry 2021, 36, 1330–1344. [Google Scholar] [CrossRef]
- Cerejeira, J.; Lagarto, L.; Mukaetova-Ladinska, E.B. Behavioral and psychological symptoms of dementia. Front. Neurol. 2012, 3, 73. [Google Scholar] [CrossRef]
- Teixeira, A.L.; Gonzales, M.M.; de Souza, L.C.; Weisenbach, S.L. Revisiting apathy in Alzheimer’s disease: From conceptualization to therapeutic approaches. Behav. Neurol. 2021, 2021, 6319826. [Google Scholar] [CrossRef]
- Wei, G.; Irish, M.; Hodges, J.R.; Piguet, O.; Kumfor, F. Disease-specific profiles of apathy in Alzheimer’s disease and behavioural-variant frontotemporal dementia differ across the disease course. J. Neurol. 2020, 267, 1086–1096. [Google Scholar] [CrossRef]
- Fernández-Matarrubia, M.; Matías-Guiu, J.A.; Cabrera-Martín, M.N.; Moreno-Ramos, T.; Valles-Salgado, M.; Carreras, J.L. Different apathy clinical profile and neural correlates in behavioral variant frontotemporal dementia and Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2018, 33, 141–150. [Google Scholar] [CrossRef]
- Robert, P.; Onyike, C.; Leentjens, A.; Dujardin, K.; Aalten, P.; Starkstein, S.; Verhey, F.; Yessavage, J.; Clement, J.; Drapier, D.; et al. Proposed diagnostic criteria for apathy in Alzheimer’s disease and other neuropsychiatric disorders. Eur. Psychiatry 2009, 24, 98–104. [Google Scholar] [CrossRef]
- Kumfor, F.; Zhen, A.; Hodges, J.R.; Piguet, O.; Irish, M. Apathy in Alzheimer’s disease and frontotemporal dementia: Distinct clinical profiles and neural correlates. Cortex 2018, 103, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, S.d.A.B.; Caramelli, P.; Mariano, L.I.; Guimarães, H.C.; Gambogi, L.B.; Resende, E.d.P.F.; Teixeira, A.L.; de Souza, L.C. Apathy in frontotemporal dementia is related to medial prefrontal atrophy and is independent of executive dysfunction. Brain Res. 2020, 1737, 146799. [Google Scholar] [CrossRef]
- Rascovsky, K.; Hodges, J.R.; Knopman, D.; Mendez, M.F.; Kramer, J.H.; Neuhaus, J.; van Swieten, J.C.; Seelaar, H.; Dopper, E.G.; Onyike, C.U.; et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011, 134, 2456–2477. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef]
- Amaral-Carvalho, V.; Caramelli, P. Normative data for healthy middle-aged and elderly performance on the Addenbrooke Cognitive Examination-Revised. Cogn. Behav. Neurol. 2012, 25, 72–76. [Google Scholar] [CrossRef]
- Brucki, S.M.D.; Nitrini, R.; Caramelli, P.; Bertolucci, P.H.F.; Okamoto, I.H. Sugestões para o uso do mini-exame do estado mental no Brasil. Arq. Neuro-Psiquiatr. 2003, 61, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Beato, R.; Amaral-Carvalho, V.; Guimarães, H.C.; Tumas, V.; Souza, C.P.; de Oliveira, G.N.; Caramelli, P. Frontal assessment battery in a Brazilian sample of healthy controls: Normative data. Arq. Neuro-Psiquiatr. 2012, 70, 278–280. [Google Scholar] [CrossRef]
- Wechsler, D. WAIS-III Administration and Scoring Manual, 3rd ed.; The Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Nitrini, R.; Caramelli, P.; Porto, C.S.; Charchat-Fichman, H.; Formigoni, A.P.; Carthery-Goulart, M.T.; Otero, C.; Prandini, J.C. Brief cognitive battery in the diagnosis of mild Alzheimer’s disease in subjects with medium and high levels of education. Dement. Neuropsychol. 2007, 1, 32–36. [Google Scholar] [CrossRef]
- Brucki, S.M.D.; Rocha, M.S.G. Category fluency test: Effects of age, gender, and education on total scores, clustering, and switching in Brazilian Portuguese-speaking subjects. Braz. J. Med. Biol. Res. 2004, 37, 1771–1777. [Google Scholar] [CrossRef]
- Machado, T.H.; Fichman, H.C.; Santos, E.L.; Carvalho, V.A.; Fialho, P.P.; Koenig, A.M.; Fernandes, C.S.; Lourenço, R.A.; Paradela, E.M.d.P.; Caramelli, P. Normative data for healthy elderly on the phonemic verbal fluency task—FAS. Dement. Neuropsychol. 2009, 3, 55–60. [Google Scholar] [CrossRef]
- de Sousa Siqueira, L.; Scherer, L.C.; Reppold, C.T.; Fonseca, R.P. Hayling Test—Adult Version: Applicability in the assessment of executive functions in children. Psychol. Neurosci. 2010, 3, 189–194. [Google Scholar] [CrossRef]
- Mariano, L.I.; Caramelli, P.; Guimarães, H.C.; Gambogi, L.B.; Moura, M.V.B.; Yassuda, M.S.; Teixeira, A.L.; de Souza, L.C. Can social cognition measurements differentiate behavioral variant frontotemporal dementia from Alzheimer’s disease regardless of apathy? J. Alzheimer’s Dis. 2020, 74, 817–827. [Google Scholar] [CrossRef]
- Guimarães, H.C.; Fialho, P.P.A.; Carvalho, V.A.; Santos, E.L.d.; Caramelli, P. Brazilian caregiver version of the Apathy Scale. Dement. Neuropsychol. 2009, 3, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Rosen, H.J. Anosognosia in neurodegenerative disease. Neurocase 2011, 17, 231–241. [Google Scholar] [CrossRef]
- Bueno, A.P.A.; de Souza, L.C.; Pinaya, W.H.L.; Teixeira, A.L.; de Prado, L.G.R.; Caramelli, P.; Hornberger, M.; Sato, J.R. Papez Circuit gray matter and episodic memory in amyotrophic lateral sclerosis and behavioural variant frontotemporal dementia. Brain Imaging Behav. 2021, 15, 996–1006. [Google Scholar] [CrossRef]
- Fischl, B. Automatically parcellating the human cerebral cortex. Cereb. Cortex 2004, 14, 11–22. [Google Scholar] [CrossRef]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 2006, 31, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Jovicich, J.; Salat, D.; van der Kouwe, A.; Quinn, B.; Czanner, S.; Busa, E.; Pacheco, J.; Albert, M.; Killiany, R.; et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade, and manufacturer. NeuroImage 2006, 32, 180–194. [Google Scholar] [CrossRef]
- Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 1999, 9, 179–194. [Google Scholar] [CrossRef]
- Fischl, B.; Sereno, M.I.; Dale, A.M. Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 1999, 9, 195–207. [Google Scholar] [CrossRef]
- Irish, M.; Piguet, O.; Hodges, J.R.; Hornberger, M. Common and unique gray matter correlates of episodic memory dysfunction in frontotemporal dementia and Alzheimer’s disease: Neural correlates of episodic memory. Hum. Brain Mapp. 2014, 35, 1422–1435. [Google Scholar] [CrossRef]
- Strikwerda-Brown, C.; Ramanan, S.; Goldberg, Z.-L.; Mothakunnel, A.; Hodges, J.R.; Ahmed, R.M.; Piguet, O.; Irish, M. The interplay of emotional and social conceptual processes during moral reasoning in frontotemporal dementia. Brain 2021, 144, 938–952. [Google Scholar] [CrossRef] [PubMed]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 4th ed.; Sage Publications: London, UK, 2013. [Google Scholar]
- Kim, I.B.; Park, S.C. The entorhinal cortex and adult neurogenesis in major depression. Int. J. Mol. Sci. 2021, 22, 11725. [Google Scholar] [CrossRef] [PubMed]
- Roesler, R.; McGaugh, J.L. The entorhinal cortex as a gateway for amygdala influences on memory consolidation. Neuroscience 2022, 497, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Imai, A.; Matsuoka, T.; Narumoto, J. Older people with severe loneliness have an atrophied thalamus, hippocampus, and entorhinal cortex. Int. J. Geriatr. Psychiatry 2022, 37, e5845. [Google Scholar] [CrossRef]
- Peters, F.; Perani, D.; Herholz, K.; Holthoff, V.; Beuthien-Baumann, B.; Sorbi, S.; Pupi, A.; Degueldre, C.; Lemaire, C.; Collette, F.; et al. Orbitofrontal dysfunction related to both apathy and disinhibition in frontotemporal dementia. Dement. Geriatr. Cogn. Disord. 2006, 21, 373–379. [Google Scholar] [CrossRef]
- Ogai, M.; Iyo, M.; Mori, N.; Takei, N. A right orbitofrontal region and OCD symptoms: A case report. Acta Psychiatr. Scand. 2005, 111, 74–76. [Google Scholar] [CrossRef]
- Lanctôt, K.L.; Moosa, S.; Herrmann, N.; Leibovitch, F.S.; Rothenburg, L.; Cotter, A.; Black, S.E. A SPECT study of apathy in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2007, 24, 65–72. [Google Scholar] [CrossRef]
- Gourley, S.L.; Zimmermann, K.S.; Allen, A.G.; Taylor, J.R. The medial orbitofrontal cortex regulates sensitivity to outcome value. J. Neurosci. 2016, 36, 4600–4613. [Google Scholar] [CrossRef]
- Du, J.; Rolls, E.T.; Cheng, W.; Li, Y.; Gong, W.; Qiu, J.; Feng, J. Functional connectivity of the orbitofrontal cortex, anterior cingulate cortex, and inferior frontal gyrus in humans. Cortex 2020, 123, 185–199. [Google Scholar] [CrossRef]
- Beyer, F.; Münte, T.F.; Göttlich, M.; Krämer, U.M. Orbitofrontal cortex reactivity to angry facial expression in a social interaction correlates with aggressive behavior. Cereb. Cortex 2015, 25, 3057–3063. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, Z.; Zhang, S.; Xu, T.; Zhang, R.; Suo, T.; Feng, T. High self-control reduces risk preference: The role of connectivity between right orbitofrontal cortex and right anterior cingulate cortex. Front. Neurosci. 2019, 13, 194. [Google Scholar] [CrossRef]
- Jenkins, L.M.; Wang, L.; Rosen, H.; Weintraub, S. A transdiagnostic review of neuroimaging studies of apathy and disinhibition in dementia. Brain 2022, 145, 1886–1905. [Google Scholar] [CrossRef] [PubMed]
- Balthazar, M.L.F.; Pereira, F.R.S.; Lopes, T.M.; da Silva, E.L.; Coan, A.C.; Campos, B.M.; Duncan, N.W.; Stella, F.; Northoff, G.; Damasceno, B.P.; et al. Neuropsychiatric symptoms in Alzheimer’s disease are related to functional connectivity alterations in the salience network. Hum. Brain Mapp. 2014, 35, 1237–1246. [Google Scholar] [CrossRef]
- Seeley, W.W.; Crawford, R.K.; Zhou, J.; Miller, B.L.; Greicius, M.D. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009, 62, 42–52. [Google Scholar] [CrossRef]
- Bonnelle, V.; Manohar, S.; Behrens, T.; Husain, M. Individual differences in premotor brain systems underlie behavioral apathy. Cereb. Cortex 2015, 26, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Van Overwalle, F.; Manto, M.; Cattaneo, Z.; Clausi, S.; Ferrari, C.; Gabrieli, J.D.E.; Guell, X.; Heleven, E.; Lupo, M.; Ma, Q.; et al. Consensus paper: Cerebellum and social cognition. Cerebellum 2020, 19, 833–868. [Google Scholar] [CrossRef]
- Antonioni, A.; Raho, E.M.; Granieri, E.; Koch, G. Frontotemporal dementia. How to deal with its diagnostic complexity? Expert Rev. Neurother. 2025, 7, 1–35. [Google Scholar] [CrossRef]
- Suemoto, C.K.; Apolinario, D.; Nakamura-Palacios, E.M.; Lopes, L.; Leite, R.E.; Sales, M.C.; Nitrini, R.; Brucki, S.M.; Morillo, L.S.; Magaldi, R.M.; et al. Effects of a non-focal plasticity protocol on apathy in moderate Alzheimer’s disease: A randomized, double-blind, sham-controlled trial. Brain Stimul. 2014, 7, 308–313. [Google Scholar] [CrossRef]
- Camargo, C.H.F.; Serpa, R.A.; Matnei, T.; Sabatini, J.S.; Teive, H.A.G. The perception of apathy by caregivers of patients with dementia in Parkinson’s disease. Dement. Neuropsychol. 2016, 10, 339–343. [Google Scholar] [CrossRef]
- Balan, A.B.; Walz, R.; Diaz, A.P.; Schwarzbold, M.L. Return to work after severe traumatic brain injury: Further investigation of the role of personality changes. Braz. J. Psychiatry 2021, 43, 340–341. [Google Scholar] [CrossRef] [PubMed]
- Radakovic, R.; Harley, C.; Abrahams, S.; Starr, J.M. A systematic review of the validity and reliability of apathy scales in neurodegenerative conditions. Int. Psychogeriatr. 2015, 27, 903–923. [Google Scholar] [CrossRef] [PubMed]
Controls [n = 20] | AD [n = 19] | bvFTD [n = 20] | Statistical Group Comparison (η2 Effect Size) | |
---|---|---|---|---|
Male/Female ratio | 7:13 | 9:10 | 11:9 | Not significant |
Age (years), mean (SD) | 63.9 (10.3) | 70.4 (9.4) | 64 (9.1) | Not significant |
Education (years), median (IQR) | 12.0 (4.0) | 15.0 (5.0) | 11.0 (4.0) | Not significant |
Disease duration (years), median (IQR) | Not applicable | 3.0 (1.0) | 3.0 (2.0) | Not significant |
MMSE, median (IQR) | 29.0 (2.0) | 24.0 (2.0) | 26.0 (4.0) | Controls > all * (η2 = 0.58) |
FAB, median (IQR) | 16.0 (2.0) | 14.0 (4.0) | 12.6 (3.2) | Controls > all * (η2 = 0.27) |
Fluency (FAS), median (IQR) | 33.0 (10.0) | 27.0 (19.0) | 13.0 (6.0) | Controls = AD > bvFTD * (η2 = 0.30) |
Fluency (Animals), median (IQR) | 18.0 (4.1) | 12.0 (8.0) | 10.0 (6.0) | Controls > all * (η2 = 0.46) |
FMT, Late recall, median (IQR) | 9.0 (1.0) | 4.0 (2.0) | 7.0 (4.0) | Controls > all * (η2 = 0.52) |
FMT, Recognition, median (IQR) | 10.0 (0) | 10.0 (1.0) | 10.0 (0) | Not significant |
Hayling Test | ||||
- part A–time (s), median (IQR) | 16.93 (7.79) | 20.53 (8.42) | 26.67 (20.45) | Controls < bvFTD * (η2 = 0.13) |
- part B–time (s), median (IQR) | 53.24 (51.78) | 70.02 (32.71) | 75.96 (83.94) | Not significant |
- part B–score (PQt), median (IQR) | 6.5 (5.0) | 9.0 (3.0) | 13.5 (5.0) | Controls < bvFTD * (η2 = 0.27) |
- part B–scaled error (PQl), median (IQR) | 9.0 (8.5) | 15.0 (11.0) | 33.5 (26.0) | Controls < bvFTD * (η2 = 0.26) |
Faux-Pas Test (Total Score), median (IQR) | 36.5 (5.0) | 32.0 (5.0) | 21.0 (13.0) | Controls = AD > bvFTD * (η2 = 0.63) |
Ekman Total Score median (IQR) | 28.0 (3.5) | 26.0 (3.0) | 21.5 (10.0) | Controls = AD > bvFTD * (η2 = 0.38) |
Apathy score (SAS), median (IQR) | 7.0 (5.50) | 16.0 (10.0) | 27.5 (12.0) | Controls > AD > bvFTD * (η2 = 0.64) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariano, L.I.; Maciel, T.d.O.; Guimarães, H.C.; Gambogi, L.B.; Teixeira Júnior, A.L.; Caramelli, P.; de Souza, L.C. Quantity and Quality Matter: Different Neuroanatomical Substrates of Apathy in Alzheimer’s Disease and Behavioural Variant Frontotemporal Dementia. Brain Sci. 2025, 15, 447. https://doi.org/10.3390/brainsci15050447
Mariano LI, Maciel TdO, Guimarães HC, Gambogi LB, Teixeira Júnior AL, Caramelli P, de Souza LC. Quantity and Quality Matter: Different Neuroanatomical Substrates of Apathy in Alzheimer’s Disease and Behavioural Variant Frontotemporal Dementia. Brain Sciences. 2025; 15(5):447. https://doi.org/10.3390/brainsci15050447
Chicago/Turabian StyleMariano, Luciano Inácio, Thiago de Oliveira Maciel, Henrique Cerqueira Guimarães, Leandro Boson Gambogi, Antônio Lúcio Teixeira Júnior, Paulo Caramelli, and Leonardo Cruz de Souza. 2025. "Quantity and Quality Matter: Different Neuroanatomical Substrates of Apathy in Alzheimer’s Disease and Behavioural Variant Frontotemporal Dementia" Brain Sciences 15, no. 5: 447. https://doi.org/10.3390/brainsci15050447
APA StyleMariano, L. I., Maciel, T. d. O., Guimarães, H. C., Gambogi, L. B., Teixeira Júnior, A. L., Caramelli, P., & de Souza, L. C. (2025). Quantity and Quality Matter: Different Neuroanatomical Substrates of Apathy in Alzheimer’s Disease and Behavioural Variant Frontotemporal Dementia. Brain Sciences, 15(5), 447. https://doi.org/10.3390/brainsci15050447