Synergistic Effects of Joint-Biased Rehabilitation and Combined Transcranial Direct Current Stimulation (tDCS) in Chronic Ankle Instability: A Single-Blind, Three-Armed Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Ethics
2.2.1. Inclusion Criteria
- Cumberland Ankle Instability Tool (CAIT) score of 24 or below
- A history of at least two ankle sprains on the same side within 2 years
- No other musculoskeletal injuries affecting the lower extremities
2.2.2. Exclusion Criteria
- Ankle sprain occurring less than 6 months prior to study participation
- Sensory impairment or vestibular disorders
- History of surgery involving the back, hip, or knee
- Diagnosed neurological or psychiatric disorders
- Presence of metal implants in areas where electrical stimulation is applied
2.2.3. Ethical Considerations
2.3. Sample Size
2.4. Randomization and Blinding
2.5. Intervention
2.5.1. Transcranial Direct Current Stimulation Plus Joint Mobilization
2.5.2. Active Joint Mobilization
2.5.3. Transcranial Direct Current Stimulation Plus Active Joint Mobilization
2.6. Outcomes
2.6.1. Dynamic Balance
2.6.2. Ankle Instability
2.6.3. Range of Motion
2.6.4. Static Balance
2.7. Data Analysis
3. Results
3.1. General Characteristics of the Participants
3.2. Dynamic Balance
3.3. Ankle Instability
3.4. Range of Motion
3.5. Static Balance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AJM | Active joint mobilization |
CAI | Chronic ankle instability |
CAIT | Cumberland ankle instability tool |
COP | Center of pressure |
DFROM | Dorsiflexion range of motion |
FAI | Functional ankle instability |
JM | Joint mobilization |
MAI | Mechanical ankle instability |
MCID | Minimal clinically important difference |
NIBS | Non-invasive brain stimulation |
SEBT | Star excursion balance test |
tDCS | Transcranial direct current stimulation |
YBT | Y-balance test |
References
- Tummala, S.V.; Morikawa, L.; Brinkman, J.C.; Crijns, T.J.; Vij, N.; Gill, V.; Kile, T.A.; Patel, K.; Chhabra, A. Characterization of Ankle Injuries and Associated Risk Factors in the National Basketball Association: Minutes Per Game and Usage Rate Associated With Time Loss. Orthop. J. Sports Med. 2023, 11, 23259671231184459. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-I.; Houtenbos, S.; Lu, Y.-H.; Mayer, F.; Wippert, P.-M. The epidemiology of chronic ankle instability with perceived ankle instability-a systematic review. J. Foot Ankle Res. 2021, 14, 41. [Google Scholar] [CrossRef] [PubMed]
- Delahunt, E.; Remus, A. Risk Factors for Lateral Ankle Sprains and Chronic Ankle Instability. J. Athl. Train. 2019, 54, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Hoch, M.C.; McKeon, P.O. Peroneal reaction time after ankle sprain: A systematic review and meta-analysis. Med. Sci. Sports Exerc. 2014, 46, 546–556. [Google Scholar] [CrossRef]
- Kosik, K.B.; Johnson, N.F.; Terada, M.; Thomas, A.C.; Mattacola, C.G.; Gribble, P.A. Decreased dynamic balance and dorsiflexion range of motion in young and middle-aged adults with chronic ankle instability. J. Sci. Med. Sport. 2019, 22, 976–980. [Google Scholar] [CrossRef]
- Xue, X.; Ma, T.; Li, Q.; Song, Y.; Hua, Y. Chronic ankle instability is associated with proprioception deficits: A systematic review and meta-analysis. J. Sport. Health Sci. 2021, 10, 182–191. [Google Scholar] [CrossRef]
- Wenning, M.; Gehring, D.; Mauch, M.; Schmal, H.; Ritzmann, R.; Paul, J. Functional deficits in chronic mechanical ankle instability. J. Orthop. Surg. Res. 2020, 15, 304. [Google Scholar] [CrossRef]
- Hertel, J.; Corbett, R.O. An Updated Model of Chronic Ankle Instability. J. Athl. Train. 2019, 54, 572–588. [Google Scholar] [CrossRef]
- Kazemi, K.; Javanshir, K.; Saadi, F.; Goharpey, S.; Shaterzadeh Yazdi, M.J.; Calvo-Lobo, C.; López-López, D.; Nassadj, G. The Effect of Additional Neuromuscular Training on Peri-Ankle Muscle Morphology and Function in Chronic Ankle Instability Subjects: A Randomized Controlled Trial. Sports Health 2025, 17, 572–584. [Google Scholar] [CrossRef]
- Pietrosimone, B.G.; Gribble, P.A. Chronic ankle instability and corticomotor excitability of the fibularis longus muscle. J. Athl. Train. 2012, 47, 621–626. [Google Scholar] [CrossRef]
- Kim, K.M.; Kim, J.S.; Cruz-Díaz, D.; Ryu, S.; Kang, M.; Taube, W. Changes in Spinal and Corticospinal Excitability in Patients with Chronic Ankle Instability: A Systematic Review with Meta-Analysis. J. Clin. Med. 2019, 8, 1037. [Google Scholar] [CrossRef]
- Finisguerra, A.; Borgatti, R.; Urgesi, C. Non-invasive Brain Stimulation for the Rehabilitation of Children and Adolescents With Neurodevelopmental Disorders: A Systematic Review. Front. Psychol. 2019, 10, 135. [Google Scholar] [CrossRef] [PubMed]
- Davis, N.J.; van Koningsbruggen, M.G. “Non-invasive” brain stimulation is not non-invasive. Front. Syst. Neurosci. 2013, 7, 76. [Google Scholar] [CrossRef]
- Choi, M. Non-invasive Brain Stimulation and its Legal Regulation-Devices using Techniques of TMS and tDCS. Korean Soc. Law. Med. 2020, 21, 209–244. [Google Scholar] [CrossRef]
- Gamwell-Muscarello, H.E.; Needle, A.R.; Meucci, M.; Skinner, J.W. Improving locomotor performance with motor imagery and tDCS in young adults. Sci. Rep. 2025, 15, 1748. [Google Scholar] [CrossRef] [PubMed]
- Hamoudi, M.; Schambra, H.M.; Fritsch, B.; Schoechlin-Marx, A.; Weiller, C.; Cohen, L.G.; Reis, J. Transcranial Direct Current Stimulation Enhances Motor Skill Learning but Not Generalization in Chronic Stroke. Neurorehabilit. Neural Repair 2018, 32, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Delicado-Miralles, M.; Flix-Diez, L.; Gurdiel-Álvarez, F.; Velasco, E.; Galán-Calle, M.; Lerma Lara, S. Temporal Dynamics of Adverse Effects across Five Sessions of Transcranial Direct Current Stimulation. Brain Sci. 2024, 14, 457. [Google Scholar] [CrossRef]
- Giangrande, A.; Mujunen, T.; Luigi Cerone, G.; Botter, A.; Piitulainen, H. Maintained volitional activation of the muscle alters the cortical processing of proprioceptive afference from the ankle joint. Neuroscience 2024, 560, 314–325. [Google Scholar] [CrossRef]
- Hyunjoong Kim, S.S.; Sangbong, L.; Seungwon, L. Short-term effects of joint mobilization with versus without voluntary movement in patients with chronic ankle instability: A single-blind randomized controlled trial. Phys. Ther. Rehabil. Sci. 2021, 10, 1–9. [Google Scholar] [CrossRef]
- Kim, H.; Moon, S. Effect of Joint Mobilization in Individuals with Chronic Ankle Instability: A Systematic Review and Meta-Analysis. J. Funct. Morphol. Kinesiol. 2022, 7, 66. [Google Scholar] [CrossRef]
- Wang, B.; Xiao, S.; Yu, C.; Zhou, J.; Fu, W. Effects of Transcranial Direct Current Stimulation Combined With Physical Training on the Excitability of the Motor Cortex, Physical Performance, and Motor Learning: A Systematic Review. Front. Neurosci. 2021, 15, 648354. [Google Scholar] [CrossRef]
- Andressa de Souza, J.; Ferrari Corrêa, J.C.; Marduy, A.; Dall’Agnol, L.; Gomes de Sousa, M.H.; Nunes da Silva, V.; Alves, A.B.; Silva, S.M.; Fregni, F.; Corrêa, F.I. To Combine or Not to Combine Physical Therapy With tDCS for Stroke With Shoulder Pain? Analysis From a Combination Randomized Clinical Trial for Rehabilitation of Painful Shoulder in Stroke. Front. Pain Res. 2021, 2, 696547. [Google Scholar] [CrossRef]
- da Silva, A.A.C.; Gomes, S.R.A.; do Nascimento, R.M.; Fonseca, A.K.; Pegado, R.; Souza, C.G.; Macedo, L.d.B. Effects of transcranial direct current stimulation combined with Pilates-based exercises in the treatment of chronic low back pain in outpatient rehabilitation service in Brazil: Double-blind randomised controlled trial protocol. BMJ Open 2023, 13, e075373. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Nitsche, M.A.; Yi, L.; Kong, Z.; Qi, F. Effects of Transcranial Direct Current Stimulation over the Primary Motor Cortex in Improving Postural Stability in Healthy Young Adults. Biology 2022, 11, 1370. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Díaz, D.; Lomas Vega, R.; Osuna-Pérez, M.C.; Hita-Contreras, F.; Martínez-Amat, A. Effects of joint mobilization on chronic ankle instability: A randomized controlled trial. Disabil. Rehabil. 2015, 37, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Bruce, A.S.; Howard, J.S.; Van Werkhoven, H.; McBride, J.M.; Needle, A.R. The Effects of Transcranial Direct Current Stimulation on Chronic Ankle Instability. Med. Sci. Sports Exerc. 2020, 52, 335–344. [Google Scholar] [CrossRef]
- Kim, S.H. Effects of Dual Transcranial Direct Current Stimulation and Modified Constraint-Induced Movement Therapy to Improve Upper-Limb Function after Stroke: A Double-Blinded, Pilot Randomized Controlled Trial. J. Stroke Cerebrovasc. Dis. 2021, 30, 105928. [Google Scholar] [CrossRef]
- Lee, E. The Effect of Transcranial Direct Current Stimulation on Smartphone Addiction and Stress: A randomized controlled study. Phys. Ther. Rehabil. Sci. 2021, 10, 76–81. [Google Scholar] [CrossRef]
- DaSilva, A.F.; Volz, M.S.; Bikson, M.; Fregni, F. Electrode Positioning and Montage in Transcranial Direct Current Stimulation. J. Vis. Exp. JoVE 2011, 51, 2744. [Google Scholar] [CrossRef]
- Hoch, M.C.; Andreatta, R.D.; Mullineaux, D.R.; English, R.A.; Medina McKeon, J.M.; Mattacola, C.G.; McKeon, P.O. Two-week joint mobilization intervention improves self-reported function, range of motion, and dynamic balance in those with chronic ankle instability. J. Orthop. Res. 2012, 30, 1798–1804. [Google Scholar] [CrossRef]
- Plisky, P.; Schwartkopf-Phifer, K.; Huebner, B.; Garner, M.B.; Bullock, G. Systematic Review and Meta-Analysis of the Y-Balance Test Lower Quarter: Reliability, Discriminant Validity, and Predictive Validity. Int. J. Sports Phys. Ther. 2021, 16, 1190–1209. [Google Scholar] [CrossRef]
- Plisky, P.J.; Gorman, P.P.; Butler, R.J.; Kiesel, K.B.; Underwood, F.B.; Elkins, B. The reliability of an instrumented device for measuring components of the star excursion balance test. N. Am. J. Sports Phys. Ther. 2009, 4, 92–99. [Google Scholar] [PubMed]
- Ko, J.; Rosen, A.B.; Brown, C.N. Cross-cultural adaptation and validation of the Korean version of the Cumberland Ankle Instability Tool. Int. J. Sports Phys. Ther. 2015, 10, 1007–1014. [Google Scholar]
- Gribble, P.A.; Delahunt, E.; Bleakley, C.; Caulfield, B.; Docherty, C.; Fourchet, F.; Fong, D.T.; Hertel, J.; Hiller, C.; Kaminski, T.; et al. Selection criteria for patients with chronic ankle instability in controlled research: A position statement of the International Ankle Consortium. Br. J. Sports Med. 2014, 48, 1014–1018. [Google Scholar] [CrossRef]
- Wright, C.J.; Linens, S.W.; Cain, M.S. Establishing the Minimal Clinical Important Difference and Minimal Detectable Change for the Cumberland Ankle Instability Tool. Arch. Phys. Med. Rehabil. 2017, 98, 1806–1811. [Google Scholar] [CrossRef]
- Konor, M.M.; Morton, S.; Eckerson, J.M.; Grindstaff, T.L. Reliability of three measures of ankle dorsiflexion range of motion. Int. J. Sports Phys. Ther. 2012, 7, 279–287. [Google Scholar]
- Tanaka, S.; Hanakawa, T.; Honda, M.; Watanabe, K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp. Brain Res. 2009, 196, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Harkey, M.; McLeod, M.; Van Scoit, A.; Terada, M.; Tevald, M.; Gribble, P.; Pietrosimone, B. The Immediate Effects of an Anterior-To-Posterior Talar Mobilization on Neural Excitability, Dorsiflexion Range of Motion, and Dynamic Balance in Patients With Chronic Ankle Instability. J. Sport. Rehabil. 2014, 23, 351–359. [Google Scholar] [CrossRef]
- Mizuno, T.; Aramaki, Y. Cathodal transcranial direct current stimulation over the Cz increases joint flexibility. Neurosci. Res. 2017, 114, 55–61. [Google Scholar] [CrossRef]
- Gilbreath, J.P.; Gaven, S.L.; Van Lunen, L.; Hoch, M.C. The effects of mobilization with movement on dorsiflexion range of motion, dynamic balance, and self-reported function in individuals with chronic ankle instability. Man. Ther. 2014, 19, 152–157. [Google Scholar] [CrossRef]
- Kim, S.; Jang, S. Immediate Effects of Ankle Mobilization on Range of Motion, Balance, and Muscle Activity in Elderly Individuals with Chronic Ankle Instability: A Pre-Post Intervention Study. Med. Sci. Monit. 2023, 29, e941398. [Google Scholar] [CrossRef]
- Baharlouei, H.; Saba, M.A.; Shaterzadeh Yazdi, M.J.; Jaberzadeh, S. The effect of transcranial direct current stimulation on balance in healthy young and older adults: A systematic review of the literature. Neurophysiol. Clin. 2020, 50, 119–131. [Google Scholar] [CrossRef]
- Song, K.; Burcal, C.J.; Hertel, J.; Wikstrom, E.A. Increased Visual Use in Chronic Ankle Instability: A Meta-analysis. Med. Sci. Sports Exerc. 2016, 48, 2046–2056. [Google Scholar] [CrossRef]
Variables | tDCS + JM | AJM | tDCS + AJM | X2/t |
---|---|---|---|---|
Sex (n, %) | 2.250 | |||
Male | 2(16.7%) | 6(50.0%) | 5(41.7%) | |
Female | 10(83.3%) | 6(50.0%) | 7(58.3%) | |
Affected side (n, %) | 2.109 | |||
Left | 7(58.3%) | 5(41.7%) | 9(75.0%) | |
Right | 5(41.7%) | 7(58.3%) | 3(25.0%) | |
Age (years) | 20.66 ± 1.72 | 20.91 ± 1.72 | 20.33 ± 1.23 | 0.412 |
BMI (kg/m2) | 22.40 ± 5.06 | 21.39 ± 2.79 | 20.72 ± 2.98 | 0.611 |
Leg length (cm) | 96.00 ± 4.36 | 97.36 ± 5.14 | 97.16 ± 4.87 | 0.277 |
Variables | tDCS + JM | AJM | tDCS + AJM | Time | Group | Time × Group | |
---|---|---|---|---|---|---|---|
F(p) | F(p) | F(p) | |||||
Dynamic balance | Baselines (A) | 68.32 ± 8.50 | 66.09 ± 8.67 | 66.32 ± 4.98 | 55.818 (0.000) | 0.238 (0.790) | 0.507 (0.730) |
Immediate change (B) | 73.57 ± 8.70 | 70.73 ± 5.58 | 72.41 ± 7.44 | ||||
B-A a | 0.851 (0.171, 1.503) | 0.587 (−0.390, 1.192) | 0.929 (0.231, 1.598) | ||||
Post-test(C) | 77.97 ± 8.94 | 79.79 ± 8.78 | 81.89 ± 8.64 | ||||
C-A a | 1.484 (0.663, 2.278) | 1.271 (0.484, 2.207) | 1.787 (0.843, 2.701) | ||||
Ankle instability | Baselines (A) | 16.91 ± 4.07 | 16.58 ± 2.64 | 17.50 ± 2.96 | 84.851 (0.000) | 0.566 (0.573) | 0.241 (0.914) |
Post-test (B) | 23.58 ± 4.44 | 24.16 ± 3.06 | 24.75 ± 3.69 | ||||
B-A a | 1.585 (0.705, 2.434) | 1.634 (0.739, 2.499) | 2.230 (1.138, 3.296) | ||||
Follow-up (C) | 22.50 ± 3.65 | 23.08 ± 2.42 | 24.33 ± 4.35 | ||||
C-A a | 1.425 (0.594, 2.225) | 1.412 (0.585, 2.209] | 1.772 (0.833, 2.681) | ||||
Range of Motion | Baselines (A) | 20.16 ± 6.64 | 21.16 ± 10.32 | 25.08 ± 8.29 | 81.934 (0.000) | 3.434 (0.440) | 0.636 (0.639) |
Immediate change (B) | 24.91 ± 10.12 | 26.50 ± 8.83 | 32.66 ± 9.12 | ||||
B-A a | 0.754 (0.095, 1.387) | 0.623 (−0.010, 1.233) | 1.634 [0.739, 2.499] | ||||
Post-test(C) | 32.66 ± 6.18 | 36.25 ± 6.04 | 41.75 ± 5.10 | ||||
C-A a | 2.660 (1.415, 3.881) | 1.594 (0.712, 2.446) | 3.300 (1.818, 4.761) | ||||
Static balance | Baselines (A) | 77.42 ± 11.60 | 71.56 ± 12.51 | 78.50 ± 7.41 | 10.551 (0.000) | 1.580 (0.221) | 0.418 (0.795) |
Immediate change (B) | 79.17 ± 8.53 | 75.41 ± 16.98 | 82.38 ± 6.01 | ||||
B-A a | 0.261 (−0.320, 0.832) | 0.365 (−0.228, 0.943) | 0.702 (0.054, 1.325) | ||||
Post-test (C) | 81.62 ± 11.92 | 79.67 ± 13.74 | 87.04 ± 5.81 | ||||
C-A a | 0.387 (−0.209, 0.967) | 0.866 (0.183, 1.521) | 0.924 (0.228, 1.593) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Kim, H.; Jung, J.; Lee, S. Synergistic Effects of Joint-Biased Rehabilitation and Combined Transcranial Direct Current Stimulation (tDCS) in Chronic Ankle Instability: A Single-Blind, Three-Armed Randomized Controlled Trial. Brain Sci. 2025, 15, 458. https://doi.org/10.3390/brainsci15050458
Kim Y, Kim H, Jung J, Lee S. Synergistic Effects of Joint-Biased Rehabilitation and Combined Transcranial Direct Current Stimulation (tDCS) in Chronic Ankle Instability: A Single-Blind, Three-Armed Randomized Controlled Trial. Brain Sciences. 2025; 15(5):458. https://doi.org/10.3390/brainsci15050458
Chicago/Turabian StyleKim, Yunseo, Hyunjoong Kim, Jihye Jung, and Seungwon Lee. 2025. "Synergistic Effects of Joint-Biased Rehabilitation and Combined Transcranial Direct Current Stimulation (tDCS) in Chronic Ankle Instability: A Single-Blind, Three-Armed Randomized Controlled Trial" Brain Sciences 15, no. 5: 458. https://doi.org/10.3390/brainsci15050458
APA StyleKim, Y., Kim, H., Jung, J., & Lee, S. (2025). Synergistic Effects of Joint-Biased Rehabilitation and Combined Transcranial Direct Current Stimulation (tDCS) in Chronic Ankle Instability: A Single-Blind, Three-Armed Randomized Controlled Trial. Brain Sciences, 15(5), 458. https://doi.org/10.3390/brainsci15050458