From Scalp to Brain: Analyzing the Spatial Complexity of the Shooter’s Brain
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Subjects and Environmental Setting
2.2. Preprocessing
2.3. Microstate Analysis
2.3.1. Calculation of Microstate Templates
2.3.2. Microstate Lempel–Ziv Complexity
2.3.3. Microstate Information Gain
2.3.4. Microstate Fluctuation Complexity
2.3.5. Microstate Shannon Entropy
2.3.6. Microstate Entropy Rate
2.3.7. Microstate Excess Entropy
2.4. Traceability Analysis
2.4.1. Desikan–Killiany–Tourville Atlas
2.4.2. Lempel–Ziv Complexity
2.4.3. Sample Entropy
2.4.4. Permutation Entropy
2.4.5. Fractal Dimension
2.4.6. Weiner Entropy
2.4.7. Spectral Flatness Measure
2.5. Statistical Analysis
3. Results
3.1. Microstate Template Selection
3.2. Microstate Complexity Results
3.3. Traceability Complexity Results
3.4. Relevance Results
4. Discussion
4.1. Analysis of Differences in Microstate Complexity
4.2. Analysis of Differences in Traceability Complexity
4.3. Limitations, Analysis, and Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, Y.; Pei, X.; Xu, G.; Zhou, Y.; Tao, L.; Cui, X.; Wang, Z.; Xu, B.; Wang, A.-L.; Zhao, X.; et al. A simultaneous electroencephalography and eye-tracking dataset in elite athletes during alertness and concentration tasks. Sci. Data 2022, 9, 465. [Google Scholar] [CrossRef]
- Rogala, J.; Kublik, E.; Krauz, R.; Wróbel, A. Resting-state EEG activity predicts frontoparietal network reconfiguration and improved attentional performance. Sci. Rep. 2020, 10, 5064. [Google Scholar] [CrossRef]
- Shelley-Tremblay, J.; Jones, R.P.; Demming, E.C.; Labbe-Coldsmith, E. Electroencephalographic Investigation of the Effect of Skill Level and Social Inhibition on Simulated Handgun Shooting. J. Mot. Behav. 2021, 53, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Marqui, R.D.; Michel, C.M.; Lehmann, D. Segmentation of brain electrical activity into microstates: Model estimation and validation. IEEE Trans. Biomed. Eng. 1995, 42, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.M.; Brunet, D.; Michel, C.M. Topographic ERP analyses: A stepby-step tutorial review. Brain Topogr. 2008, 20, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.M.; Haufler, A.J.; Lo, L.C.; Mayer-Kress, G.; Hatfield, B.D. Visuomotor expertise and dimensional complexity of cerebral cortical activity. Med. Sci. Sports Exerc. 2008, 40, 752–759. [Google Scholar] [CrossRef]
- Chen, L.; Jian, C.; Liu, X.; Xu, M.; Wang, Z.; Ming, D. Analysis of EEG Features for Motor Planning Ability Assessment. J. Signal Process. 2023, 39, 1433–1442. [Google Scholar]
- Chueh, T.Y.; Wu, J.H.; Gentili, R.J.; Hung, T.M. Revealing the brain signal complexity underlying superior putting performance in expert golfers: A Multiscale Entropy Study with supplemental connectivity analyses. Biol. Psychol. 2025, 200, 109098. [Google Scholar] [CrossRef]
- Roy, G.; Bhoi, A.K.; Bhaumik, S. A Comparative Approach for MI-Based EEG Signals Classification Using Energy, Power and Entropy. IRBM 2022, 43, 434–446. [Google Scholar] [CrossRef]
- Young, J.H.; Arterberry, M.E.; Martin, J.P. Contrasting Electroencephalography-Derived Entropy and Neural Oscillations With Highly Skilled Meditators. Front. Hum. Neurosci. 2021, 15, 628417. [Google Scholar] [CrossRef]
- Gu, F.; Gong, A.; Qu, Y.; Lu, L.; Shi, Q.; Fu, Y. Brain network research of skilled shooters in the shooting preparation stage under the condition of limited sensory function. Brain Sci. 2022, 12, 1373. [Google Scholar] [CrossRef]
- Khanna, A.; Pascual-Leone, A.; Michel, C.M.; Farzan, F. Microstates in resting-state EEG: Current status and future directions. Neurosci. Biobehav. Rev. 2015, 49, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Santarnecchi, E.; Khanna, A.R.; Musaeus, C.S.; Benwell, C.S.Y.; Davila, P.; Farzan, F.; Matham, S.; Pascual-Leone, A.; Shafi, M.M. EEG microstate correlates of fluid intelligence and response to cognitive training. Brain Topogr. 2017, 30, 502–520. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.M.; Koenig, T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. NeuroImage 2017, 180, 577–593. [Google Scholar] [CrossRef] [PubMed]
- Lempel, A.; Ziv, J. On the Complexity of Finite Sequences. IEEE Trans. Inf. Theory 1976, 22, 75–81. [Google Scholar] [CrossRef]
- Liang, Z.; Tang, B.; Chang, Y.; Wang, J.; Li, D.; Li, X.; Wei, C. State-related Electroencephalography Microstate Complexity during Propofol- and Esketamine-induced Unconsciousness. Anesthesiology 2024, 140, 935–949. [Google Scholar] [CrossRef]
- von Wegner, F.; Wiemers, M.; Hermann, G.; Tödt, I.; Tagliazucchi, E.; Laufs, H. Complexity Measures for EEG Microstate Sequences: Concepts and Algorithms. Brain Topogr. 2024, 37, 296–311. [Google Scholar] [CrossRef]
- Tadel, F.; Bock, E.; Niso, G.; Mosher, J.C.; Cousineau, M.; Pantazis, D.; Leahy, R.M.; Baillet, S. MEG/EEG Group Analysis With Brainstorm. Front. Neurosci. 2019, 13, 76. [Google Scholar] [CrossRef]
- Haris, E.M.; Bryant, R.A.; Korgaonkar, M.S. Structural covariance, topological organization, and volumetric features of amygdala subnuclei in posttraumatic stress disorder. NeuroImage Clin. 2024, 42, 103619. [Google Scholar] [CrossRef]
- Hernandez, H.; Baez, S.; Medel, V.; Moguilner, S.; Cuadros, J.; Santamaria-Garcia, H.; Tagliazucchi, E.; Valdes-Sosa, P.A.; Lopera, F.; OchoaGómez, J.F.; et al. Brain health in diverse settings: How age, demographics and cognition shape brain function. NeuroImage 2024, 295, 120636. [Google Scholar] [CrossRef]
- Man, H.; Gong, A.; Song, X.; Zhang, Y.; Zhou, Y.; Fu, Y. Decoding the Preparation Stage of Target Shooting under Audiovisual Restricted Conditions: Investigating Neural Mechanisms Using Microstate Analysis. Brain Topogr. 2024, 37, 1118–1138. [Google Scholar] [CrossRef]
- Skandalakis, G.P.; Barrios-Martinez, J.; Kazim, S.F.; Rumalla, K.; Courville, E.N.; Mahto, N.; Kalyvas, A.; Yeh, F.-C.; Hadjipanayis, C.G.; Schmidt, M.H.; et al. The anatomy of the four streams of the prefrontal cortex. Preliminary evidence from a population based high definition tractography study. Front. Neuroanat. 2023, 17, 1214629. [Google Scholar] [CrossRef]
- Jiang, M.Y.; DeAngeli, N.E.; Bucci, D.J.; Todd, T.P. Retrosplenial cortex has a time-dependent role in memory for visual stimuli. Behav. Neurosci. 2018, 132, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.S.; Czajkowski, R.; Zhang, N.; Jeffery, K.; Nelson, A.J.D. Retrosplenial cortex and its role in spatial cognition. Brain Neurosci. Adv. 2018, 2, 2398212818757098. [Google Scholar] [CrossRef]
- Lin, X.; Ghafuri, A.; Chen, X.; Kazmi, M.; Nitz, D.A.; Xu, X. Projection-specific circuits of retrosplenial cortex with differential contributions to spatial cognition. Mol. Psychiatry 2025, 30, 2068–2084. [Google Scholar] [CrossRef] [PubMed]
- Arslan, O.E. Neuroanatomical Basis of Clinical Neurology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014; p. 522. [Google Scholar]
- Beilock, S.L.; Wierenga, S.A.; Carr, T.H. Expertise, attention, and memory in sensorimotor skill execution: Impact of novel task constraints on dual-task performance and episodic memory. Q. J. Exp. Psychol. 2002, 55, 1211–1240. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.E.; Shepard, H.K. Measuring complexity using information fluctuation. Phys. Lett. A 1993, 172, 416–425. [Google Scholar] [CrossRef]
- Sleigh, J.; Hight, D. Is complexity complicated? Br. J. Anaesth. 2021, 127, 173–174. [Google Scholar] [CrossRef]
- Rolls, E.T. The cingulate cortex and limbic systems for action, emotion, and memory. Handb. Clin. Neurol. 2019, 166, 23–37. [Google Scholar]
- Tripathi, S.J.; Chakraborty, S.; Srikumar, B.N.; Raju, T.R.; Shankaranarayana Rao, B.S. Basolateral amygdalar inactivation blocks chronic stress-induced lamina-specific reduction in prefrontal cortex volume and associated anxiety-like behavior. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 88, 194–207. [Google Scholar] [CrossRef]
- Yuan, M.; Pantazatos, S.P.; Zhu, H.; Li, Y.; Miller, J.M.; Rubin-Falcone, H.; Zanderigo, F.; Ren, Z.; Yuan, C.; Lui, S.; et al. Altered amygdala subregion-related circuits in treatment-naïve post-traumatic stress disorder comorbid with major depressive disorder. Eur. Neuropsychopharmacol. 2019, 29, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Journée, S.H.; Mathis, V.P.; Fillinger, C.; Veinante, P.; Yalcin, I. Janus effect of the anterior cingulate cortex: Pain and emotion. Neurosci. Biobehav. Rev. 2023, 153, 105362. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Yan, Y.; Chen, Z.; Xiong, J.; Zhang, X.; Gu, L.; Zhang, Y.; Zhu, M.; Zhang, D.; Jiang, J. The basolateral amygdala-anterior cingulate cortex circuit contributes to postherpetic neuralgia-anxiety comorbidity. Theranostics 2025, 15, 4614–4637. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Li, M.; Wang, Q.; Feng, C.; Zhang, J. The role of left orbitofrontal cortex in selective attention during automatic emotion regulation: Evidence from transcranial direct current stimulation. Acta Psychol. Sin. 2020, 52, 1048–1056. [Google Scholar] [CrossRef]
- Witter, M.P. Encyclopedia of Neuroscience, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1126–1129. [Google Scholar]
- Friedman, N.P.; Robbins, T.W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 2022, 47, 72–89. [Google Scholar] [CrossRef]
- Juan, C.H.; Muggleton, N.G. Brain stimulation and inhibitory control. Brain Stimul. 2012, 5, 63–69. [Google Scholar] [CrossRef]
- Krauzlis, R.J. Fundamental Neuroscience, 4th ed.; Academic Press: New York, NY, USA, 2013; pp. 697–714. [Google Scholar]
- Gogolla, N. The insular cortex. Curr. Biol. 2017, 27, 580–586. [Google Scholar] [CrossRef]
- Rosenbloom, M.H.; Schmahmann, J.D.; Price, B.H. The Functional Neuroanatomy of Decision-Making. J. Neuropsychiatry Clin. Neurosci. 2012, 24, 266–277. [Google Scholar] [CrossRef]
- Barbas, H. Complementary roles of prefrontal cortical regions in cognition, memory, and emotion in primates. Adv. Neurol. 2000, 84, 87–110. [Google Scholar]
- Al-Ezzi, A.; Al-Shargabi, A.A.; Al-Shargie, F.; Zahary, A.T. Complexity Analysis of EEG in Patients With Social Anxiety Disorder Using Fuzzy Entropy and Machine Learning Techniques. IEEE Access 2022, 10, 39926–39938. [Google Scholar] [CrossRef]
Num | Mean | Ms1 | Ms2 | Ms3 | Ms4 | Ms5 | Ms6 | Ms7 | Ms8 | Ms9 | Ms10 |
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0.500 | 0.58 | 0.42 | ||||||||
3 | 0.333 | 0.19 | 0.46 | 0.36 | |||||||
4 | 0.250 | 0.16 | 0.33 | 0.24 | 0.27 | ||||||
5 | 0.200 | 0.17 | 0.31 | 0.20 | 0.18 | 0.15 | |||||
6 | 0.167 | 0.25 | 0.13 | 0.20 | 0.12 | 0.16 | 0.13 | ||||
7 | 0.143 | 0.23 | 0.14 | 0.13 | 0.13 | 0.11 | 0.15 | 0.10 | |||
8 | 0.125 | 0.25 | 0.09 | 0.06 | 0.13 | 0.12 | 0.11 | 0.14 | 0.10 | ||
9 | 0.111 | 0.25 | 0.08 | 0.05 | 0.14 | 0.11 | 0.05 | 0.10 | 0.12 | 0.09 | |
10 | 0.100 | 0.25 | 0.08 | 0.05 | 0.12 | 0.11 | 0.05 | 0.09 | 0.11 | 0.10 | 0.04 |
Index | Nor vs. N | Nor vs. No | Post Hoc | ||
---|---|---|---|---|---|
P | ES | P | ES | ||
Ms-LZC | 0.048 * | 0.28 | 0.6852 | - | N > Nor |
Ms-MIG | 0.5717 | - | 0.5901. | - | |
Ms-FC | 0.0384 * | 0.36 | 0.6393 | - | N > Nor |
Ms-EN | 0.5305 | - | 0.5501 | - | |
Ms-ENR | 0.6047 | - | 0.5864 | - | |
Ms-EEN | 0.3067 | - | 0.5494 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, B.; Hu, X.; Shi, X.; Shi, T.; Qu, Y.; Fu, Y.; Gong, A. From Scalp to Brain: Analyzing the Spatial Complexity of the Shooter’s Brain. Brain Sci. 2025, 15, 891. https://doi.org/10.3390/brainsci15080891
Gong B, Hu X, Shi X, Shi T, Qu Y, Fu Y, Gong A. From Scalp to Brain: Analyzing the Spatial Complexity of the Shooter’s Brain. Brain Sciences. 2025; 15(8):891. https://doi.org/10.3390/brainsci15080891
Chicago/Turabian StyleGong, Bowen, Xiuyan Hu, Xinyu Shi, Ting Shi, Yi Qu, Yunfa Fu, and Anmin Gong. 2025. "From Scalp to Brain: Analyzing the Spatial Complexity of the Shooter’s Brain" Brain Sciences 15, no. 8: 891. https://doi.org/10.3390/brainsci15080891
APA StyleGong, B., Hu, X., Shi, X., Shi, T., Qu, Y., Fu, Y., & Gong, A. (2025). From Scalp to Brain: Analyzing the Spatial Complexity of the Shooter’s Brain. Brain Sciences, 15(8), 891. https://doi.org/10.3390/brainsci15080891