Emerging Interventions in Behavioral Addictions: A Narrative Review of Psychedelics and Neuromodulation
Abstract
1. Introduction
2. Methods
3. Gambling Disorder
3.1. Overview
3.2. Psychedelics
3.3. Transcranial Magnetic Stimulation (TMS)
3.4. Transcranial Direct Current Stimulation (tDCS)
3.5. Deep Brain Stimulation (DBS)
4. Internet Use Disorder and Internet Gaming Disorder/Gaming Disorder, Predominantly Online
4.1. Overview
4.2. Psychedelics
4.3. TMS
4.4. tDCS
5. Compulsive Sexual Behavior Disorder
5.1. Overview
5.2. Psychedelics
5.3. TMS
5.4. tDCS
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAS | Affect and Arousal Scale |
ACC | Anterior Cingulate Cortex |
ACT | Acceptance and Commitment Therapy |
ARCI | Addiction Research Center Inventory |
BAS | Behavior Activation System |
BCS3 | Santa Clara Brief Compassion Scale |
BDI-II | Beck Depression Inventory |
BDNF | Brain-Derived Neurotrophic Factor |
BIS-11 | Barratt Impulsiveness Scale |
CBT | Cognitive Behavioral Therapy |
CBI | Compulsive Buying Index |
CIAS | Chen Internet Addiction Scale |
CPGI | Canadian Problem Gambling Index |
CSBD | Compulsive Sexual Behavior Disorder |
cTBS | Continuous Theta-Burst Stimulation |
DAT-SPECT | Dopamine Transporter Single-Photon Emission Computed Tomography |
DBS | Deep Brain Stimulation |
DLPFC | Dorsolateral Prefrontal Cortex |
DMT | N,N-Dimethyltryptamine |
DMN | Default Mode Network |
DTMS | Deep Transcranial Magnetic Stimulation |
DSM | Diagnostic and Statistical Manual |
ECT | Electroconvulsive Therapy |
EEG | Electroencephalography |
EHI4 | Edinburgh Handedness Inventory |
ERP | Event Related Potentials |
FDA | Food and Drug Administration |
FDG-PET | Fluorodeoxyglucose-Positron Emission Tomography |
fMRI | Functional Magnetic Resonance Imaging |
FPC | Frontopolar Cortex |
GABA | Gamma-Aminobutyric Acid |
GDPO | Gaming Disorder, Predominantly Online |
GROW | Growth subscale of the Quiet Ego Scale |
G-SAS | Gambling Symptom Assessment Scale |
HD-tDCS | High Definition-Transcranial Direct Current Stimulation |
HF-rTMS | High Frequency-Repetitive Transcranial Magnetic Stimulation |
IAT | Internet Addiction Test |
ICD | International Statistical Classification of Diseases and Related Health Problems |
IGD | Internet Gaming Disorder |
ITI | Inter-Train Interval |
IUD | Internet Use Disorder |
LF-rTMS | Low Frequency-Repetitive Transcranial Magnetic Simulation |
LPP | Late Positive Potentials |
LSD | Lysergic acid diethylamide |
mPFC | Medial Prefrontal Cortex |
MT | Motor Threshold |
NMDA | N-methyl-D-aspartate |
OFC | Orbitofrontal cortex |
PATHOS | Preoccupied, Ashamed, Treatment, Hurt others, Out of control, Sad |
PD | Parkinson Disease |
PFC | Prefrontal Cortex |
PGSI | Problem Gambling Severity Index |
PG-YBOCS | Pathological Gambling adaptation of the Yale-Brown Obsessive Compulsive Scale |
PHQ | Patient Health Questionnaire |
PPU | Problematic Pornography Use |
rCMRglu | Regional Cerebral Metabolism of Glucose |
RSFC | Regional resting-state functional connectivity |
rTMS | Repetitive Transcranial Magnetic Stimulation |
SAS | Sexual Addiction Scale |
SCS | Sexual Compulsivity Scale |
SCOFF | Sick, Control, One stone, Fat, Food |
SDI | Sexual Desire Inventory |
SILS | Single Item Life Satisfaction |
SIMIL | Single Item Meaning in Life |
SIST | Single Item Self-Transcendence |
SMA | Supplemental Motor Area |
SOGS | South Oaks Gambling Scale |
SPECT | Single Photon Emission Computed Tomography |
STN | Subthalamic Nucleus |
tDCS | transcranial Direct Current Stimulation |
TMS | Transcranial Magnetic Stimulation |
VAS | Visual Analogue Scale |
Y-BOCS | Yale-Brown Obsessive Compulsive Scale |
YDG | Young Diagnostic Questionnaire |
ZI | Zona Incerta |
References
- Lesieur, H.; Blume, S. Pathological Gambling, Eating Disorders, and the Psychoactive Substance Use Disorders. J. Addict. Dis. 1993, 12, 89–102. [Google Scholar] [CrossRef]
- Lüscher, C.; Malenka, R.C. Drug-Evoked Synaptic Plasticity in Addiction: From Molecular Changes to Circuit Remodeling. Neuron 2011, 69, 650–663. [Google Scholar] [CrossRef]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Volkow, N.; Koob, G.; McLellan, A. Neurobiological Advances from the Brain Disease Model of Addiction. N. Engl. J. Med. 2016, 374, 363–371. [Google Scholar] [CrossRef]
- Wise, R.A. Roles for nigrostriatal—Not just mesocorticolimbic—Dopamine in reward and addiction. Trends Neurosci. 2009, 32, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Kalivas, P.W. The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 2009, 10, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Le Moal, M. Addiction and the brain antireward system. Annu. Rev. Psychol. 2008, 59, 29–53. [Google Scholar] [CrossRef] [PubMed]
- Piazza, P.V.; Le Moal, M. Pathophysiological Basis of Vulnerability to Drug Abuse: Role of an Interaction Between Stress, Glucocorticoids, and Dopaminergic Neurons. Annu. Rev. Pharmacol. Toxicol. 1996, 36, 359–378. [Google Scholar] [CrossRef]
- Bonson, K.R.; Grant, S.J.; Contoreggi, C.S.; Links, J.M.; Metcalfe, J.; Weyl, H.L.; Kurian, V.; Ernst, M.; London, E.D. Neural Systems and Cue-Induced Cocaine Craving. Neuropsychopharmacology 2002, 26, 376–386. [Google Scholar] [CrossRef]
- McKhann, G. Damage to the Insula Disrupts Addiction to Cigarette Smoking. Neurosurgery 2007, 60, N8. Available online: https://journals.lww.com/neurosurgery/fulltext/2007/04000/damage_to_the_insula_disrupts_addiction_to.37.aspx (accessed on 18 August 2025). [CrossRef]
- Naqvi, N.H.; Bechara, A. The hidden island of addiction: The insula. Trends Neurosci. 2009, 32, 56–67. [Google Scholar] [CrossRef]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011, 12, 652–669. [Google Scholar] [CrossRef]
- Dowling, N.; Merkouris, S.; Lubman, D.; Thomas, S.; Bowden-Jones, H.; Cowlishaw, S. Pharmacological interventions for the treatment of disordered and problem gambling. Cochrane Database Syst. Rev. 2022, 9, CD008936. [Google Scholar] [CrossRef]
- Grall-Bronnec, M.; Guillou-Landreat, M.; Caillon, J.; Dubertret, C.; Romo, L.; Codina, I.; Chereau-Boudet, I.; Lancon, C.; Auriacombe, M.; JEU-Group; et al. Five-year follow-up on a sample of gamblers: Predictive factors of relapse. J. Behav. Addict. 2021, 10, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Gass, J.; Chandler, L. The Plasticity of Extinction: Contribution of the Prefrontal Cortex in Treating Addiction Through Inhibitory Learning. Front. Psychiatry 2013, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Calder, A.; Mock, S.; Friedli, N.; Pasi, P.; Hasler, G. Psychedelics in the treatment of eating disorders: Rationale and potential mechanisms. Eur. Neuropsychopharmacol. 2023, 75, 1–14. [Google Scholar] [CrossRef]
- Nichols, D.E. Psychedelics. Pharmacol. Rev. 2016, 68, 264–355. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L. The entropic brain—Revisited. Neuropharmacology 2018, 142, 167–178. [Google Scholar] [CrossRef]
- Reiff, C.M.; Richman, E.E.; Nemeroff, C.B.; Carpenter, L.L.; Widge, A.S.; Rodriguez, C.I.; Kalin, N.H.; McDonald, W.M.; Work Group on Biomarkers and Novel Treatments, a Division of the American Psychiatric Association Council of Research. Psychedelics and Psychedelic-Assisted Psychotherapy. Am. J. Psychiatry 2020, 177, 391–410. [Google Scholar] [CrossRef]
- Baeken, C.; De Raedt, R.; Bossuyt, A.; Van Hove, C.; Mertens, J.; Dobbeleir, A.; Blanckaert, P.; Goethals, I. The impact of HF-rTMS treatment on serotonin2A receptors in unipolar melancholic depression. Brain Stimul. 2011, 4, 104–111. [Google Scholar] [CrossRef]
- Cho, S.S.; Strafella, A.P. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS ONE 2009, 4, e6725. [Google Scholar] [CrossRef]
- Chmiel, J.; Stępień-Słodkowska, M.; Ramik-Mażewska, I. Efficacy of Transcranial Direct Current Stimulation (tDCS) on Neuropsychiatric Symptoms in Substance Use Disorder (SUD)—A Review and Insights into Possible Mechanisms of Action. J. Clin. Med. 2025, 14, 1337. [Google Scholar] [CrossRef]
- Davidson, B.; Giacobbe, P.; George, T.P.; Nestor, S.M.; Rabin, J.S.; Goubran, M.; Nyman, A.J.; Baskaran, A.; Meng, Y.; Pople, C.B.; et al. Deep brain stimulation of the nucleus accumbens in the treatment of severe alcohol use disorder: A phase I pilot trial. Mol. Psychiatry 2022, 27, 3992–4000. [Google Scholar] [CrossRef]
- Figee, M.; Luigjes, J.; Smolders, R.; Valencia-Alfonso, C.-E.; van Wingen, G.; de Kwaasteniet, B.; Mantione, M.; Ooms, P.; de Koning, P.; Vulink, N.; et al. Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat. Neurosci. 2013, 16, 386–387. [Google Scholar] [CrossRef] [PubMed]
- Tik, M.; Hoffmann, A.; Sladky, R.; Tomova, L.; Hummer, A.; Navarro de Lara, L.; Bukowski, H.; Pripfl, J.; Biswal, B.; Lamm, C.; et al. Towards understanding rTMS mechanism of action: Stimulation of the DLPFC causes network-specific increase in functional connectivity. NeuroImage 2017, 162, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Diana, M.; Raij, T.; Melis, M.; Nummenmaa, A.; Leggio, L.; Bonci, A. Rehabilitating the addicted brain with transcranial magnetic stimulation. Nat. Rev. Neurosci. 2017, 18, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Holla, B.; Biswal, J.; Ramesh, V.; Shivakumar, V.; Bharath, R.D.; Benegal, V.; Venkatasubramanian, G.; Chand, P.K.; Murthy, P. Effect of prefrontal tDCS on resting brain fMRI graph measures in Alcohol Use Disorders: A randomized, double-blind, sham-controlled study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 102, 109950. [Google Scholar] [CrossRef]
- Palm, U.; Chalah, M.A.; Ayache, S.S. Brain stimulation and neuroplasticity. Brain Sci. 2021, 11, 873. [Google Scholar] [CrossRef]
- Diagnostic and Statistical Manual of Mental Disorders, Text Revision, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2022; ISBN 978-0-89042-576-3.
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems (ICD), 11th Revision. Available online: https://icd.who.int/en/ (accessed on 13 August 2025).
- Petry, N.; Stinson, F.; Grant, B. Comorbidity of DSM-IV Pathological Gambling and Other Psychiatric Disorders: Results From the National Epidemiologic Survey on Alcohol and Related Conditions. J. Clin. Psychiatry 2005, 66, 564–574. [Google Scholar] [CrossRef]
- Calado, F.; Griffiths, M.D. Problem gambling worldwide: An update and systematic review of empirical research (2000–2015). J. Behav. Addict. 2016, 5, 592–613. [Google Scholar] [CrossRef]
- Pfund, R.A.; Ginley, M.K.; Kim, H.S.; Boness, C.L.; Horn, T.L.; Whelan, J.P. Cognitive-behavioral treatment for gambling harm: Umbrella review and meta-analysis. Clin. Psychol. Rev. 2023, 105, 102336. [Google Scholar] [CrossRef] [PubMed]
- Bodor, D.; Ricijaš, N.; Filipčić, I. Treatment of gambling disorder: Review of evidence-based aspects for best practice. Curr. Opin. Psychiatry 2021, 34, 508–513. Available online: https://journals.lww.com/co-psychiatry/fulltext/2021/09000/treatment_of_gambling_disorder__review_of.11.aspx (accessed on 6 June 2025). [CrossRef] [PubMed]
- Potenza, M.N.; Balodis, I.M.; Derevensky, J.; Grant, J.E.; Petry, N.M.; Verdejo-Garcia, A.; Yip, S.W. Gambling disorder. Nat. Rev. Dis. Primers 2019, 5, 51. [Google Scholar] [CrossRef] [PubMed]
- Rodda, S.N.; Merkouris, S.S.; Dowling, N.A. Current approaches to the identification and management of gambling disorder: A narrative review to inform clinical practice in Australia and New Zealand. Med. J. Aust. 2024, 221, 495–500. [Google Scholar] [CrossRef]
- Mestre-Bach, G.; Potenza, M.N. Pharmacological management of gambling disorder: An update of the literature. Expert Rev. Neurother. 2024, 24, 391–407. [Google Scholar] [CrossRef]
- Pettorruso, M.; Miuli, A.; Di Natale, C.; Montemitro, C.; Zoratto, F.; De Risio, L.; d’Andrea, G.; Dannon, P.N.; Martinotti, G.; di Giannantonio, M. Non-invasive brain stimulation targets and approaches to modulate gambling-related decisions: A systematic review. Addict. Behav. 2021, 112, 106657. [Google Scholar] [CrossRef]
- Stanković, M.; Bjekić, J.; Filipović, S.R. Effects of Transcranial Electrical Stimulation on Gambling and Gaming: A Systematic Review of Studies on Healthy Controls, Participants with Gambling/Gaming Disorder, and Substance Use Disorder. J. Clin. Med. 2023, 12, 3407. [Google Scholar] [CrossRef]
- Romero, P.; Czakó, A.; Van Den Brink, W.; Demetrovics, Z. Psychedelic-assisted therapy for people with gambling disorder? J. Behav. Addict. 2024, 13, 6–11. [Google Scholar] [CrossRef]
- Richard, J.; Garcia-Romeu, A. Psychedelics in the Treatment of Substance Use Disorders and Addictive Behaviors: A Scoping Review. Curr. Addict. Rep. 2025, 12, 15. [Google Scholar] [CrossRef]
- Borgland, S.L.; Neyens, D.M. Serotonergic psychedelic treatment for obesity and eating disorders: Potential expectations and caveats for emerging studies. J. Psychiatry Neurosci. 2022, 47, E218. [Google Scholar] [CrossRef]
- Rootman, J.M.; Kryskow, P.; Harvey, K.; Stamets, P.; Santos-Brault, E.; Kuypers, K.P.C.; Polito, V.; Bourzat, F.; Walsh, Z. Adults who microdose psychedelics report health related motivations and lower levels of anxiety and depression compared to non-microdosers. Sci. Rep. 2021, 11, 22479. [Google Scholar] [CrossRef] [PubMed]
- Bolen, D.W.; Boyd, W.H. Gambling and the gambler: A review and preliminary findings. Arch. Gen. Psychiatry 1968, 18, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Ling, T.M.; Buckman, J. Lysergic Acid (LSD 25) & Ritalin in the Treatment of Neurosis; London Lambarde Press: London, UK, 1963. [Google Scholar]
- Brasher, T.; Rosen, D.; Spinella, M. Psychedelic Use and Behavioral Addictions. J. Psychoact. Drugs 2025. Available online: https://www.tandfonline.com/doi/full/10.1080/02791072.2025.2474244 (accessed on 2 July 2025). [CrossRef] [PubMed]
- Williams, N.R.; Heifets, B.D.; Blasey, C.; Sudheimer, K.; Pannu, J.; Pankow, H.; Hawkins, J.; Birnbaum, J.; Lyons, D.M.; Rodriguez, C.I.; et al. Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am. J. Psychiatry 2018, 175, 1205–1215. [Google Scholar] [CrossRef]
- Grant, J.E.; Chamberlain, S.R. Response of Refractory Gambling Disorder to Intravenous Ketamine. Prim. Care Companion CNS Disord. 2020, 22, 23062. [Google Scholar] [CrossRef]
- Cardullo, S.; Perez, L.J.G.; Marconi, L.; Terraneo, A.; Gallimberti, L.; Bonci, A.; Madeo, G. Clinical Improvements in Comorbid Gambling/Cocaine Use Disorder (GD/CUD) Patients Undergoing Repetitive Transcranial Magnetic Stimulation (rTMS). J. Clin. Med. 2019, 8, 768. [Google Scholar] [CrossRef]
- Pettorruso, M.; Martinotti, G.; Montemitro, C.; De Risio, L.; Spagnolo, P.A.; Gallimberti, L.; Fanella, F.; Bonci, A.; Di Giannantonio, M. Multiple Sessions of High-Frequency Repetitive Transcranial Magnetic Stimulation as a Potential Treatment for Gambling Addiction: A 3-Month, Feasibility Study. Eur. Addict. Res. 2020, 26, 52–56. [Google Scholar] [CrossRef]
- Pettorruso, M.; Di Giuda, D.; Martinotti, G.; Cocciolillo, F.; De Risio, L.; Montemitro, C.; Camardese, G.; Di Nicola, M.; Janiri, L.; di Giannantonio, M.; et al. Dopaminergic and clinical correlates of high-frequency repetitive transcranial magnetic stimulation in gambling addiction: A SPECT case study. Addict. Behav. 2019, 93, 246–249. [Google Scholar] [CrossRef]
- Sauvaget, A.; Bulteau, S.; Guilleux, A.; Leboucher, J.; Pichot, A.; Valriviere, P.; Vanelle, J.M.; Sebille-Rivain, V.; Grall-Bronnec, M. Both active and sham low-frequency r-TMS single sessions over the right DLPFC decrease cue-induced cravings among pathological gamblers seeking treatment: A randomized, double-blind, sham-controlled crossover trial. J. Behav. Addict. 2018, 7, 126–136. [Google Scholar] [CrossRef]
- Salerno, L.; Grassi, E.; Makris, N.; Pallanti, S. A Theta Burst Stimulation on Pre-SMA: Proof-of-Concept of Transcranial Magnetic Stimulation in Gambling Disorder. J. Gambl. Stud. 2022, 38, 1529–1537. [Google Scholar] [CrossRef]
- Zack, M.; Cho, S.S.; Parlee, J.; Jacobs, M.; Li, C.; Boileau, I.; Strafella, A. Effects of High Frequency Repeated Transcranial Magnetic Stimulation and Continuous Theta Burst Stimulation on Gambling Reinforcement, Delay Discounting, and Stroop Interference in Men with Pathological Gambling. Brain Stimul. 2016, 9, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, O.; Klein, L.D.; Dannon, P.N. Deep transcranial magnetic stimulation for the treatment of pathological gambling. Psychiatry Res. 2013, 206, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, G.; Cavaliere, C.; Salvatore, M.; Makris, N.; Pallanti, S. Theta Burst TMS over the Pre-SMA Improves Inhibitory Control in Gambling Disorder Subjects as Assessed with Stop Signal Task. Brain Sci. 2025, 15, 448. [Google Scholar] [CrossRef] [PubMed]
- Gay, A.; Boutet, C.; Sigaud, T.; Kamgoue, A.; Sevos, J.; Brunelin, J.; Massoubre, C. A Single Session of Repetitve Transcranial Magnetic Stimulation of the Prefrontal Cortex Reduces Cue-Induced Craving in Patients With Gambling Disorder. World J. Radiol. 2017, 41, 68–74. [Google Scholar]
- Salice, S.; Antonietti, A.; Colautti, L. The effect of transcranial Direct Current Stimulation on the Iowa Gambling Task: A scoping review. Front. Psychol. 2024, 15, 1454796. [Google Scholar] [CrossRef]
- León, J.J.; Sánchez-Kuhn, A.; Fernández-Martín, P.; Páez-Pérez, M.A.; Thomas, C.; Datta, A.; Sánchez-Santed, F.; Flores, P. Transcranial direct current stimulation improves risky decision making in women but not in men: A sham-controlled study. Behav. Brain Res. 2020, 382, 112485. [Google Scholar] [CrossRef]
- Soyata, A.Z.; Aksu, S.; Woods, A.J.; İşçen, P.; Saçar, K.T.; Karamürsel, S. Effect of transcranial direct current stimulation on decision making and cognitive flexibility in gambling disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 275–284. [Google Scholar] [CrossRef]
- Salatino, A.; Miccolis, R.; Gammeri, R.; Ninghetto, M.; Belli, F.; Nobili, M.; Mouraux, A.; Ricci, R. Improvement of Impulsivity and Decision Making by Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex in a Patient with Gambling Disorder. J. Gambl. Stud. 2022, 38, 627–634. [Google Scholar] [CrossRef]
- Martinotti, G.; Chillemi, E.; Lupi, M.; De Risio, L.; Pettorruso, M.; Di Giannantonio, M. Gambling disorder and bilateral transcranial direct current stimulation: A case report. J. Behav. Addict. 2018, 7, 834–837. [Google Scholar] [CrossRef]
- Dickler, M.; Lenglos, C.; Renauld, E.; Ferland, F.; Edden, R.A.; Leblond, J.; Fecteau, S. Online effects of transcranial direct current stimulation on prefrontal metabolites in gambling disorder. Neuropharmacology 2018, 131, 51–57. [Google Scholar] [CrossRef]
- Ardouin, C.; Voon, V.; Worbe, Y.; Abouazar, N.; Czernecki, V.; Hosseini, H.; Pelissolo, A.; Moro, E.; Lhommée, E.; Lang, A.E.; et al. Pathological gambling in Parkinson’s disease improves on chronic subthalamic nucleus stimulation. Mov. Disord. 2006, 21, 1941–1946. [Google Scholar] [CrossRef]
- Bandini, F.; Primavera, A.; Pizzorno, M.; Cocito, L. Using STN DBS and medication reduction as a strategy to treat pathological gambling in Parkinson’s disease. Park. Relat. Disord. 2007, 13, 369–371. [Google Scholar] [CrossRef]
- Smeding, H.M.M.; Goudriaan, A.E.; Foncke, E.M.J.; Schuurman, P.R.; Speelman, J.D.; Schmand, B. Pathological gambling after bilateral subthalamic nucleus stimulation in Parkinson disease. J. Neurol. Neurosurg. Psychiatry 2007, 78, 517. [Google Scholar] [CrossRef]
- Brandt, J.; Rogerson, M.; Al-Joudi, H.; Reckess, G.; Shpritz, B.; Umeh, C.C.; Aljehani, N.; Mills, K.; Mari, Z. Betting on DBS: Effects of Subthalamic Nucleus Deep Brain Stimulation on Risk-Taking and Decision-Making in Patients with Parkinson’s Disease. Neuropsychology 2014, 29, 622. [Google Scholar] [CrossRef]
- Griffiths, M. Technological addictions. Clin. Psychol. Forum 1995, 1, 14–19. [Google Scholar] [CrossRef]
- Young, K.S. Internet Addiction: The Emergence of a New Clinical Disorder. CyberPsychology Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef]
- Ho, R.C.; Zhang, M.W.; Tsang, T.Y.; Toh, A.H.; Lu, Y.; Cheng, C.; Yip, P.S.; Lam, L.T.; Lai, C.-M.; Watanabe, H.; et al. The Association Between Internet Addiction and Psychiatric Co-Morbidity: A Meta-Analysis. BMC Psychiatry 2014, 14, 183. Available online: http://www.biomedcentral.com/1471-244X/14/183 (accessed on 7 July 2025). [CrossRef] [PubMed]
- Kożybska, M.; Kurpisz, J.; Radlińska, I.; Skwirczyńska, E.; Serwin, N.; Zabielska, P.; Kotwas, A.; Karakiewicz, B.; Lebiecka, Z.; Samochowiec, J.; et al. Problematic Internet Use, health behaviors, depression and eating disorders: A cross-sectional study among Polish medical school students. Ann. Gen. Psychiatry 2022, 21, 5. [Google Scholar] [CrossRef] [PubMed]
- Sepede, G.; Tavino, M.; Santacroce, R.; Fiori, F.; Salerno, R.; Di Giannantonio, M. Functional Magnetic Resonance Imaging of Internet Addiction in Young Adults. World J. Radiol. 2016, 8, 210–225. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Du, Y. Neural Mechanisms of Intertemporal and Risky Decision-Making in Individuals with Internet Use Disorder: A Perspective from Directed Functional Connectivity. J. Behav. Addict. 2023, 12, 907–919. [Google Scholar] [CrossRef]
- Zafar, R.; Siegel, M.; Harding, R.; Barba, T.; Agnorelli, C.; Suseelan, S.; Roseman, L.; Wall, M.; Nutt, D.J.; Erritzoe, D. Psychedelic therapy in the treatment of addiction: The past, present and future. Front. Psychiatry 2023, 14, 1183740. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, D.E.-W.; Knudsen, G.M.; Barrett, F.S.; Doss, M.K.; Carhart-Harris, R.L.; Rosas, F.E.; Deco, G.; Kringelbach, M.L.; Preller, K.H.; Ramaekers, J.G.; et al. Psychedelic resting-state neuroimaging: A review and perspective on balancing replication and novel analyses. Neurosci. Biobehav. Rev. 2022, 138, 104689. [Google Scholar] [CrossRef] [PubMed]
- Gattuso, J.J.; Perkins, D.; Ruffell, S.; Lawrence, A.J.; Hoyer, D.; Jacobson, L.H.; Timmermann, C.; Castle, D.; Rossell, S.L.; Downey, L.A.; et al. Default Mode Network Modulation by Psychedelics: A Systematic Review. Int. J. Neuropsychopharmacol. 2023, 26, 155–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shen, H.; Lei, Y.; Zeng, L.-L.; Cao, F.; Su, L.; Yang, Z.; Yao, S.; Hu, D. Altered default mode, fronto-parietal and salience networks in adolescents with Internet addiction. Addict. Behav. 2017, 70, 1–6. [Google Scholar] [CrossRef]
- Zhong, Y. Effect of rTMS on Decreasing Internet Addicts’ Craving for Internet. J. Gannan Med. Univ. 2020, 30, 727–729. [Google Scholar]
- Cuppone, D.; Perez, L.J.G.; Cardullo, S.; Cellini, N.; Sarlo, M.; Soldatesca, S.; Chindamo, S.; Madeo, G.; Gallimberti, L. The role of repetitive transcranial magnetic stimulation (rTMS) in the treatment of behavioral addictions: Two case reports and review of the literature. In J. Behav. Addict. 2021, 10, 361–370. [Google Scholar] [CrossRef]
- Chen, J.; Lu, J.; SU, M. Repetitive High-Frequency Transcranial Magnetic Stimulation Can Safely Relieve the Symptoms of Internet Addiction. Chin. J. Phys. Med. Rehabil. 2022, 44, 153–156. [Google Scholar] [CrossRef]
- Sun, J.; Zhu, C.; Hu, N. The Effect of High Frequency Repetitive Transcranial Magnetic Stimulation on the Left Dorsolateral Prefrontal Cortex in Young and Adolescent with Internet Gaming Disorders. J. Clin. Psychiatry 2022, 32, 272–275. [Google Scholar]
- Hong, R.; Huang, X.; Zuo, H. Effectiveness of Repetitive Transcranial Magnetic Stimulation in Adolescent Patients with Play Disorder. Med. Equip. 2023, 36, 72–75. [Google Scholar] [CrossRef]
- Gorelick, D.A.; Zangen, A.; George, M.S. Transcranial magnetic stimulation in the treatment of substance addiction. Ann. N. Y. Acad. Sci. 2014, 1327, 79–93. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, H.; Li, J.; Shen, Y.; Zhang, L.; Zheng, H. Modulation of dlPFC function and decision-making capacity by repetitive transcranial magnetic stimulation in methamphetamine use disorder. Transl. Psychiatry 2024, 14, 280. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Im, J.J.; Oh, J.K.; Choi, E.K.; Yoon, S.; Bikson, M.; Song, I.U.; Jeong, H.; Chung, Y.A. Transcranial direct current stimulation for online gamers: A prospective single-arm feasibility study. J. Behav. Addict. 2018, 7, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Oh, J.K.; Choi, E.K.; Im, J.J.; Yoon, S.; Knotkova, H.; Bikson, M.; Song, I.U.; Lee, S.H.; Chung, Y.A. Effects of transcranial direct current stimulation on addictive behavior and brain glucose metabolism in problematic online gamers. J. Behav. Addict. 2021, 9, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.L.; Potenza, M.N.; Zhou, N.; Kober, H.; Shi, X.H.; Yip, S.W.; Xu, J.H.; Zhu, L.; Wang, R.; Liu, G.Q.; et al. Efficacy of single-session transcranial direct current stimulation on addiction-related inhibitory control and craving: A randomized trial in males with internet gaming disorder. J. Psychiatry Neurosci. 2021, 46, E111–E118. [Google Scholar] [CrossRef]
- Wu, L.L.; Potenza, M.N.; Zhou, N.; Kober, H.; Shi, X.H.; Yip, S.W.; Xu, J.H.; Zhu, L.; Wang, R.; Liu, G.Q. A role for the right dorsolateral prefrontal cortex in enhancing regulation of both craving and negative emotions in internet gaming disorder: A randomized trial. Eur. Neuropsychopharmacol. 2020, 36, 29–37. [Google Scholar] [CrossRef]
- Ma, P.; Xia, Z.; Zhao, Y.; Zhao, Y. Comparative efficacy of different interventions on executive function in adolescents with internet use disorder. J. Psychiatr. Res. 2024, 174, 197–208. [Google Scholar] [CrossRef]
- Kim, S.N.; Choi, J.-S.; Park, M.; Yoo, S.Y.; Choi, A.; Koo, J.W.; Kang, U.G. Neuromodulatory effect of transcranial direct current stimulation on cue reactivity and craving in young adults with internet gaming disorder: An event-related potential study. Front. Public Health 2025, 12, 1494313. [Google Scholar] [CrossRef]
- Choi, J.; Park, S.; Lee, J.; Hwang, J.; Jung, H.; Choi, S.; Kim, D.; Oh, S.; Lee, J. Resting-State Beta and Gamma Activity in Internet Addiction. Int. J. Psychophysiol. 2013, 89, 328–333. [Google Scholar] [CrossRef]
- Strika-Bruneau, L.; Fauvel, B.; Benyamina, A. Case study: Acceptance and commitment therapy plus psychedelics in treating sexual and cannabis addiction. Pract. Innov. 2024, 9, 132–146. [Google Scholar] [CrossRef]
- Wizła, M.; Kraus, S.W.; Lewczuk, K. Perspective: Can psychedelic-assisted therapy be a promising aid in compulsive sexual behavior disorder treatment? Compr. Psychiatry 2022, 115, 152303. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Tang, S.; Li, L.; Wang, J. Effects of transcranial direct current stimulation of the right dorsolateral prefrontal cortex on craving and negative emotion regulation in individuals at risk for problematic pornography use: A double-blind, placebo-controlled study. J. Behav. Addict. 2025, 14, 1064–1078. [Google Scholar] [CrossRef]
- Blum, A.W.; Grant, J.E. Positive Response of Compulsive Sexual Behavior to Transcranial Magnetic Stimulation. Prim. Care Companion CNS Disord. 2020, 22, 24452. [Google Scholar] [CrossRef] [PubMed]
- Dalooyi, S.I.S.; Sharbaaf, H.A.; Abdekhodaei, M.S.; Chamanabad, A.G. Effects of Acceptance and Commitment Therapy and Transcranial Direct Current Stimulation on Craving and Problematic Pornography Use in Young Men: A Randomized Clinical Trial. Iran. J. Psychiatry Clin. Psychol. 2023, 29, 124–141. [Google Scholar] [CrossRef]
- Sakreida, K.; Köhler, M.E.; Langguth, B.; Schecklmann, M.; Poeppl, T.B. Effect of prefrontal transcranial direct current stimulation on sexual arousal: A proof of concept study. Neurophysiol. Clin. 2023, 53, 102847. [Google Scholar] [CrossRef] [PubMed]
- Schecklmann, M.; Sakreida, K.; Oblinger, B.; Langguth, B.; Poeppl, T.B. Repetitive Transcranial Magnetic Stimulation as a Potential Tool to Reduce Sexual Arousal: A Proof of Concept Study. J. Sex. Med. 2020, 17, 1553–1559. [Google Scholar] [CrossRef]
- Tripathi, A.; Singh, A.; Singh, H.; Kar, S.K. Successful use of transcranial magnetic stimulation in difficult to treat hypersexual disorder. J. Hum. Reprod. Sci. 2016, 9, 207–209. [Google Scholar] [CrossRef]
- Cho, S.S.; Ko, J.H.; Pellecchia, G.; Van Eimeren, T.; Cilia, R.; Strafella, A.P. Continuous theta burst stimulation of right dorsolateral prefrontal cortex induces changes in impulsivity level. Brain Stimul. 2010, 3, 170–176. [Google Scholar] [CrossRef]
- Fecteau, S.; Knoch, D.; Fregni, F.; Sultani, N.; Boggio, P.; Pascual-Leone, A. Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: A direct current stimulation study. J. Neurosci. 2007, 27, 12500–12505. [Google Scholar] [CrossRef]
- Adam, O.; Psomiades, M.; Rey, R.; Mandairon, N.; Suaud-Chagny, M.F.; Mondino, M.; Brunelin, J. Frontotemporal transcranial direct current stimulation decreases serum mature brain-derived neurotrophic factor in schizophrenia. Brain Sci. 2021, 11, 662. [Google Scholar] [CrossRef]
- Eskandari, Z.; Mostafavi, H.; Hosseini, M.; Mousavi, S.E.; Ramazani, S.; Dadashi, M. A sham-controlled clinical trial to examine the effect of bilateral tDCS on craving, TNF-α and IL-6 expression levels, and impulsivity of males with opioid use disorder. J. Addict. Dis. 2021, 39, 347–356. [Google Scholar] [CrossRef]
- Hanlon, C.; Dowdle, L.; Anton, R.; George, M. Ventral medial prefrontal cortex theta burst stimulation decreases salience network activity in cocaine users and alcohol users. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2017, 10, 479. [Google Scholar] [CrossRef]
- Shahbabaie, A.; Ebrahimpoor, M.; Hariri, A.; Nitsche, M.A.; Hatami, J.; Fatemizadeh, E.; Oghabian, M.A.; Ekhtiari, H. Transcranial DC stimulation modifies functional connectivity of large-scale brain networks in abstinent methamphetamine users. Brain Behav. 2018, 8, e00922. [Google Scholar] [CrossRef] [PubMed]
- Naish, K.R.; Vedelago, L.; MacKillop, J.; Amlung, M. Effects of neuromodulation on cognitive performance in individuals exhibiting addictive behaviors: A systematic review. Drug Alcohol Depend. 2018, 192, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Nougaret, S.; Ferrucci, L.; Ceccarelli, F.; Sacchetti, S.; Benozzo, D.; Fascianelli, V.; Saunders, R.; Renaud, L.; Genovesio, A. Neurons in the Money Frontopolar Cortex Encode Learning Stage and Goal During a Fast Learning Task. PLoS Biol. 2024, 22, e3002500. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10903959/ (accessed on 5 September 2025). [CrossRef]
- Jami, A.; Abbaszade, S.; Vahabie, A.-H. A review on exploration–exploitation trade-off in psychiatric disorders. BMC Psychiatry 2025, 25, 420. [Google Scholar] [CrossRef]
- Golec, K.; Draps, M.; Stark, R.; Pluta, A.; Gola, M. Aberrant orbitofrontal cortex reactivity to erotic cues in Compulsive Sexual Behavior Disorder. J. Behav. Addict. 2021, 10, 646–656. [Google Scholar] [CrossRef]
- Tanabe, J.; Thompson, L.; Claus, E.; Dalwani, M.; Hutchison, K.; Banich, M.T. Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Hum. Brain Mapp. 2007, 28, 1276–1286. [Google Scholar] [CrossRef]
- van Holst, R.J.; Veltman, D.J.; Büchel, C.; van den Brink, W.; Goudriaan, A.E. Distorted Expectancy Coding in Problem Gambling: Is the Addictive in the Anticipation? Biol. Psychiatry 2012, 71, 741–748. [Google Scholar] [CrossRef]
- Wojciechowski, J.; Drapsorcid, M.; Kublikorcid, E.; Dubiejko, P.; Wolakorcid, T.; Gola, M. Enhanced conditioning and disrupted extinction processes in men struggling with compulsive sexual behaviors. J. Behav. Addict. 2025, 14, 191–203. [Google Scholar] [CrossRef]
- Beharelle, A.R.; Polanía, R.; Hare, T.A.; Ruff, C.C. Transcranial stimulation over frontopolar cortex elucidates the choice attributes and neural mechanisms used to resolve exploration–exploitation trade-offs. J. Neurosci. 2015, 35, 14544–14556. [Google Scholar] [CrossRef]
- Londei, F.; Arena, G.; Ferrucci, L.; Russo, E.; Ceccarelli, F.; Genovesio, A. Connecting the dots in the zona incerta: A study of neural assemblies and motifs of inter-area coordination in mice. iScience 2024, 27, 108761. [Google Scholar] [CrossRef] [PubMed]
- Wilt, M.; Magnard, R.; Carnicella, S.; Vachez, Y.M. Zona incerta: From Parkinson’s disease to addiction. Front. Neural Circuits 2025, 19, 1537449. [Google Scholar] [CrossRef]
- Hormigo, S.; Zhou, J.; Chabbert, D.; Sajid, S.; Busel, N.; Castro-Alamancos, M. Zona incerta distributes a broad movement signal that modulates behavior. eLife 2023, 12, RP89366. [Google Scholar] [CrossRef]
- Wayner, M.J.; Ono, T.; Nolley, D. Effects of ethyl alcohol on central neurons. Pharmacol. Biochem. Behav. 1975, 3, 499–506. [Google Scholar] [CrossRef]
- Zahm, D.S.; Becker, M.L.; Freiman, A.J.; Strauch, S.; DeGarmo, B.; Geisler, S.; Meredith, G.E.; Marinelli, M. Fos After Single and Repeated Self-Administration of Cocaine and Saline in the Rat: Emphasis on the Basal Forebrain and Recalibration of Expression. Neuropsychopharmacology 2010, 35, 445–463. [Google Scholar] [CrossRef]
- van Elk, M.; Yaden, D.B. Pharmacological, neural, and psychological mechanisms underlying psychedelics: A critical review. Neurosci. Biobehav. Rev. 2022, 140, 104793. [Google Scholar] [CrossRef]
- Vollenweider, F.X.; Kometer, M. The neurobiology of psychedelic drugs: Implications for the treatment of mood disorders. Nat. Rev. Neurosci. 2010, 11, 642–651. [Google Scholar] [CrossRef]
- de Vos, C.M.H.; Mason, N.L.; Kuypers, K.P.C. Psychedelics and neuroplasticity: A systematic review unraveling the biological underpinnings of psychedelics. Front. Psychiatry 2021, 12, 724606. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Leech, R.; Hellyer, P.J.; Shanahan, M.; Feilding, A.; Tagliazucchi, E.; Chialvo, D.R.; Nutt, D. The entropic brain: A theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 2014, 8, 55875. [Google Scholar] [CrossRef] [PubMed]
- Dourron, H.M.; Strauss, C.; Hendricks, P.S. Self-Entropic Broadening Theory: Toward a New Understanding of Self and Behavior Change Informed by Psychedelics and Psychosis. Pharmacol. Rev. 2022, 74, 984–1029. [Google Scholar] [CrossRef] [PubMed]
- Bayne, T.; Carter, O. Dimensions of consciousness and the psychedelic state. Neurosci. Conscious. 2018, 2018, niy008. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Friston, K.J. REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelicss. Pharmacol. Rev. 2019, 71, 316–344. [Google Scholar] [CrossRef]
Author and Year | N | Technique | Target | Stimulation Parameters | Treatment Number | Duration | Outcomes |
---|---|---|---|---|---|---|---|
Gavazzi et al. [56] 2025 | 18 | cTBS | Pre-SMA | 80% of MT, 3 pulses at 50 Hz repeated every 200 ms, 60 s ITI, 1200 total pulses per session | 1 | 1 day | Reduced stop signal reaction times on the Stop Signal Task compared to the untreated controls, demonstrating improved inhibitory control |
Cardullo et al. [49] 2019 | 7 | HF-rTMS | Left DLPFC | 100% MT, 15 Hz, 4 s train, 15 s ITI, 2400 pulses total per session | 26 sessions administered as 2 sessions a day for the first 5 days and then 2 sessions once weekly over 8 weeks | 8 weeks | Consistent improvement in G-SAS scores over the 8-week protocol |
Gay et al. [57] 2017 | 22 | HF-rTMS | Left DLPFC | 110% MT, 10 Hz, 3.2 s train, 10 s ITI, 3008 pulses total per session | 1 | 1 day | Transient reduction in cue-induced craving measured by the VAS. No significant effects on gambling behavior |
Pettorruso et al. [51] 2019 | 1 | HF-rTMS | Left DLPFC | 100% MT, 15 Hz, 4 s train, 15 s ITI, 2400 total pulses per session | Sessions twice daily, 5 days per week, then a maintenance phase of 2 sessions per week for 12 weeks for a total of 20 treatments | 12 weeks | Sustained cessation of gambling behavior and craving at 6 months follow up. Reduced striatal dopamine transporter availability noted at 2 weeks (DAT-SPECT) |
Pettorruso et al. [50] 2020 | 8 | HF-rTMS | Left DLPFC | 100% MT, 15 Hz, 4 s train, 15 s ITI, 2400 total pulses per session | Sessions twice daily, 5 days per week, then a maintenance phase of 2 sessions per week for 12 weeks for a total of 20 treatments | 12 weeks | G-SAS reduced by 71.2%. Improvement sustained throughout the 3-month follow-up |
Sauvaget et al. [52] 2018 | 30 | LF-rTMS | Right DLPFC | 120% MT, 1 Hz, 1 s train, 360 total pulses per session | 1 | No differences in craving for gambling between active and sham treatment arms | |
Rosenberg et al. [55] 2013 | 5 | DTMS | Left DLPFC | 110% of MT, 1 Hz, 600 total pulses per session | 1 session daily | 15 days | All participants continued gambling |
Salerno et al. [53] 2022 | 6 | cTBS | Bilateral pre-SMA | 80% MT, 3 pulses at 50 Hz repeated every 200 ms, 60 s ITI, 1200 total pulses per session | 10 sessions | Improvement of PG-YBOCS scores | |
Zack et al. [54] 2016 | 9 | HF-rTMS and cTBS | mPFC for HF-rTMS Right DLPFC for cTBS | 80% MT, 10 Hz, 3 s train, 10 s ITI, 450 total pulses per session for HF-rTMS 80% MT, 3 pulses at 50 Hz repeated every 200 ms, 5 min ITI, 900 total pulses per session for cTBS | 1 session | rTMS: Reduced desire to gamble as measured by the VAS and improved performance on the Stroop task cTBS: Significant improvement in treatment group’s ARCI score compared to sham |
Author and Year | N | Target | Stimulation Parameters | Treatment Number | Outcomes |
---|---|---|---|---|---|
Soyata et al. [60] 2019 | 30 | DLPFC | Anode applied to the right DLPFC, cathode applied to the left DLPFC. Current of 2 mA applied for 20 min. | 3 total treatments administered every other day | Improved cognitive flexibility and decision-making |
Dickler et al. [63] 2018 | 16 | DLPFC | Anode applied to the right DLPFC and cathode applied to the left DLPFC. Current of 1 mA applied for 30 min. | 2 | Increased prefrontal GABA as measured by Magnetic Resonance Spectroscopy |
Martinotti et al. [62] 2019 | 34 | DLPFC | Anode applied to the left DLPFC and cathode applied to the right DLPFC. Subsequently, anode applied to the right DLPFC and cathode applied to the left DLPFC. Current of 1.5 mA applied for 20 min. | Daily for 10 days, then weekly for 2 months, then every 2 weeks for 3 months | Significant reduction in cravings as measured by the VAS |
Salatino et al. [61] 2021 | 1 | DLPFC | Anode applied to the right DLPFC and cathode applied to the left DLPFC. Current of 1 mA applied for 20 min. | 6 | Reduction of gambling scores on the SOGS and CPGI |
Author and Year | N | Target | Outcomes |
---|---|---|---|
Ardouin et al. [64] 2006 | 7 | STN | Six patients experienced remission; however, two developed postoperative mania that worsened gambling behaviors. Three others had transient depressive episodes that triggered gambling. Long-term follow-up revealed increased apathy across the group, with two patients developing clinically significant apathy. |
Bandini et al. [65] 2007 | 2 | STN | Marked reductions in dopaminergic therapy led to a complete resolution of pathological gambling symptoms within one to two months. |
Author and Year | N | Technique | Target | Stimulation Parameters | Treatment Number | Duration | Outcomes |
---|---|---|---|---|---|---|---|
Zhong [78] 2020 | 64 | HF-rTMS | Left DLPFC | 100% MT, 10 Hz, duration of train not provided, ITI not provided, 2000 pulses total per session | 20 | 4 weeks | Addiction severity and background cravings with a greater decline at the end point in the active treatment arm versus sham |
Cuppone et al. [79] 2021 | 1 | HF-rTMS | Left DLPFC | 100% MT, 15 Hz, 4 s train, 15 s ITI, 1560 pulses total per session | 26 sessions administered as 2 sessions a day for the first 5 days and then 2 sessions once weekly over 8 weeks | 9 weeks | Significant reduction of time spent on the internet with an improved ability to interrupt internet usage. Continued improvements at 1-year post-intervention |
Chen [80] 2022 | 50 | HF-rTMS | Left DLPFC | 80% MT, 10 Hz, duration of train not provided, ITI not provided, 1560 pulses total per session | 40 sessions administered once daily 5 days per week | 8 weeks | Significant reduction of IAT, BIS-11, and VAS in active arm versus control at end point |
Sun [81] 2022 | 61 | HF-rTMS | Left DLPFC | 100% MT, 10 Hz, duration of train not provided, ITI not provided, 3000 total pulses per session | 10 sessions administered once daily 5 days per week | 2 weeks | Significantly lower total CIAS score in active treatment arm versus control at end point |
Hong [82] 2023 | 120 | HF-rTMS LF-rTMS | Left DLPFC Bilateral DLPFC Right DLPFC | 100% MT, 10 Hz, 2 s train duration, ITI 10 s, total pulses per session not provided for HF-rTMS 100% MT, 1 Hz, total pulses per session not provided for LF-rTMS | Experimental Group A: 20 total (1 session daily, 5 days per week over 4 weeks) sessions of HF-rTMS with left DLPFC target Experimental Group B: 5 (1 session for 5 days) bilateral sessions of LF-rTMS with the right DLPFC targeted. This was followed by 15 sessions (1 session daily, 5 days per week over 3 weeks) of HF-rTMS with the left DLPFC targeted in addition to LF-rTMS with the right DLPFC targeted | 4 weeks | Both rTMS groups demonstrated a significantly lower YDQ and CIAS score at the end of treatment, with experimental group B demonstrating the lowest scores |
Author and Year | N | Target | Stimulation Parameters | Treatment Number | Outcomes |
---|---|---|---|---|---|
Lee [85] 2018 | 25 | DLPFC | Anode applied to the left DLPFC, cathode applied to the right DLPFC. Current of 2 mA applied for 30 min | 12 total with 3 sessions per week for 4 weeks | Weekly hours spent playing games, IAT, and BDI-II significantly decreased at endpoint, whereas BSCS increased. The asymmetry index of regional cerebral glucose metabolism of the DLPFC significantly decreased |
Jeong, et al. [86] 2021 | 26 | DLPFC | Anode applied to the left DLPFC and cathode applied to the right DLPFC. Current of 2 mA applied for 30 min | 12 total with 3 sessions per week for 4 weeks | Significant decrease in time spent on gaming, BIS, BAS-fun seeking, and BAS-reward responsiveness found in active tDCS treatment arm. Significant increase in rCMRglu within the left putamen, palladium, and insula seen in active tDCS treatment arm |
Wu [87,88] 2020, 2021 | 33 | DLPFC | Anode applied to the right DLPFC and cathode applied to the left superior region of the trapezius muscle. Current of 1.5 mA applied for 20 min | 1 active session and 1 sham session, 1 week apart randomized | Active tDCS facilitated both down regulation and up regulation versus sham; active tDCS reduced interference from gaming-related distractors and attenuated background cravings but not cue-induced cravings |
Lee [85] 2021 | 26 | DLPFC | Anode applied to the left DLPFC and cathode applied to the right DLPFC. Current of 2 mA applied for 20 min | 10 sessions total with 2 sessions per day for 5 days | Absolute gamma power in left parietal region decreased in active group versus sham at 1 month follow up |
Ma [89] 2024 | 48 | DLPFC | HD-tDCS placement with anode and central electrode applied to the left DLPFC. Remaining 4 electrodes applied to F1, FC3, F5, and AF3. Current of 2 mA applied for 20 min | 12 sessions total with 1 session per day, 3 days per week for 4 weeks | Combined intervention of HD-tDCS and multimodal exercise significantly outperformed individual interventions/control regarding executive functioning |
Kim [90] 2025 | 32 | DLPFC | Anode applied to the left DLPFC and cathode applied to the right DLPFC. Current of 2 mA applied for 20 min | 10 sessions total with 2 sessions per day for 5 days | Higher LPP amplitudes with game-related cues at baseline versus healthy controls; significant decrease in LPP one month after completion of tDCS intervention |
Author and Year | N | Technique | Target | Stimulation Parameters | Treatment Number | Duration | Outcomes |
---|---|---|---|---|---|---|---|
Tripathi et al. [99] 2016 | 1 | LF-rTMS | SMA | 80% MT, 1 Hz, 5 s ITI, 1120 pulses total per session | 22 | 4 weeks | 90% reduction in SDI and SCS scores over 4 weeks with rTMS and escitalopram 20 mg daily |
Blum et al. [95] 2020 | 1 | DTMS | ACC | Not provided | 28 | 6 weeks | 39% decrease in compulsive sexual behavior with a decrease in Y-BOCS adapted for compulsive sexual behavior from 23 pre-treatment to 14 post-treatment |
Schecklmann et al. [98] 2020 | 19 | rTMS | Left DLPFC and right DLPFC | 110% MT, 10 Hz, 5 s train interval, 10 s ITI, 3000 pulses total per session | One active treatment targeting the right DLPFC, 1 active treatment targeting the left DLPFC, and 1 placebo treatment separated by 1-week intervals | 8 weeks | Significant reduction of sexual arousal measured by the AAS with rTMS to the right DLPFC. No significant effect with rTMS to the left DLPFC |
Cuppone et al. [79] 2021 | 1 | rTMS | Left DLPFC | 100% MT, 15 Hz, 4 s train, 15 s ITI, 1560 pulses total per session | 26 total (2 sessions daily for 5 consecutive days, followed by 2 sessions weekly for the following 8 weeks) | 9 weeks | Decrease in VAS measuring cravings for pornography use from 9 pre-treatment to 0 post-treatment |
Author and Year | N | Target | Stimulation Parameters | Treatment Number | Outcomes |
---|---|---|---|---|---|
Dalooyi et al. [96] 2023 | 9 | DLPFC (laterality not provided) | Not listed in English | Not listed in English | tDCS + ACT resulted in a significantly greater reduction in cravings and PPU compared to ACT and tDCS alone. ACT and tDCS alone had significant effects on craving reduction and PPU, with ACT alone having a significantly greater reduction than tDCS alone |
Sakreida et al. [97] 2023 | 24 | Right DLPFC and left DLPFC | Anode applied to the right DLPFC, anode applied to the left DLPFC, and sham tDCS with electrode placement on the center of the forehead. Cathode placement in all three groups was on the parieto-occipital cortices. Current of 2 mA applied for 20 min. | One active treatment targeting the right DLPFC, one active treatment targeting the left DLPFC, and one placebo treatment separated by one-week intervals | No significant differences in sexual arousal as measured by the AAS between groups |
Yang et al. [94] 2025 | 45 | Right DLPFC | Anode applied to the right DLPFC and cathode applied to the supraorbital area. Current of 2.5 mA applied for 20 min. | 1 active and 1 placebo treatment separated by one week | Cravings for pornography significantly lower with real stimulation compared to placebo stimulation. No significant differences in emotional regulation with active vs. placebo stimulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulisse, K.; Albitar, J.; Aromin, J.T.; Berry, J. Emerging Interventions in Behavioral Addictions: A Narrative Review of Psychedelics and Neuromodulation. Brain Sci. 2025, 15, 980. https://doi.org/10.3390/brainsci15090980
Ulisse K, Albitar J, Aromin JT, Berry J. Emerging Interventions in Behavioral Addictions: A Narrative Review of Psychedelics and Neuromodulation. Brain Sciences. 2025; 15(9):980. https://doi.org/10.3390/brainsci15090980
Chicago/Turabian StyleUlisse, Krista, Jehad Albitar, Jourdan T. Aromin, and James Berry. 2025. "Emerging Interventions in Behavioral Addictions: A Narrative Review of Psychedelics and Neuromodulation" Brain Sciences 15, no. 9: 980. https://doi.org/10.3390/brainsci15090980
APA StyleUlisse, K., Albitar, J., Aromin, J. T., & Berry, J. (2025). Emerging Interventions in Behavioral Addictions: A Narrative Review of Psychedelics and Neuromodulation. Brain Sciences, 15(9), 980. https://doi.org/10.3390/brainsci15090980