Ischemic Stroke in Patients Under Oral Anticoagulation: The Achilles Heel of Atrial Fibrillation Management
Abstract
:1. Introduction
2. Pathophysiology
2.1. Non-AF Related Ischemic Stroke
2.2. Poor Patient Adherence
2.3. Clinical Inertia and OAC Underdosing
2.4. True OAC Failure
3. Diagnostic Implications
3.1. Evaluating Non-AF Related Stroke
3.2. Assessing Adherence and Underdosing
3.3. Diagnosing True OAC Failure
4. Therapeutic Strategies
4.1. Changing Oral Anticoagulation Strategy
4.2. Left Atrial Appendage Occlusion (LAAO)
5. Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kornej, J.; Börschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of Atrial Fibrillation in the 21st Century. Circ. Res. 2020, 127, 4–20. [Google Scholar] [CrossRef]
- Noubiap, J.J.; Agbaedeng, T.A.; Nyaga, U.F.; Lau, D.H.; Worthley, M.I.; Nicholls, S.J.; Sanders, P. Atrial Fibrillation Incidence, Prevalence, Predictors, and Adverse Outcomes in Acute Coronary Syndromes: A Pooled Analysis of Data from 8 Million Patients. J. Cardiovasc. Electrophysiol. 2022, 33, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.; Okin, P.M.; Elkind, M.S.V.; Iadecola, C. Atrial Fibrillation and Mechanisms of Stroke. Stroke 2016, 47, 895–900. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e167. [Google Scholar] [CrossRef]
- Jame, S.; Barnes, G. Stroke and Thromboembolism Prevention in Atrial Fibrillation. Heart 2020, 106, 10–17. [Google Scholar] [CrossRef]
- Carnicelli, A.P.; Hong, H.; Connolly, S.J.; Eikelboom, J.; Giugliano, R.P.; Morrow, D.A.; Patel, M.R.; Wallentin, L.; Alexander, J.H.; Cecilia Bahit, M.; et al. Direct Oral Anticoagulants Versus Warfarin in Patients with Atrial Fibrillation: Patient-Level Network Meta-Analyses of Randomized Clinical Trials With Interaction Testing by Age and Sex. Circulation 2022, 145, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.G.; Pearce, L.A.; Aguilar, M.I. Meta-Analysis: Antithrombotic Therapy to Prevent Stroke in Patients Who Have Nonvalvular Atrial Fibrillation. Ann. Intern. Med. 2007, 146, 857. [Google Scholar] [CrossRef]
- Rost, N.S.; Giugliano, R.P.; Ruff, C.T.; Murphy, S.A.; Crompton, A.E.; Norden, A.D.; Silverman, S.; Singhal, A.B.; Nicolau, J.C.; SomaRaju, B.; et al. Outcomes With Edoxaban Versus Warfarin in Patients With Previous Cerebrovascular Events. Stroke 2016, 47, 2075–2082. [Google Scholar] [CrossRef]
- Stretz, C.; Wu, T.Y.; Wilson, D.; Seiffge, D.J.; Smith, E.E.; Gurol, M.E.; Yaghi, S. Ischaemic Stroke in Anticoagulated Patients with Atrial Fibrillation. J. Neurol. Neurosurg. Psychiatry 2021, 92, 1164–1172. [Google Scholar] [CrossRef]
- Garcia, C.; Silva, M.; Araújo, M.; Henriques, M.; Margarido, M.; Vicente, P.; Nzwalo, H.; Macedo, A. Admission Severity of Atrial-Fibrillation-Related Acute Ischemic Stroke in Patients under Anticoagulation Treatment: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 3563. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Okubo, S.; Nito, C.; Suda, S.; Matsumoto, N.; Abe, A.; Aoki, J.; Shimoyama, T.; Takayama, Y.; Suzuki, K.; et al. The Relationship between Stroke Severity and Prior Direct Oral Anticoagulant Therapy in Patients with Acute Ischaemic Stroke and Non-valvular Atrial Fibrillation. Eur. J. Neurol. 2017, 24, 1399–1406. [Google Scholar] [CrossRef]
- Adams, H.P.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E. Classification of Subtype of Acute Ischemic Stroke. Definitions for Use in a Multicenter Clinical Trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef]
- Polymeris, A.A.; Meinel, T.R.; Oehler, H.; Hölscher, K.; Zietz, A.; Scheitz, J.F.; Nolte, C.H.; Stretz, C.; Yaghi, S.; Stoll, S.; et al. Aetiology, Secondary Prevention Strategies and Outcomes of Ischaemic Stroke despite Oral Anticoagulant Therapy in Patients with Atrial Fibrillation. J. Neurol. Neurosurg. Psychiatry 2022, 93, 588–598. [Google Scholar] [CrossRef]
- Zietz, A.; Polymeris, A.A.; Helfenstein, F.; Schaedelin, S.; Hert, L.; Wagner, B.; Seiffge, D.J.; Traenka, C.; Altersberger, V.L.; Dittrich, T.; et al. The Impact of Competing Stroke Etiologies in Patients with Atrial Fibrillation. Eur. Stroke J. 2023, 8, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Herlekar, R.; Sur Roy, A.; Hajiev, S.; Induruwa, I.; Agarwal, S.; Evans, N.R.; Khadjooi, K.; Markus, H.; O’Brien, E.; Warburton, E.; et al. The Contribution of Competing Mechanisms in Stroke despite Anticoagulation in Patients with Atrial Fibrillation. Eur. Stroke J. 2023, 8, 541–548. [Google Scholar] [CrossRef]
- Xue, S.; Na, R.; Dong, J.; Wei, M.; Kong, Q.; Wang, Q.; Qiu, X.; Li, F.; Song, H. Characteristics and Mechanism of Acute Ischemic Stroke in NAVF Patients With Prior Oral Anticoagulant Therapy. Neurologist 2023, 28, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Paciaroni, M.; Agnelli, G.; Caso, V.; Silvestrelli, G.; Seiffge, D.J.; Engelter, S.; De Marchis, G.M.; Polymeris, A.; Zedde, M.L.; Yaghi, S.; et al. Causes and Risk Factors of Cerebral Ischemic Events in Patients with Atrial Fibrillation Treated With Non–Vitamin K Antagonist Oral Anticoagulants for Stroke Prevention. Stroke 2019, 50, 2168–2174. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, S.; Henninger, N.; Giles, J.A.; Leon Guerrero, C.; Mistry, E.; Liberman, A.L.; Asad, D.; Liu, A.; Nagy, M.; Kaushal, A.; et al. Ischaemic Stroke on Anticoagulation Therapy and Early Recurrence in Acute Cardioembolic Stroke: The IAC Study. J. Neurol. Neurosurg. Psychiatry 2021, 92, 1062–1067. [Google Scholar] [CrossRef]
- Tanaka, K.; Koga, M.; Lee, K.-J.; Kim, B.J.; Park, E.L.; Lee, J.; Mizoguchi, T.; Yoshimura, S.; Cha, J.-K.; Lee, B.-C.; et al. Atrial Fibrillation-Associated Ischemic Stroke Patients With Prior Anticoagulation Have Higher Risk for Recurrent Stroke. Stroke 2020, 51, 1150–1157. [Google Scholar] [CrossRef]
- Ip, Y.M.B.; Lau, K.K.; Ko, H.; Lau, L.; Yao, A.; Wong, G.L.-H.; Yip, T.C.-F.; Leng, X.; Chan, H.; Chan, H.; et al. Association of Alternative Anticoagulation Strategies and Outcomes in Patients With Ischemic Stroke While Taking a Direct Oral Anticoagulant. Neurology 2023, 101, e358–e369. [Google Scholar] [CrossRef]
- Rose, A.J.; Berlowitz, D.R.; Miller, D.R.; Hylek, E.M.; Ozonoff, A.; Zhao, S.; Reisman, J.I.; Ash, A.S. INR Targets and Site-level Anticoagulation Control: Results from the Veterans AffaiRs Study to Improve Anticoagulation (VARIA). J. Thromb. Haemost. 2012, 10, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, A.F.; Choi, A.S.; Le, Q.T.; Ko, D.T.; Han, J.K.; Park, S.S.; Jackevicius, C.A. Real-World Adherence and Persistence to Direct Oral Anticoagulants in Patients With Atrial Fibrillation. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e005969. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Bider, Z.; Luong, T.Q.; Cheetham, T.C.; Lang, D.T.; Fischer, H.; Reynolds, K. Long-Term Medication Adherence Trajectories to Direct Oral Anticoagulants and Clinical Outcomes in Patients With Atrial Fibrillation. J. Am. Heart Assoc. 2021, 10, e021601. [Google Scholar] [CrossRef]
- Kohlhase, K.; Schäfer, J.H.; Tako, L.M.; Willems, L.M.; Hattingen, E.; Bohmann, F.O.; Grefkes, C.; Rosenow, F.; Strzelczyk, A. Large-Vessel-Occlusion in Patients with Previous Ischemic Stroke: An Analysis of Adherence to Secondary Preventive Medication for Different Etiologies. Neurol. Res. Pract. 2023, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Tiili, P.; Leventis, I.; Kinnunen, J.; Svedjebäck, I.; Lehto, M.; Karagkiozi, E.; Sagris, D.; Ntaios, G.; Putaala, J. Adherence to Oral Anticoagulation in Ischemic Stroke Patients with Atrial Fibrillation. Ann. Med. 2021, 53, 1613–1620. [Google Scholar] [CrossRef]
- Lapa, M.E.; Swabe, G.M.; Magnani, J.W. Association of Depression and Adherence to Oral Anticoagulation in Patients With Atrial Fibrillation. J. Am. Heart Assoc. 2023, 12, e031281. [Google Scholar] [CrossRef]
- Sposato, L.A.; Stirling, D.; Saposnik, G. Therapeutic Decisions in Atrial Fibrillation for Stroke Prevention: The Role of Aversion to Ambiguity and Physicians’ Risk Preferences. J. Stroke Cerebrovasc. Dis. 2018, 27, 2088–2095. [Google Scholar] [CrossRef]
- Raptis, S.; Chen, J.N.; Saposnik, F.; Pelyavskyy, R.; Liuni, A.; Saposnik, G. Aversion to Ambiguity and Willingness to Take Risks Affect Therapeutic Decisions in Managing Atrial Fibrillation for Stroke Prevention: Results of a Pilot Study in Family Physicians. Patient Prefer. Adherence 2017, 11, 1533–1539. [Google Scholar] [CrossRef]
- Rodríguez-Bernal, C.L.; Sanchez-Saez, F.; Bejarano-Quisoboni, D.; Riera-Arnau, J.; Sanfélix-Gimeno, G.; Hurtado, I. Real-World Management and Clinical Outcomes of Stroke Survivors With Atrial Fibrillation: A Population-Based Cohort in Spain. Front. Pharmacol. 2021, 12, 789783. [Google Scholar] [CrossRef]
- Lehto, M.; Niiranen, J.; Korhonen, P.; Mehtälä, J.; Khanfir, H.; Hoti, F.; Lassila, R.; Raatikainen, P. Quality of Warfarin Therapy and Risk of Stroke, Bleeding, and Mortality among Patients with Atrial Fibrillation: Results from the Nationwide FinWAF Registry. Pharmacoepidemiol. Drug Saf. 2017, 26, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Seiffge, D.J.; Kägi, G.; Michel, P.; Fischer, U.; Béjot, Y.; Wegener, S.; Zedde, M.; Turc, G.; Cordonnier, C.; Sandor, P.S.; et al. Rivaroxaban Plasma Levels in Acute Ischemic Stroke and Intracerebral Hemorrhage. Ann. Neurol. 2018, 83, 451–459. [Google Scholar] [CrossRef]
- Vinding, N.E.; Butt, J.H.; Olesen, J.B.; Xian, Y.; Kristensen, S.L.; Rørth, R.; Bonde, A.N.; Gundlund, A.; Yafasova, A.; Weeke, P.E.; et al. Association Between Inappropriately Dosed Anticoagulation Therapy With Stroke Severity and Outcomes in Patients With Atrial Fibrillation. J. Am. Heart Assoc. 2022, 11, e024402. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; António, N.; Rocha, M.; Fortuna, A. Impact of Direct Oral Anticoagulant Off-label Doses on Clinical Outcomes of Atrial Fibrillation Patients: A Systematic Review. Br. J. Clin. Pharmacol. 2020, 86, 533–547. [Google Scholar] [CrossRef]
- Auer, E.; Frey, S.; Kaesmacher, J.; Hakim, A.; Seiffge, D.J.; Goeldlin, M.; Arnold, M.; Fischer, U.; Jung, S.; Meinel, T.R. Stroke Severity in Patients with Preceding Direct Oral Anticoagulant Therapy as Compared to Vitamin K Antagonists. J. Neurol. 2019, 266, 2263–2272. [Google Scholar] [CrossRef]
- Meschia, J.F.; Merrill, P.; Soliman, E.Z.; Howard, V.J.; Barrett, K.M.; Zakai, N.A.; Kleindorfer, D.; Safford, M.; Howard, G. Racial Disparities in Awareness and Treatment of Atrial Fibrillation. Stroke 2010, 41, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Essien, U.R.; Magnani, J.W.; Chen, N.; Gellad, W.F.; Fine, M.J.; Hernandez, I. Race/Ethnicity and Sex-Related Differences in Direct Oral Anticoagulant Initiation in Newly Diagnosed Atrial Fibrillation: A Retrospective Study of Medicare Data. J. Natl. Med. Assoc. 2020, 112, 103–108. [Google Scholar] [CrossRef]
- Zhu, J.; Alexander, G.C.; Nazarian, S.; Segal, J.B.; Wu, A.W. Trends and Variation in Oral Anticoagulant Choice in Patients with Atrial Fibrillation, 2010–2017. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 38, 907–920. [Google Scholar] [CrossRef]
- Gurusamy, V.K.; Brobert, G.; Vora, P.; Friberg, L. Sociodemographic Factors and Choice of Oral Anticoagulant in Patients with Non-Valvular Atrial Fibrillation in Sweden: A Population-Based Cross-Sectional Study Using Data from National Registers. BMC Cardiovasc. Disord. 2019, 19, 43. [Google Scholar] [CrossRef]
- Patel, A.D.; Tan, M.K.; Angaran, P.; Bell, A.D.; Berall, M.; Bucci, C.; Demchuk, A.M.; Essebag, V.; Goldin, L.; Green, M.S.; et al. Risk Stratification and Stroke Prevention Therapy Care Gaps in Canadian Atrial Fibrillation Patients (from the Co-Ordinated National Network to Engage Physicians in the Care and Treatment of Patients With Atrial Fibrillation Chart Audit). Am. J. Cardiol. 2015, 115, 641–646. [Google Scholar] [CrossRef]
- Bo, M.; Corsini, A.; Brunetti, E.; Isaia, G.; Gibello, M.; Ferri, N.; Poli, D.; Marchionni, N.; De Ferrari, G.M. Off-Label Use of Reduced Dose Direct Oral Factor Xa Inhibitors in Subjects with Atrial Fibrillation: A Review of Clinical Evidence. Eur. Heart J. Cardiovasc. Pharmacother. 2021, 7, 334–345. [Google Scholar] [CrossRef]
- Shen, N.-N.; Zhang, C.; Hang, Y.; Li, Z.; Kong, L.-C.; Wang, N.; Wang, J.-L.; Gu, Z.-C. Real-World Prevalence of Direct Oral Anticoagulant Off-Label Doses in Atrial Fibrillation: An Epidemiological Meta-Analysis. Front. Pharmacol. 2021, 12, 581293. [Google Scholar] [CrossRef]
- Pereira, M.Q.; David, C.; Almeida, A.G.; Brito, D.; Pinto, F.J.; Caldeira, D. Clinical Effects of Off-Label Reduced Doses of Direct Oral Anticoagulants: A Systematic Review and Meta-Analysis. Int. J. Cardiol. 2022, 362, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Mannheimer, B.; Andersson, M.L.; Järnbert-pettersson, H.; Lindh, J.D. The Effect of Carbamazepine on Warfarin Anticoagulation: A Register-based Nationwide Cohort Study Involving the Swedish Population. J. Thromb. Haemost. 2016, 14, 765–771. [Google Scholar] [CrossRef]
- Gibbons, J.A.; de Vries, M.; Krauwinkel, W.; Ohtsu, Y.; Noukens, J.; van der Walt, J.-S.; Mol, R.; Mordenti, J.; Ouatas, T. Pharmacokinetic Drug Interaction Studies with Enzalutamide. Clin. Pharmacokinet. 2015, 54, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Mar, P.L.; Gopinathannair, R.; Gengler, B.E.; Chung, M.K.; Perez, A.; Dukes, J.; Ezekowitz, M.D.; Lakkireddy, D.; Lip, G.Y.H.; Miletello, M.; et al. Drug Interactions Affecting Oral Anticoagulant Use. Circ. Arrhythm. Electrophysiol. 2022, 15, e007956. [Google Scholar] [CrossRef] [PubMed]
- Ferri, N.; Colombo, E.; Tenconi, M.; Baldessin, L.; Corsini, A. Drug-Drug Interactions of Direct Oral Anticoagulants (DOACs): From Pharmacological to Clinical Practice. Pharmaceutics 2022, 14, 1120. [Google Scholar] [CrossRef]
- Candeloro, M.; Carlin, S.; Shapiro, M.J.; Douketis, J.D. Drug-Drug Interactions between Direct Oral Anticoagulants and Anticonvulsants and Clinical Outcomes: A Systematic Review. Res. Pract. Thromb. Haemost. 2023, 7, 100137. [Google Scholar] [CrossRef]
- Kravchenko, O.V.; Boyce, R.D.; Gomez-Lumbreras, A.; Kocis, P.T.; Villa Zapata, L.; Tan, M.; Leonard, C.E.; Andersen, K.M.; Mehta, H.; Alexander, G.C.; et al. Drug–Drug Interaction between Dexamethasone and Direct-Acting Oral Anticoagulants: A Nested Case–Control Study in the National COVID Cohort Collaborative (N3C). BMJ Open 2022, 12, e066846. [Google Scholar] [CrossRef]
- Potere, N.; Candeloro, M.; Porreca, E.; Marinari, S.; Federici, C.; Auciello, R.; Di Nisio, M. Direct Oral Anticoagulant Plasma Levels in Hospitalized COVID-19 Patients Treated with Dexamethasone. J. Thromb. Thrombolysis 2022, 53, 346–351. [Google Scholar] [CrossRef]
- Grześk, G.; Rogowicz, D.; Wołowiec, Ł.; Ratajczak, A.; Gilewski, W.; Chudzińska, M.; Sinkiewicz, A.; Banach, J. The Clinical Significance of Drug–Food Interactions of Direct Oral Anticoagulants. Int. J. Mol. Sci. 2021, 22, 8531. [Google Scholar] [CrossRef]
- Dubé, M.-C.; Ducroux, C.; Daneault, N.; Deschaintre, Y.; Jacquin, G.; Odier, C.; Stapf, C.; Poppe, A.Y.; Romanelli, G.; Gioia, L.C. Characteristics of Ischemic Stroke Despite Oral Anticoagulant Use For Atrial Fibrillation. Can. J. Neurol. Sci. 2024, 51, 851–854. [Google Scholar] [CrossRef]
- van Ginkel, D.J.; Bor, W.L.; Aarts, H.M.; Dubois, C.; De Backer, O.; Rooijakkers, M.J.P.; Rosseel, L.; Veenstra, L.; van der Kley, F.; van Bergeijk, K.H.; et al. Continuation versus Interruption of Oral Anticoagulation during TAVI. N. Engl. J. Med. 2025, 392, 438–449. [Google Scholar] [CrossRef]
- Spyropoulos, A.C.; Brohi, K.; Caprini, J.; Samama, C.M.; Siegal, D.; Tafur, A.; Verhamme, P.; Douketis, J.D. Scientific and Standardization Committee Communication: Guidance Document on the Periprocedural Management of Patients on Chronic Oral Anticoagulant Therapy: Recommendations for Standardized Reporting of Procedural/Surgical Bleed Risk and Patient-specific Thromboembolic Risk. J. Thromb. Haemost. 2019, 17, 1966–1972. [Google Scholar] [CrossRef]
- Rohla, M.; Weiss, T.W.; Pecen, L.; Patti, G.; Siller-Matula, J.M.; Schnabel, R.B.; Schilling, R.; Kotecha, D.; Lucerna, M.; Huber, K.; et al. Risk Factors for Thromboembolic and Bleeding Events in Anticoagulated Patients with Atrial Fibrillation: The Prospective, Multicentre Observational PREvention oF Thromboembolic Events—European Registry in Atrial Fibrillation (PREFER in AF). BMJ Open 2019, 9, e022478. [Google Scholar] [CrossRef] [PubMed]
- Seiffge, D.J.; De Marchis, G.M.; Koga, M.; Paciaroni, M.; Wilson, D.; Cappellari, M.; Macha, M.K.; Tsivgoulis, G.; Ambler, G.; Arihiro, S.; et al. Ischemic Stroke despite Oral Anticoagulant Therapy in Patients with Atrial Fibrillation. Ann. Neurol. 2020, 87, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Ogata, T.; Matsuo, R.; Kiyuna, F.; Hata, J.; Ago, T.; Tsuboi, Y.; Kitazono, T.; Kamouchi, M.; Ibayashi, S.; Kusuda, K.; et al. Left Atrial Size and Long-Term Risk of Recurrent Stroke After Acute Ischemic Stroke in Patients with Nonvalvular Atrial Fibrillation. J. Am. Heart Assoc. 2017, 6, e006402. [Google Scholar] [CrossRef] [PubMed]
- Angelini, F.; Bocchino, P.P.; Peyracchia, M.; Saglietto, A.; Magnano, M.; Patanè, N.; D’Ascenzo, F.; Giustetto, C.; Anselmino, M.; Gaita, F.; et al. Prevalence and Predictors of Left Atrial Thrombosis in Atrial Fibrillation Patients Treated with Non-Vitamin K Antagonist Oral Anticoagulants. Acta Cardiol. 2023, 78, 290–297. [Google Scholar] [CrossRef]
- Durmaz, E.; Karpuz, M.H.; Bilgehan, K.; Ikitimur, B.; Ozmen, E.; Ebren, C.; Polat, F.; Koca, D.; Tokdil, K.O.; Kandemirli, S.G.; et al. Left Atrial Thrombus in Patients with Atrial Fibrillation and under Oral Anticoagulant Therapy; 3-D Transesophageal Echocardiographic Study. Int. J. Cardiovasc. Imaging 2020, 36, 1097–1103. [Google Scholar] [CrossRef]
- Bertaglia, E.; Anselmino, M.; Zorzi, A.; Russo, V.; Toso, E.; Peruzza, F.; Rapacciuolo, A.; Migliore, F.; Gaita, F.; Cucchini, U.; et al. NOACs and Atrial Fibrillation: Incidence and Predictors of Left Atrial Thrombus in the Real World. Int. J. Cardiol. 2017, 249, 179–183. [Google Scholar] [CrossRef]
- Tamura, H.; Watanabe, T.; Nishiyama, S.; Sasaki, S.; Wanezaki, M.; Arimoto, T.; Takahashi, H.; Shishido, T.; Miyashita, T.; Miyamoto, T.; et al. Prognostic Value of Low Left Atrial Appendage Wall Velocity in Patients with Ischemic Stroke and Atrial Fibrillation. J. Am. Soc. Echocardiogr. 2012, 25, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhu, M.; Wang, X.; Zhang, W.; Su, Y.; Lu, Y.; Pan, X.; Gao, D.; Zhang, X.; Chen, W.; et al. Predictive Value of Left Atrial Appendage Lobes on Left Atrial Thrombus or Spontaneous Echo Contrast in Patients with Non-Valvular Atrial Fibrillation. BMC Cardiovasc. Disord. 2018, 18, 153. [Google Scholar] [CrossRef] [PubMed]
- Negrotto, S.M.; Lugo, R.M.; Metawee, M.; Kanagasundram, A.N.; Chidsey, G.; Baker, M.T.; Michaud, G.F.; Piana, R.N.; Benjamin Shoemaker, M.; Ellis, C.R. Left Atrial Appendage Morphology Predicts the Formation of Left Atrial Appendage Thrombus. J. Cardiovasc. Electrophysiol. 2021, 32, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Kang, H.G.; Kim, H.-J.; Ahn, S.-H.; Kim, N.Y.; Warach, S.; Kang, D.-W. Magnetic Resonance Imaging in Acute Ischemic Stroke Treatment. J. Stroke 2014, 16, 131. [Google Scholar] [CrossRef]
- Shibuya, M.; da Costa Leite, C.; Lucato, L.T. Neuroimaging in Cerebral Small Vessel Disease: Update and New Concepts. Dement. Neuropsychol. 2017, 11, 336–342. [Google Scholar] [CrossRef]
- Ay, H.; Arsava, E.M.; Gungor, L.; Greer, D.; Singhal, A.B.; Furie, K.L.; Koroshetz, W.J.; Sorensen, A.G. Admission International Normalized Ratio and Acute Infarct Volume in Ischemic Stroke. Ann. Neurol. 2008, 64, 499–506. [Google Scholar] [CrossRef]
- Tokunaga, K.; Koga, M.; Itabashi, R.; Yamagami, H.; Todo, K.; Yoshimura, S.; Kimura, K.; Sato, S.; Terasaki, T.; Inoue, M.; et al. Prior Anticoagulation and Short- or Long-Term Clinical Outcomes in Ischemic Stroke or Transient Ischemic Attack Patients With Nonvalvular Atrial Fibrillation. J. Am. Heart Assoc. 2019, 8, e010593. [Google Scholar] [CrossRef]
- Samuelson, B.T.; Cuker, A.; Siegal, D.M.; Crowther, M.; Garcia, D.A. Laboratory Assessment of the Anticoagulant Activity of Direct Oral Anticoagulants. Chest 2017, 151, 127–138. [Google Scholar] [CrossRef]
- Baglin, T.; Hillarp, A.; Tripodi, A.; Elalamy, I.; Buller, H.; Ageno, W. Measuring Oral Direct Inhibitors of Thrombin and Factor Xa: A Recommendation from the Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. J. Thromb. Haemost. 2013, 11, 756–760. [Google Scholar] [CrossRef]
- Sahli, S.D.; Castellucci, C.; Roche, T.R.; Rössler, J.; Spahn, D.R.; Kaserer, A. The Impact of Direct Oral Anticoagulants on Viscoelastic Testing—A Systematic Review. Front. Cardiovasc. Med. 2022, 9, 991675. [Google Scholar] [CrossRef]
- Komen, J.J.; Heerdink, E.R.; Klungel, O.H.; Mantel-Teeuwisse, A.K.; Forslund, T.; Wettermark, B.; Hjemdahl, P. Long-Term Persistence and Adherence with Non-Vitamin K Oral Anticoagulants in Patients with Atrial Fibrillation and Their Associations with Stroke Risk. Eur. Heart J. Cardiovasc. Pharmacother. 2021, 7, f72–f80. [Google Scholar] [CrossRef]
- Mołek, P.; Chmiel, J.; Ząbczyk, M.; Malinowski, K.P.; Natorska, J.; Undas, A. Elevated 8-Isoprostane Concentration Is Associated with Thromboembolic Events in Patients with Atrial Fibrillation. Int. J. Cardiol. 2022, 365, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Behnoush, A.H.; Khalaji, A.; Bahiraie, P.; Gupta, R. Meta-Analysis of Outcomes Following Intravenous Thrombolysis in Patients with Ischemic Stroke on Direct Oral Anticoagulants. BMC Neurol. 2023, 23, 440. [Google Scholar] [CrossRef] [PubMed]
- Shahjouei, S.; Tsivgoulis, G.; Goyal, N.; Sadighi, A.; Mowla, A.; Wang, M.; Seiffge, D.J.; Zand, R. Safety of Intravenous Thrombolysis Among Patients Taking Direct Oral Anticoagulants. Stroke 2020, 51, 533–541. [Google Scholar] [CrossRef]
- Liang, H.; Wang, X.; Quan, X.; Qin, B.; Zhang, J.; Liang, S.; Liang, Z. Safety and Efficacy of Intravenous Thrombolysis in Patients with Acute Ischemic Stroke Taking Direct Oral Anticoagulants Prior to Stroke: A Meta-Analysis. J. Neurol. 2023, 270, 4192–4200. [Google Scholar] [CrossRef]
- Meinel, T.R.; Wilson, D.; Gensicke, H.; Scheitz, J.F.; Ringleb, P.; Goganau, I.; Kaesmacher, J.; Bae, H.-J.; Kim, D.Y.; Kermer, P.; et al. Intravenous Thrombolysis in Patients With Ischemic Stroke and Recent Ingestion of Direct Oral Anticoagulants. JAMA Neurol. 2023, 80, 233. [Google Scholar] [CrossRef] [PubMed]
- Meinel, T.R.; Branca, M.; De Marchis, G.M.; Nedeltchev, K.; Kahles, T.; Bonati, L.; Arnold, M.; Heldner, M.R.; Jung, S.; Carrera, E.; et al. Prior Anticoagulation in Patients with Ischemic Stroke and Atrial Fibrillation. Ann. Neurol. 2021, 89, 42–53. [Google Scholar] [CrossRef]
- Wong, J.W.P.; Churilov, L.; Dowling, R.; Mitchell, P.; Bush, S.; Kanesan, L.; Yan, B. Safety of Endovascular Thrombectomy for Acute Ischaemic Stroke in Anticoagulated Patients Ineligible for Intravenous Thrombolysis. Cerebrovasc. Dis. 2018, 46, 193–199. [Google Scholar] [CrossRef]
- Chen, J.-H.; Hong, C.-T.; Chung, C.-C.; Kuan, Y.-C.; Chan, L. Safety and Efficacy of Endovascular Thrombectomy in Acute Ischemic Stroke Treated with Anticoagulants: A Systematic Review and Meta-Analysis. Thromb. J. 2022, 20, 35. [Google Scholar] [CrossRef]
- Paciaroni, M.; Agnelli, G.; Falocci, N.; Caso, V.; Becattini, C.; Marcheselli, S.; Rueckert, C.; Pezzini, A.; Poli, L.; Padovani, A.; et al. Early Recurrence and Cerebral Bleeding in Patients With Acute Ischemic Stroke and Atrial Fibrillation. Stroke 2015, 46, 2175–2182. [Google Scholar] [CrossRef]
- Quinn, T.J.; Richard, E.; Teuschl, Y.; Gattringer, T.; Hafdi, M.; O’Brien, J.T.; Merriman, N.; Gillebert, C.; Huyglier, H.; Verdelho, A.; et al. European Stroke Organisation and European Academy of Neurology Joint Guidelines on Post-Stroke Cognitive Impairment. Eur. Stroke J. 2021, 6, I. [Google Scholar] [CrossRef] [PubMed]
- Micera, S.; Caleo, M.; Chisari, C.; Hummel, F.C.; Pedrocchi, A. Advanced Neurotechnologies for the Restoration of Motor Function. Neuron 2020, 105, 604–620. [Google Scholar] [CrossRef]
- Aremu, T.O.; Oluwole, O.E.; Adeyinka, K.O.; Schommer, J.C. Medication Adherence and Compliance: Recipe for Improving Patient Outcomes. Pharmacy 2022, 10, 106. [Google Scholar] [CrossRef]
- Manzoor, B.S.; Walton, S.M.; Sharp, L.K.; Galanter, W.L.; Lee, T.A.; Nutescu, E.A. High Number of Newly Initiated Direct Oral Anticoagulant Users Switch to Alternate Anticoagulant Therapy. J. Thromb. Thrombolysis 2017, 44, 435–441. [Google Scholar] [CrossRef]
- Fastner, C.; Szabo, K.; Samartzi, M.; Kruska, M.; Akin, I.; Platten, M.; Baumann, S.; Alonso, A. Treatment Standards for Direct Oral Anticoagulants in Patients with Acute Ischemic Stroke and Non-Valvular Atrial Fibrillation: A Survey among German Stroke Units. PLoS ONE 2022, 17, e0264122. [Google Scholar] [CrossRef]
- Paciaroni, M.; Caso, V.; Agnelli, G.; Mosconi, M.G.; Giustozzi, M.; Seiffge, D.J.; Engelter, S.T.; Lyrer, P.; Polymeris, A.A.; Kriemler, L.; et al. Recurrent Ischemic Stroke and Bleeding in Patients With Atrial Fibrillation Who Suffered an Acute Stroke While on Treatment With Nonvitamin K Antagonist Oral Anticoagulants: The RENO-EXTEND Study. Stroke 2022, 53, 2620–2627. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.; Liu, C.; Lin, S.; Lin, P.; Chang, Y.; Wang, C.; Chen, C.; Sung, P. Comparing Efficacy and Safety Between Patients With Atrial Fibrillation Taking Direct Oral Anticoagulants or Warfarin After Direct Oral Anticoagulant Failure. J. Am. Heart Assoc. 2023, 12, e029979. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Sievert, H.; Halperin, J.; Doshi, S.K.; Buchbinder, M.; Neuzil, P.; Huber, K.; Whisenant, B.; Kar, S.; Swarup, V.; et al. Percutaneous Left Atrial Appendage Closure vs Warfarin for Atrial Fibrillation. JAMA 2014, 312, 1988. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.R.; Kar, S.; Price, M.J.; Whisenant, B.; Sievert, H.; Doshi, S.K.; Huber, K.; Reddy, V.Y. Prospective Randomized Evaluation of the Watchman Left Atrial Appendage Closure Device in Patients With Atrial Fibrillation Versus Long-Term Warfarin Therapy. J. Am. Coll. Cardiol. 2014, 64, 1–12. [Google Scholar] [CrossRef]
- Whitlock, R.P.; Belley-Cote, E.P.; Paparella, D.; Healey, J.S.; Brady, K.; Sharma, M.; Reents, W.; Budera, P.; Baddour, A.J.; Fila, P.; et al. Left Atrial Appendage Occlusion during Cardiac Surgery to Prevent Stroke. N. Engl. J. Med. 2021, 384, 2081–2091. [Google Scholar] [CrossRef]
- Connolly, S.J.; Healey, J.S.; Belley-Cote, E.P.; Balasubramanian, K.; Paparella, D.; Brady, K.; Reents, W.; Danner, B.C.; Devereaux, P.J.; Sharma, M.; et al. Oral Anticoagulation Use and Left Atrial Appendage Occlusion in LAAOS III. Circulation 2023, 148, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Cruz-González, I.; González-Ferreiro, R.; Freixa, X.; Gafoor, S.; Shakir, S.; Omran, H.; Berti, S.; Santoro, G.; Kefer, J.; Landmesser, U.; et al. Left Atrial Appendage Occlusion for Stroke despite Oral Anticoagulation (Resistant Stroke). Results from the Amplatzer Cardiac Plug Registry. Rev. Española Cardiología (Engl. Ed.) 2020, 73, 28–34. [Google Scholar] [CrossRef]
- Pracoń, R.; Zieliński, K.; Bangalore, S.; Konka, M.; Kruk, M.; Kępka, C.; Trochimiuk, P.; Dębski, M.; Przyłuski, J.; Kaczmarska, E.; et al. Residual Stroke Risk after Left Atrial Appendage Closure in Patients with Prior Oral Anticoagulation Failure. Int. J. Cardiol. 2022, 354, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Margonato, D.; Preda, A.; Ingallina, G.; Rizza, V.; Fierro, N.; Radinovic, A.; Ancona, F.; Patti, G.; Agricola, E.; Della Bella, P.; et al. Left Atrial Appendage Occlusion after Thromboembolic Events or Left Atrial Appendage Sludge during Anticoagulation Therapy: Is Two Better than One? Real-world Experience from a Tertiary Care Hospital. J. Arrhythm. 2023, 39, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Freixa, X.; Cruz-González, I.; Regueiro, A.; Nombela-Franco, L.; Estévez-Loureiro, R.; Ruiz-Salmerón, R.; Bethencourt, A.; Gutiérrez-García, H.; Fernández-Díaz, J.A.; Moreno-Samos, J.C.; et al. Left Atrial Appendage Occlusion as Adjunctive Therapy to Anticoagulation for Stroke Recurrence. J. Invasive Cardiol. 2019, 31, 212–216. [Google Scholar]
- Galloo, X.; Carmeliet, T.; Prihadi, E.A.; Lochy, S.; Scott, B.; Verheye, S.; Schoors, D.; Vermeersch, P. Left Atrial Appendage Occlusion in Recurrent Ischaemic Stroke, a Multicentre Experience. Acta Clin. Belg. 2022, 77, 255–260. [Google Scholar] [CrossRef]
- Masjuan, J.; Salido, L.; DeFelipe, A.; Hernández-Antolín, R.; Fernández-Golfín, C.; Cruz-Culebras, A.; Matute, C.; Vera, R.; Pérez-Torre, P.; Zamorano, J.L. Oral Anticoagulation and Left Atrial Appendage Closure: A New Strategy for Recurrent Cardioembolic Stroke. Eur. J. Neurol. 2019, 26, 816–820. [Google Scholar] [CrossRef]
- Aarnink, E.W.; Maarse, M.; Fierro, N.; Mazzone, P.; Beneduce, A.; Tondo, C.; Gasperetti, A.; Pracon, R.; Demkow, M.; Zieliński, K.; et al. Left Atrial Appendage Occlusion in Patients With Anticoagulation Failure vs Anticoagulation Contraindication. JACC Cardiovasc. Interv. 2024, 17, 1311–1321. [Google Scholar] [CrossRef]
- Maarse, M.; Seiffge, D.J.; Werring, D.J.; Boersma, L.V.A.; Macha, K.; Takagi, M.; Tsivgoulis, G.; Bonetti, B.; Arihiro, S.; Alberti, A.; et al. Left Atrial Appendage Occlusion vs Standard of Care After Ischemic Stroke Despite Anticoagulation. JAMA Neurol. 2024, 81, 1150. [Google Scholar] [CrossRef]
- Seiffge, D.J.; Cancelloni, V.; Räber, L.; Paciaroni, M.; Metzner, A.; Kirchhof, P.; Fischer, U.; Werring, D.J.; Shoamanesh, A.; Caso, V. Secondary Stroke Prevention in People with Atrial Fibrillation: Treatments and Trials. Lancet Neurol. 2024, 23, 404–417. [Google Scholar] [CrossRef]
- Park, Y.K.; Lee, M.J.; Kim, J.H.; Lee, J.S.; Park, R.W.; Kim, G.-M.; Chung, C.-S.; Lee, K.H.; Kim, J.S.; Lee, S.-Y.; et al. Genetic and Non-Genetic Factors Affecting the Quality of Anticoagulation Control and Vascular Events in Atrial Fibrillation. J. Stroke Cerebrovasc. Dis. 2017, 26, 1383–1390. [Google Scholar] [CrossRef]
- Chen, W.; Wu, L.; Liu, X.; Shen, Y.; Liang, Y.; Zhu, J.; Tan, H.; Yang, Y.; Liu, Q.; Wang, M.; et al. Warfarin Dose Requirement with Different Genotypes of Polymorphisms on CYP2C9 and VKORC1 and Indications in Han-Chinese Patients. Int. J. Clin. Pharmacol. Ther. 2017, 55, 126–132. [Google Scholar] [CrossRef]
- Burmester, J.K.; Berg, R.L.; Yale, S.H.; Rottscheit, C.M.; Glurich, I.E.; Schmelzer, J.R.; Caldwell, M.D. A Randomized Controlled Trial of Genotype-Based Coumadin Initiation. Genet. Med. 2011, 13, 509–518. [Google Scholar] [CrossRef]
- Paré, G.; Eriksson, N.; Lehr, T.; Connolly, S.; Eikelboom, J.; Ezekowitz, M.D.; Axelsson, T.; Haertter, S.; Oldgren, J.; Reilly, P.; et al. Genetic Determinants of Dabigatran Plasma Levels and Their Relation to Bleeding. Circulation 2013, 127, 1404–1412. [Google Scholar] [CrossRef]
- Raymond, J.; Imbert, L.; Cousin, T.; Duflot, T.; Varin, R.; Wils, J.; Lamoureux, F. Pharmacogenetics of Direct Oral Anticoagulants: A Systematic Review. J. Pers. Med. 2021, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Lähteenmäki, J.; Vuorinen, A.; Pajula, J.; Harno, K.; Lehto, M.; Niemi, M.; van Gils, M. Pharmacogenetics of Bleeding and Thromboembolic Events in Direct Oral Anticoagulant Users. Clin. Pharmacol. Ther. 2021, 110, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Occhipinti, G.; Laudani, C.; Spagnolo, M.; Finocchiaro, S.; Mazzone, P.M.; Faro, D.C.; Mauro, M.S.; Rochira, C.; Agnello, F.; Giacoppo, D.; et al. Pharmacological and Clinical Appraisal of Factor XI Inhibitor Drugs. Eur. Heart J. Cardiovasc. Pharmacother. 2024, 10, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Neuzil, P.; de Potter, T.; van der Heyden, J.; Tromp, S.C.; Rensing, B.; Jiresova, E.; Dujka, L.; Lekesova, V. Permanent Percutaneous Carotid Artery Filter to Prevent Stroke in Atrial Fibrillation Patients. J. Am. Coll. Cardiol. 2019, 74, 829–839. [Google Scholar] [CrossRef]
- Shah, A.; Shewale, A.; Hayes, C.J.; Martin, B.C. Cost-Effectiveness of Oral Anticoagulants for Ischemic Stroke Prophylaxis Among Nonvalvular Atrial Fibrillation Patients. Stroke 2016, 47, 1555–1561. [Google Scholar] [CrossRef]
- Harrington, A.R.; Armstrong, E.P.; Nolan, P.E.; Malone, D.C. Cost-Effectiveness of Apixaban, Dabigatran, Rivaroxaban, and Warfarin for Stroke Prevention in Atrial Fibrillation. Stroke 2013, 44, 1676–1681. [Google Scholar] [CrossRef]
- Labori, F.; Persson, J.; Bonander, C.; Jood, K.; Svensson, M. Cost-Effectiveness Analysis of Left Atrial Appendage Occlusion in Patients with Atrial Fibrillation and Contraindication to Oral Anticoagulation. Eur. Heart J. 2022, 43, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Akehurst, R.L.; Armstrong, S.O.; Amorosi, S.L.; Beard, S.M.; Holmes, D.R. Time to Cost-Effectiveness Following Stroke Reduction Strategies in AF. J. Am. Coll. Cardiol. 2015, 66, 2728–2739. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Akehurst, R.L.; Gavaghan, M.B.; Amorosi, S.L.; Holmes, D.R. Cost-Effectiveness of Left Atrial Appendage Closure for Stroke Reduction in Atrial Fibrillation: Analysis of Pooled, 5-Year, Long-Term Data. J. Am. Heart Assoc. 2019, 8, e011577. [Google Scholar] [CrossRef] [PubMed]
- Ferrone, S.R.; Boltyenkov, A.T.; Lodato, Z.; O’Hara, J.; Vialet, J.; Malhotra, A.; Katz, J.M.; Wang, J.J.; Feizullayeva, C.; Sanelli, P.C. Clinical Outcomes and Costs of Recurrent Ischemic Stroke: A Systematic Review. J. Stroke Cerebrovasc. Dis. 2022, 31, 106438. [Google Scholar] [CrossRef]
Study | Year | Patient Population (n) | Median Age, yrs | Mean CHA2DS-VASc Score | Mean HAS-BLED Score | Prior to Stroke Anticoagulation | Post-Stroke Antiplatelet Strategy | |||
---|---|---|---|---|---|---|---|---|---|---|
Post-Stroke DOAC vs. VKA | DOAC to DOAC (Same or Switch) | VKA to DOAC | Antiplatelets | |||||||
Polymeris et al. [14] | 2022 | Patients with AF and IS despite OAC (2946) | 81 (76–86) | NR | NR | VKA (43.2%), DOAC (56.8%) | 85.4% received DOAC post-stroke. DOAC use was associated with a reduction of 51% in the composite endpoint (recurrent IS, ICH and all-cause death at 3 months) | No significant outcome difference (HR 0.83, 0.54–1.27) | Significantly lower composite outcome events (HR 0.51, 0.33–0.79) | Addition of antiplatelets was not related to enhanced outcomes (HR:1.34, 0.89–2.03) |
Yaghi et al. [19] | 2021 | Patients with AF and IS despite OAC (546) vs. no OAC (972) | 77 (68–84) | 5 (4–6) | NR | DOAC 50.9% | NR | Switching OAC class showed a non-significant difference in recurrent IS (HR 0.35, 0.11–1.13) This was also non-significant after cofounder adjustment (HR 0.41, 0.12–1.33) | NR | NR |
Ip et al. [21] | 2023 | Patients with AF and IS despite OAC (2337) | DOACsame: 78.9 ± 9.8 DOACswitch: 79.1 ± 9.2 Warfarin: 76.4 ± 10.4 | DOACsame: 4.6 ± 1.7 DOACswitch: 4.51. ± 7 Warfarin: 4.6 ± 1.8 | DOACsame: 2.4 ± 0.9 DOACswitch: 2.3 ± 1.0 Warfarin: 2.4 ± 1.1 | DOAC 100.0% | Compared with DOACsame, warfarin was associated with increased recurrent IS (HR 1.96, 1.29–3.02, p = 0.002) | DOAC switch was associated with more IS (HR 1.62, 1.25–2.11, p < 0.001) and ACS (HR 2.18, 1.29–6.67 p = 0.003), compared to same DOAC | NR | Antiplatelets did not reduce recurrent IS risk (HR 1.28, 0.88–1.84), ICH (HR 1.20, 0.54–2.68), ACS (HR 1.71, 0.80–3.66), or mortality (HR 1.09, 0.84–1.41) |
Seiffge et al. [56] | 2020 | Patients with AF and IS despite OAC (1195) vs. no OAC (4119) | 78 (71–84) | 5 (4–6) | 3 (3–4) | DOAC 13.5%, VKA 72.4%, undetermined 14.1% | OAC change was associated with decreased mortality in univariate (HR 0.5, 0.3–0.9, p = 0.012) but not multivariate analysis (HR 0.7, 0.4–1.2, p = 0.177) No differences in recurrent IS or ICH | |||
Paciaroni et al. [86] | 2022 | Patients with AF and IS despite OAC (1240) | 78.9 ± 9.1 | NR | NR | DOAC 100% | NR | No difference in the primary outcome (HR 1.1, 0.8–1.4), ischemic outcome (HR 1.1, 0.7–1.4) or bleeding outcome (HR 1.4, 0.7–2.5) between DOAC unchanged and changed | NR | Addition of antiplatelets to DOACs resulted in increased bleeding and ischemic events (OR, 1.7, 1.1–2.9, p = 0.03) |
Hsieh et al. [87] | 2023 | Patients with AF and IS despite OAC (3579) | Warfarin: 77.9 ± 10.3 Apixaban: 78.4 ± 9.8 Dabigatran: 74.0 ± 9.5 Edoxaban: 77.8 ± 10.3 Rivaroxaban: 77.6 ± 10.0 | Warfarin: 5.62 ± 1.36 Apixaban: 5.16 ± 1.33 Dabigatran: 4.97 ± 1.39 Edoxaban: 4.85 ± 1.53 Rivaroxaban: 5.44 ± 1.33 | Warfarin: 3.13 ± 0.92 Apixaban: 3.08 ± 0.76 Dabigatran: 2.98 ± 0.83 Edoxaban: 2.96 ± 0.82 Rivaroxaban: 3.02 ± 0.74 | NR | Compared to VKA, switching to any DOACs was associated with a 69% to 77% reduced risk of MACE Apixaban: HR 0.25, 0.16–0.39 Dabigatran: HR 0.17, 0.11–0.25 Edoxaban: HR 0.31, 0.17–0.56 Rivaroxaban: HR 0.31, 0.23–0.41 Similar reductions were present regarding the net composite outcome of any IS/MACE/ICH/SAH/death |
Study | Year | Patient Population (n) | Mean CHA2DS-VASc Score | Mean HAS-BLED Score | Device | Outcomes | ||
---|---|---|---|---|---|---|---|---|
Safety | Efficacy | Post LAAO OAC | ||||||
Cruz-Gonzalez et al. [92] | 2020 | Patients with previous stroke under OAC (115) vs. other LAAO indication (932) | 5.5 ± 1.5 vs. 4.3 ± 1.6 | 3.9 ± 1.3 vs. 3.1 ± 1.2 | ACP | Similar procedural success (97%) and no difference in periprocedural complications between controls and stroke patients. | 65% reduction of stroke risk in stroke patients (78% in controls), 100% reduction of bleeding risk (80% in controls). No significant differences. | Most commonly antiplatelets were prescribed, OAC was used in 8.1% of stroke and 4.3% of controls patients |
Pracon et al. [93] | 2022 | Patients with previous stroke under OAC (39), LAAO controls (156) | 5.0 (3.0–6.0) vs. 4.0 (3.0–5.0) | 2.0 (1.0–3.0) vs. 3.0 (2.0–3.0), p = 0.006 | Amplatzer or Watchman | Similar procedural success. No difference in the rates of devices used. Similar rates of device thrombosis (13.2% vs. 11.3%, p = 0.778). | Thromboembolic events were significantly lower in controls (10.3% vs. 1.9%, p = 0.031). No difference in major bleeding events (0.0% vs. 5.1%, p = 0.361). | Post-procedural DAPT was commonly used. OAC was initiated in 9 patients as a results of device-related thrombosis. |
Margonato et al. [94] | 2023 | Patients with stroke under OAC (102) vs. matched LAAO controls (102) | 3 ± 3 vs. 3 ± 2 | NR | Amulet and Watchman | Procedural success was similar between the two cohorts (98%). No major periprocedural events occurred. | The primary composite of all-cause death, stroke, systemic embolism and major bleeding occurred in 26% of stroke patients. | 68% OAC, 27% SAPT or DAPT. OAC at discharge (OR 0.29, 0.11–0.80, p = 0.017) was associated with the occurrence of primary endpoint. |
Freixa et al. [95] | 2019 | Patients with stroke under OAC (22) | 4.5 ± 1.3 | 2.6 ± 1.1 | ACP or Watchman | Procedural success was 100%. No major periprocedural adverse events. 1 device-related thrombus occurred. | At median follow-up of 1.8 years only 1 stroke and 1 transient ischemic attack were reported. Risk reduction before and after LAAO was significant (2.0 ± 1.0 events vs. 0.1 ± 0.3 events; p < 0.01). | 86.4% were under OAC therapy. |
Galloo et al. [96] | 2022 | Patients with stroke under OAC (15) | 6 ± 1.2 | 5 ± 1.2 | Amplatzer or Watchman | Procedural success was 100% with both devices. No periprocedural complications. 1 device-related thrombus occurred. | No hemorrhagic strokes and 2 ischemic strokes occurred. At follow-up, all mortality events (3 patients) were attributed to non-atrial fibrillation related reasons. | Long-term OAC was continued in 73.3% of patients. |
Masjuan et al. [97] | 2019 | Patients with stroke under OAC (19) | 5.3 ± 1.48 | 1.73 ± 1.2 | ACP or Amulet | Procedural success was 100%, with no periprocedural complications. | 1 ischemic complication (transient ischemic attack) and 1 minor bleeding event during a mean follow-up of 17.4 months. | Combination of LAAO with OAC was ordered for all patients, VKA 10.5% and DOAC 89.3%. Aspirin was also given during the first 3 months. |
Aarnink et al. [98] | 2024 | Patients with previous stroke under OAC (438) vs. OAC contraindication (438) | 5.0 ± 1.6 vs. 4.5 ± 1.6 | 2.8 ± 1.3 vs. 2.3 ± 1.2 | Amplatzer or Watchman | NR | No difference in ischemic stroke events (2.5% vs. 1.9%; HR: 1.37; 95% CI: 0.72–2.61). Increased thromboembolic (HR: 1.71; 95% CI: 1.04–2.83), and reduced bleeding risk (HR: 0.39; 95% CI: 0.18–0.88), in the stroke under OAC arm. Reduced mortality rates in the stroke under OAC group (4.3% vs. 6.9%; p = 0.028). | On discharge, most common regimens were: DOAC: 30.2% VKA: 24.5% DAPT: 33.9%. |
Maarse et al. [99] | 2024 | Patients with previous stroke under OAC undergoing LAAO (433) vs. standard care (433) | 5 (1.6) vs. 5.5 (1.4) | 2.8 (1.3) vs. 3.3 (1.1) | Watchamn, Amplatzer and Lambre | Periprocedural complications occurred in 7% of patients (pericardial effusion 2.5%; access site complications 2.5%). Two in-hospital deaths occurred. | At 2 years, patients undergoing LAAO had significantly lower annualized event rates of stroke (2.8 vs. 8.9% per patient-year). Significantly lower overall risk of ischemic stroke (HR: 0.33; 95%CI: 0.19–0.58). | Post-LAAO antithrombotics: no OAC: 40%, no OAC after imaging showing complete closure: 27%, OAC: 33%. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitriadis, K.; Pyrpyris, N.; Aznaouridis, K.; Nayak, G.; Kanatas, P.; Theofilis, P.; Tsioufis, P.; Beneki, E.; Papanikolaou, A.; Fragoulis, C.; et al. Ischemic Stroke in Patients Under Oral Anticoagulation: The Achilles Heel of Atrial Fibrillation Management. Brain Sci. 2025, 15, 454. https://doi.org/10.3390/brainsci15050454
Dimitriadis K, Pyrpyris N, Aznaouridis K, Nayak G, Kanatas P, Theofilis P, Tsioufis P, Beneki E, Papanikolaou A, Fragoulis C, et al. Ischemic Stroke in Patients Under Oral Anticoagulation: The Achilles Heel of Atrial Fibrillation Management. Brain Sciences. 2025; 15(5):454. https://doi.org/10.3390/brainsci15050454
Chicago/Turabian StyleDimitriadis, Kyriakos, Nikolaos Pyrpyris, Konstantinos Aznaouridis, Gyanaranjan Nayak, Panagiotis Kanatas, Panagiotis Theofilis, Panagiotis Tsioufis, Eirini Beneki, Aggelos Papanikolaou, Christos Fragoulis, and et al. 2025. "Ischemic Stroke in Patients Under Oral Anticoagulation: The Achilles Heel of Atrial Fibrillation Management" Brain Sciences 15, no. 5: 454. https://doi.org/10.3390/brainsci15050454
APA StyleDimitriadis, K., Pyrpyris, N., Aznaouridis, K., Nayak, G., Kanatas, P., Theofilis, P., Tsioufis, P., Beneki, E., Papanikolaou, A., Fragoulis, C., Aggeli, K., & Tsioufis, K. (2025). Ischemic Stroke in Patients Under Oral Anticoagulation: The Achilles Heel of Atrial Fibrillation Management. Brain Sciences, 15(5), 454. https://doi.org/10.3390/brainsci15050454