Combination Lorcaserin and Betahistine Treatment Improves Cognitive Dysfunction and Dopaminergic Neuron Activity in a Rat Model of Diet-Induced Obesity
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Groups
2.2. Drug Treatment
2.3. Cognitive Behavioral Testing
2.3.1. Spontaneous Alternation Y-Maze Task
2.3.2. Novel Object Recognition (NOR) Task
2.3.3. Object-in-Place (OIP) Task
2.4. In Vivo Electrophysiology
2.5. Data Analysis and Statistics
3. Results
3.1. Effects of Western Diet (WD) on Body Weight and Morphometric Parameters
3.2. Effects of WD on Learning and Memory Functions
3.3. Effects of Lorcaserin–Betahistine Combination on Object-in-Place Task Performance
3.4. Effects of Combination Treatment on Dopaminergic Neuron Activity in the VTA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abad-Jiménez, Z.; Vezza, T. Obesity: A Global Health Challenge Demanding Urgent Action. Biomedicines 2025, 13, 502. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.C.; Killcross, A.S.; Jenkins, T.A. Obesity and cognitive decline: Role of inflammation and vascular changes. Front. Neurosci. 2014, 8, 375. [Google Scholar] [CrossRef] [PubMed]
- Bocarsly, M.E.; Fasolino, M.; Kane, G.A.; LaMarca, E.A.; Kirschen, G.W.; Karatsoreos, I.N.; McEwen, B.S.; Gould, E. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc. Natl. Acad. Sci. USA 2015, 112, 15731–15736. [Google Scholar] [CrossRef] [PubMed]
- Lowe, C.J.; Reichelt, A.C.; Hall, P.A. The Prefrontal Cortex and Obesity: A Health Neuroscience Perspective. Trends. Cogn. Sci. 2019, 23, 349–361. [Google Scholar] [CrossRef]
- Beilharz, J.E.; Maniam, J.; Morris, M.J. Diet-Induced Cognitive Deficits: The Role of Fat and Sugar, Potential Mechanisms and Nutritional Interventions. Nutrients 2015, 7, 6719–6738. [Google Scholar] [CrossRef]
- Dela Peña, I.C.; Figueroa, J.D.; Shi, W.X. Hypothesis: Amelioration of obesity-induced cognitive dysfunction via a lorcaserin-betahistine combination treatment. Pharmacol. Res. Perspect. 2022, 10, e00947. [Google Scholar] [CrossRef]
- Barry, R.L.; Byun, N.E.; Williams, J.M.; Siuta, M.A.; Tantawy, M.N.; Speed, N.K.; Saunders, C.; Galli, A.; Niswender, K.D.; Avison, M.J. Brief exposure to obesogenic diet disrupts brain dopamine networks. PLoS ONE 2018, 13, e0191299. [Google Scholar] [CrossRef]
- Buie, J.J.; Watson, L.S.; Smith, C.J.; Sims-Robinson, C. Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol. Dis. 2019, 132, 104580. [Google Scholar] [CrossRef]
- Devoto, F.; Ferrulli, A.; Banfi, G.; Luzi, L.; Zapparoli, L.; Paulesu, E. How images of food become cravingly salient in obesity. Obesity 2023, 31, 2294–2303. [Google Scholar] [CrossRef]
- Geiger, B.M.; Behr, G.G.; Frank, L.E.; Caldera-Siu, A.D.; Beinfeld, M.C.; Kokkotou, E.G.; Pothos, E.N. Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB J. 2008, 22, 2740–2746. [Google Scholar] [CrossRef]
- Wallace, C.W.; Fordahl, S.C. Obesity and dietary fat influence dopamine neurotransmission: Exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake. Nutr. Res. Rev. 2022, 35, 236–251. [Google Scholar] [CrossRef]
- Hansen, H.H.; Jensen, M.M.; Overgaard, A.; Weikop, P.; Mikkelsen, J.D. Tesofensine induces appetite suppression and weight loss with reversal of low forebrain dopamine levels in the diet-induced obese rat. Pharmacol. Biochem. Behav. 2013, 110, 265–271. [Google Scholar] [CrossRef]
- Lisco, G.; De Tullio, A.; Iovino, M.; Disoteo, O.; Guastamacchia, E.; Giagulli, V.A.; Triggiani, V. Dopamine in the Regulation of Glucose Homeostasis, Pathogenesis of Type 2 Diabetes, and Chronic Conditions of Impaired Dopamine Activity/Metabolism: Implication for Pathophysiological and Therapeutic Purposes. Biomedicines 2023, 11, 2993. [Google Scholar] [CrossRef] [PubMed]
- Apovian, C.M.; Aronne, L.J.; Bessesen, D.H.; McDonnell, M.E.; Murad, M.H.; Pagotto, U.; Ryan, D.H.; Still, C.D.; Society, E. Pharmacological Management of Obesity: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2015, 100, 342–362. [Google Scholar] [CrossRef] [PubMed]
- Fox, G.B.; Esbenshade, T.A.; Pan, J.B.; Radek, R.J.; Krueger, K.M.; Yao, B.B.; Browman, K.E.; Buckley, M.J.; Ballard, M.E.; Komater, V.A.; et al. Pharmacological properties of ABT-239 [4-(2-{2-[(2R)-2-Methylpyrrolidinyl]ethyl}-benzofuran-5-yl)benzonitrile]: II. Neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist. J. Pharmacol. Exp. Ther. 2005, 313, 176–190. [Google Scholar] [PubMed]
- Flik, G.; Folgering, J.H.; Cremers, T.I.; Westerink, B.H.; Dremencov, E. Interaction Between Brain Histamine and Serotonin, Norepinephrine, and Dopamine Systems: In Vivo Microdialysis and Electrophysiology Study. J. Mol. Neurosci. 2015, 56, 320–328. [Google Scholar] [CrossRef]
- Xu, P.; He, Y.; Cao, X.; Valencia-Torres, L.; Yan, X.; Saito, K.; Wang, C.; Yang, Y.; Hinton, A.; Zhu, L.; et al. Activation of Serotonin 2C Receptors in Dopamine Neurons Inhibits Binge-like Eating in Mice. Biol. Psychiatry 2017, 81, 737–747. [Google Scholar] [CrossRef]
- Hurren, K.M.; Berlie, H.D. Lorcaserin: An investigational serotonin 2C agonist for weight loss. Am. J. Health Syst. Pharm. 2011, 68, 2029–2037. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Fan, H.; An, H.; Ma, T.; Zhang, Q.; Zhao, W.; Yun, Y.; Yang, W.; Zhang, X.; et al. High-Dose Betahistine Improves Cognitive Function in Patients With Schizophrenia: A Randomized Double-Blind Placebo-Controlled Trial. Front. Psychiatry 2021, 12, 762656. [Google Scholar] [CrossRef]
- Yang, H.; Huang, F.; Ni, M.; Zhao, X.B.; Deng, Y.P.; Yu, J.W.; Jiang, G.; Tao, X. Cognitive function is impaired by obesity and alleviated by lorcaserin treatment in mice. CNS Neurosci. Ther. 2015, 21, 472–474. [Google Scholar] [CrossRef]
- van Ruitenbeek, P.; Mehta, M.A. Potential enhancing effects of histamine H1 agonism/H3 antagonism on working memory assessed by performance and bold response in healthy volunteers. Br. J. Pharmacol. 2013, 170, 144–155. [Google Scholar] [CrossRef]
- Mika, K.; Szafarz, M.; Sapa, J.; Kotańska, M. Influence of betahistine repeated administration on a weight gain and selected metabolic parameters in the model of excessive eating in rats. Biomed. Pharmacother. 2021, 141, 111892. [Google Scholar] [CrossRef]
- Naguy, A.; AlShalabi, S.R.; AlKhadhari, S. Betahistine-Associated Weight Loss and Improved Cognitive and Negative Symptoms: Domain in Early-Onset Schizophrenia. Am. J. Ther. 2019, 26, e790–e792. [Google Scholar] [CrossRef] [PubMed]
- Nishii, Y.; Sakuma, K.; Hamanaka, S.; Iwata, N.; Kishi, T. Efficacy and Safety of Histamine H3 Receptor Antagonist/Inverse Agonist Including Betahistine for Schizophrenia: A Systematic Review and Meta-Analysis. Neuropsychopharmacol. Rep. 2025, 45, e70034. [Google Scholar] [CrossRef] [PubMed]
- Tak, Y.J.; Lee, S.Y. Long-Term Efficacy and Safety of Anti-Obesity Treatment: Where Do We Stand? Curr. Obes. Rep. 2021, 10, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Lueptow, L.M. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. J. Vis. Exp. 2017, 30, 55718. [Google Scholar]
- Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. Methods Mol. Biol. 2019, 1916, 105–111. [Google Scholar]
- Ontiveros-Ángel, P.; Vega-Torres, J.D.; Simon, T.B.; Williams, V.; Inostroza-Nives, Y.; Alvarado-Crespo, N.; Gonzalez, Y.V.; Pompolius, M.; Katzka, W.; Lou, J.; et al. Early-life obesogenic environment integrates immunometabolic and epigenetic signatures governing neuroinflammation. Brain Behav. Immun.-Health 2024, 42, 100879. [Google Scholar] [CrossRef]
- Vega-Torres, J.D.; Azadian, M.; Rios-Orsini, R.A.; Reyes-Rivera, A.L.; Ontiveros-Angel, P.; Figueroa, J.D. Adolescent Vulnerability to Heightened Emotional Reactivity and Anxiety After Brief Exposure to an Obesogenic Diet. Front. Neurosci. 2020, 14, 562. [Google Scholar] [CrossRef]
- Kalyan-Masih, P.; Vega-Torres, J.D.; Miles, C.; Haddad, E.; Rainsbury, S.; Baghchechi, M.; Obenaus, A.; Figueroa, J.D. Western High-Fat Diet Consumption during Adolescence Increases Susceptibility to Traumatic Stress while Selectively Disrupting Hippocampal and Ventricular Volumes. eNeuro 2016, 3, ENEURO.0125-16.2016. [Google Scholar] [CrossRef]
- Novelli, E.L.; Diniz, Y.S.; Galhardi, C.M.; Ebaid, G.M.; Rodrigues, H.G.; Mani, F.; Fernandes, A.A.H.; Cicogna, A.C.; Filho, J.L.V.B.N. Anthropometrical parameters and markers of obesity in rats. Lab. Anim. 2007, 41, 111–119. [Google Scholar] [CrossRef]
- Hong, J.; Stubbins, R.E.; Smith, R.R.; Harvey, A.E.; Núñez, N.P. Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr. J. 2009, 8, 11. [Google Scholar] [CrossRef]
- Sadie-Van Gijsen, H.; Kotzé-Hörstmann, L. Rat models of diet-induced obesity and metabolic dysregulation: Current trends, shortcomings and considerations for future research. Obes. Res. Clin. Pract. 2023, 17, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Shanmugan, S.; Epperson, C.N. Estrogen and the prefrontal cortex: Towards a new understanding of estrogen’s effects on executive functions in the menopause transition. Hum. Brain Mapp. 2014, 35, 847–865. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, E.; D’Esposito, M. Estrogen shapes dopamine-dependent cognitive processes: Implications for women’s health. J. Neurosci. 2011, 31, 5286–5293. [Google Scholar] [CrossRef] [PubMed]
- Higgins, G.A.; Desnoyer, J.; Van Niekerk, A.; Silenieks, L.B.; Lau, W.; Thevarkunnel, S.; Izhakova, J.; DeLannoy, I.A.; Fletcher, P.J.; DeLay, J.; et al. Characterization of the 5-HT2C receptor agonist lorcaserin on efficacy and safety measures in a rat model of diet-induced obesity. Pharmacol. Res. Perspect. 2015, 3, e00084. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Huang, X.F.; Pai, N.; Deng, C. Preventing olanzapine-induced weight gain using betahistine: A study in a rat model with chronic olanzapine treatment. PLoS ONE 2014, 9, e104160. [Google Scholar] [CrossRef]
- dela Peña, I.; Shen, G.; Shi, W.-X. Droxidopa alters dopamine neuron and prefrontal cortex activity and improves attention-deficit/hyperactivity disorder-like behaviors in rats. Eur. J. Pharmacol. 2021, 892, 173826. [Google Scholar] [CrossRef]
- dela Peña, I.C.; Young Yoon, S.; Kim, Y.; Park, H.; Man Kim, K.; Hoon Ryu, J.; Hoon Cheong, J. 5,7-Dihydroxy-6-methoxy-4′-phenoxyflavone, a derivative of oroxylin A improves attention-deficit/hyperactivity disorder (ADHD)-like behaviors in spontaneously hypertensive rats. Eur. J. Pharmacol. 2013, 715, 337–344. [Google Scholar] [CrossRef]
- dela Peña, I.; Gonzales, E.L.; de la Peña, J.B.; Kim, B.-N.; Han, D.H.; Shin, C.Y.; Cheong, J.H. Individual differences in novelty-seeking behavior in spontaneously hypertensive rats: Enhanced sensitivity to the reinforcing effect of methylphenidate in the high novelty-preferring subpopulation. J. Neurosci. Methods 2015, 252, 48–54. [Google Scholar] [CrossRef]
- Bunney, B.S.; Grace, A.A. Acute and chronic haloperidol treatment: Comparison of effects on nigral dopaminergic cell activity. Life Sci. 1978, 23, 1715–1727. [Google Scholar] [CrossRef] [PubMed]
- Chiodo, L.A.; Bunney, B.S. Typical and atypical neuroleptics: Differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J. Neurosci. 1983, 3, 1607–1619. [Google Scholar] [CrossRef]
- Gao, M.; Liu, C.L.; Yang, S.; Jin, G.Z.; Bunney, B.S.; Shi, W.X. Functional coupling between the prefrontal cortex and dopamine neurons in the ventral tegmental area. J. Neurosci. 2007, 27, 5414–5421. [Google Scholar] [CrossRef] [PubMed]
- Foucquier, J.; Guedj, M. Analysis of drug combinations: Current methodological landscape. Pharmacol. Res. Perspect. 2015, 3, e00149. [Google Scholar] [CrossRef] [PubMed]
- Ryall, K.A.; Tan, A.C. Systems biology approaches for advancing the discovery of effective drug combinations. J. Cheminformatics 2015, 7, 7. [Google Scholar] [CrossRef]
- Dela Peña, I.C.; Shen, G.; Shi, W.X. Methylphenidate significantly alters the functional coupling between the prefrontal cortex and dopamine neurons in the ventral tegmental area. Neuropharmacology 2018, 131, 431–439. [Google Scholar] [CrossRef]
- Grace, A.A.; Bunney, B.S. The control of firing pattern in nigral dopamine neurons: Burst firing. J. Neurosci. 1984, 4, 2877–2890. [Google Scholar] [CrossRef]
- Barker, G.R.; Warburton, E.C. Object-in-place associative recognition memory depends on glutamate receptor neurotransmission within two defined hippocampal-cortical circuits: A critical role for AMPA and NMDA receptors in the hippocampus, perirhinal, and prefrontal cortices. Cereb. Cortex. 2015, 25, 472–481. [Google Scholar] [CrossRef]
- Kim, J.; Delcasso, S.; Lee, I. Neural Correlates of Object-in-Place Learning in Hippocampus and Prefrontal Cortex. J. Neurosci. 2011, 31, 16991–17006. [Google Scholar] [CrossRef]
- Yang, S.-T.; Shi, Y.; Wang, Q.; Peng, J.-Y.; Li, B.-M. Neuronal representation of working memory in the medial prefrontal cortex of rats. Mol. Brain 2014, 7, 61. [Google Scholar] [CrossRef]
- Yoshizaki, K.; Asai, M.; Hara, T. High-Fat Diet Enhances Working Memory in the Y-Maze Test in Male C57BL/6J Mice with Less Anxiety in the Elevated Plus Maze Test. Nutrients 2020, 12, 2036. [Google Scholar] [CrossRef] [PubMed]
- Cordner, Z.A.; Tamashiro, K.L. Effects of high-fat diet exposure on learning & memory. Physiol. Behav. 2015, 152 Pt B, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Park, M.; Oh, C.-M.; Kim, T. High-fat diet-induced dopaminergic dysregulation induces REM sleep fragmentation and ADHD-like behaviors. Psychiatry Res. 2023, 327, 115412. [Google Scholar] [CrossRef] [PubMed]
- De Deurwaerdère, P.; Ramos, M.; Bharatiya, R.; Puginier, E.; Chagraoui, A.; Manem, J.; Cuboni, E.; Pierucci, M.; Deidda, G.; Casarrubea, M.; et al. Lorcaserin bidirectionally regulates dopaminergic function site-dependently and disrupts dopamine brain area correlations in rats. Neuropharmacology 2020, 166, 107915. [Google Scholar] [CrossRef]
- Kaita, S.; Morishita, Y.; Kobayashi, K.; Nomura, H. Histamine H3 receptor inverse agonists/antagonists influence intra-regional cortical activity and inter-regional synchronization during resting state: An exploratory cortex-wide imaging study in mice. Mol. Brain 2024, 17, 88. [Google Scholar] [CrossRef]
- Floresco, S.B.; Jentsch, J.D. Pharmacological Enhancement of Memory and Executive Functioning in Laboratory Animals. Neuropsychopharmacology 2011, 36, 227–250. [Google Scholar] [CrossRef]
- Di Domenico, D.; Mapelli, L. Dopaminergic Modulation of Prefrontal Cortex Inhibition. Biomedicines 2023, 11, 1276. [Google Scholar] [CrossRef]
- Lohani, S.; Martig, A.K.; Deisseroth, K.; Witten, I.B.; Moghaddam, B. Dopamine Modulation of Prefrontal Cortex Activity Is Manifold and Operates at Multiple Temporal and Spatial Scales. Cell Rep. 2019, 27, 99–114.e6. [Google Scholar] [CrossRef]
Parameters | Control Diet (CD) | Western Diet (WD) |
---|---|---|
Weight (g) | 341.0 ± 36.36 | 403.1 ± 26.76 *** |
Body length (cm) | 24.55 ± 0.588 | 25.55 ± 0.755 *** |
Abdominal circumference (cm) | 16.16 ± 0.834 | 18.14 ± 0.815 *** |
Thoracic circumference (cm) | 15.02 ± 0.624 | 16.48 ± 0.602 *** |
AC/TC | 1.07 ± 0.036 | 1.10 ± 0.047 * |
BMI (g/cm2) | 0.56 ± 0.054 | 0.61 ± 0.039 *** |
Lee Index | 0.28 ± 0.009 | 0.29 ± 0.007 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Peña, I.; Figueroa, J.; Shi, W.-X. Combination Lorcaserin and Betahistine Treatment Improves Cognitive Dysfunction and Dopaminergic Neuron Activity in a Rat Model of Diet-Induced Obesity. Brain Sci. 2025, 15, 913. https://doi.org/10.3390/brainsci15090913
de la Peña I, Figueroa J, Shi W-X. Combination Lorcaserin and Betahistine Treatment Improves Cognitive Dysfunction and Dopaminergic Neuron Activity in a Rat Model of Diet-Induced Obesity. Brain Sciences. 2025; 15(9):913. https://doi.org/10.3390/brainsci15090913
Chicago/Turabian Stylede la Peña, Ike, Johnny Figueroa, and Wei-Xing Shi. 2025. "Combination Lorcaserin and Betahistine Treatment Improves Cognitive Dysfunction and Dopaminergic Neuron Activity in a Rat Model of Diet-Induced Obesity" Brain Sciences 15, no. 9: 913. https://doi.org/10.3390/brainsci15090913
APA Stylede la Peña, I., Figueroa, J., & Shi, W.-X. (2025). Combination Lorcaserin and Betahistine Treatment Improves Cognitive Dysfunction and Dopaminergic Neuron Activity in a Rat Model of Diet-Induced Obesity. Brain Sciences, 15(9), 913. https://doi.org/10.3390/brainsci15090913