Non-Invasive Cervical Spinal Stimulation and Respiratory Recovery After Spinal Cord Injury: A Randomized Controlled Trial with a Partial Crossover Design
Abstract
1. Introduction
2. Materials and Methods
2.1. Neurological Assessment
2.2. Assessment of Respiratory Function
2.3. Experimental Design
2.4. Transcutaneous Electrical Spinal Cord Stimulation
2.5. Data and Statistical Analysis
3. Results
3.1. Neurological Assessment
3.2. Assessment of Respiratory Function
3.3. Score Changes Between Both Group
3.4. Correlation Analysis
4. Discussion
4.1. Transcutaneous Spinal Cord Stimulation for Respiratory Function in SCI
4.2. Respiratory Dysfunction Following Cervical SCI
4.3. Effect of Transcutaneous Spinal Cord Stimulation on Upper Extremity Motor Function
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SCI | Cervical spinal cord injury |
tSCS | Transcutaneous spinal cord stimulation |
cont | Control |
C | Cervical |
UEMS | Upper extremity motor score |
NA | Not available |
MIP | Maximal inspiratory pressure |
MEP | Maximal expiratory pressure |
ASIA | American Spinal Injury Association |
AIS | ASIA Impairment Scale. |
FVC | Forced vital capacity (FVC) |
FEV1 | Forced expiratory volume in one second |
PEF | Peak expiratory flow |
FEF | Forced expiratory flow |
CI | Confidence interval |
NLI | Neurological level of the injury |
M | Male |
F | Female |
T | Traumatic |
SD | Standard deviation |
References
- Sezer, N.; Akkus, S.; Ugurlu, F.G. Chronic complications of spinal cord injury. World J. Orthop. 2015, 6, 24–33. [Google Scholar] [CrossRef]
- Billing, I.; Foris, J.M.; Card, J.P.; Yates, B.J. Transneuronal tracing of neural pathways controlling an abdominal muscle, rectus abdominis, in the ferret. Brain Res. 1999, 820, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.C.; Abdala, A.P.; Koizumi, H.; Rybak, I.A.; Paton, J.F. Spatial and functional architecture of the mammalian brain stem respiratory network: A hierarchy of three oscillatory mechanisms. J. Neurophysiol. 2007, 98, 3370–3387. [Google Scholar] [CrossRef] [PubMed]
- Berlowitz, D.J.; Tamplin, J. Respiratory muscle training for cervical spinal cord injury. Cochrane Database Syst. Rev. 2013, 7, CD008507. [Google Scholar] [CrossRef]
- Brown, R.; DiMarco, A.F.; Hoit, J.D.; Garshick, E. Respiratory dysfunction and management in spinal cord injury. Respir. Care 2006, 51, 853–868. [Google Scholar] [PubMed Central]
- Bach, J.R.; Burke, L.; Chiou, M. Conventional Respiratory Management of Spinal Cord Injury; W.B. Saunders: Philadelphia, PA, USA, 2020; Volume 31, pp. 379–395. [Google Scholar] [PubMed]
- Patel, N.; Chong, K.; Baydur, A. Methods and Applications in Respiratory Physiology: Respiratory Mechanics, Drive and Muscle Function in Neuromuscular and Chest Wall Disorders. Front. Physiol. 2022, 13, 838414. [Google Scholar] [CrossRef]
- Galeiras Vázquez, R.; Rascado Sedes, P.; Fariña, M.; Montoto Marqués, A.; Ferreiro Velasco, M.E. Respiratory management in the patient with spinal cord injury. BioMed Res. Int. 2013, 2013, 168757. [Google Scholar] [CrossRef]
- Reid, W.D.; Brown, J.A.; Konnyu, K.J.; Rurak, J.M.; Sakakibara, B.M. Physiotherapy secretion removal techniques in people with spinal cord injury: A systematic review. J. Spinal Cord Med. 2010, 33, 353–370. [Google Scholar] [CrossRef]
- Winslow, C.; Rozovsky, J. Effect of spinal cord injury on the respiratory system. Am. J. Phys. Med. Rehabil. 2003, 82, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Berlowitz, D.J.; Wadsworth, B.; Ross, J. Respiratory problems and management in people with spinal cord injury. Breathe 2016, 12, 328–340. [Google Scholar] [CrossRef]
- Waltz, J.M.; Andreesen, W.H.; Hunt, D.P. Spinal cord stimulation and motor disorders. Pacing Clin. Electrophysiol. 1987, 10, 180–204. [Google Scholar] [CrossRef]
- Gerasimenko, Y.; Gorodnichev, R.; Puhov, A.; Moshonkina, T.; Savochin, A.; Selionov, V.; Roy, R.R.; Lu, D.C.; Edgerton, V.R. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. J. Neurophysiol. 2015, 113, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Gerasimenko, Y.; Gorodnichev, R.; Moshonkina, T.; Sayenko, D.; Gad, P.; Reggie Edgerton, V. Transcutaneous electrical spinal-cord stimulation in humans. Ann. Phys. Rehabil. Med. 2015, 58, 225–231. [Google Scholar] [CrossRef]
- Gad, P.; Lee, S.; Terrafranca, N.; Zhong, H.; Turner, A.; Gerasimenko, Y.; Edgerton, V.R. Non-Invasive Activation of Cervical Spinal Networks after Severe Paralysis. J. Neurotrauma 2018, 35, 2145–2158. [Google Scholar] [CrossRef] [PubMed]
- Kumru, H.; Flores, A.; Rodríguez-Cañón, M.; Edgerton, V.R.; García, L.; Benito-Penalva, J.; Navarro, X.; Gerasimenko, Y.; García-Alías, G.; Vidal, J. Cervical Electrical Neuromodulation Effectively Enhances Hand Motor Output in Healthy Subjects by Engaging a Use-Dependent Intervention. J. Clin. Med. 2021, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Kumru, H.; Rodríguez-Cañón, M.; Edgerton, V.R.; García, L.; Soriano, I.; Opisso, E.; Gerasimenko, Y.; Navarro, X.; García-Alías, G.; Vidal, J. Transcutaneous Electrical Neuromodulation of the Cervical Spinal Cord Depends Both on the Stimulation Intensity and the Degree of Voluntary Activity for Training. A Pilot Study. J. Clin. Med. 2021, 10, 3278. [Google Scholar] [CrossRef]
- García-Alén, L.; Ros-Alsina, A.; Sistach-Bosch, L.; Wright, M.; Kumru, H. Noninvasive Electromagnetic Neuromodulation of the Central and Peripheral Nervous System for Upper-Limb Motor Strength and Functionality in Individuals with Cervical Spinal Cord Injury: A Systematic Review and Meta-Analysis. Sensors 2024, 24, 4695. [Google Scholar] [CrossRef]
- Moon, Y.; Yang, C.; Veit, N.C.; McKenzie, K.A.; Kim, J.; Aalla, S.; Yingling, L.; Buchler, K.; Hunt, J.; Jenz, S.; et al. Noninvasive spinal stimulation improves walking in chronic stroke survivors: A proof-of-concept case series. Biomed. Eng. Online 2024, 23, 38. [Google Scholar] [CrossRef]
- Hernandez-Navarro, A.; Ros-Alsina, A.; Yurtseven, M.; Wright, M.; Kumru, H. Non-invasive cerebral and spinal cord stimulation for motor and gait recovery in incomplete spinal cord injury: Systematic review and meta-analysis. J. Neuroeng. Rehabil. 2025, 22, 53. [Google Scholar] [CrossRef]
- Inanici, F.; Samejima, S.; Gad, P.; Edgerton, V.R.; Hofstetter, C.P.; Moritz, C.T. Transcutaneous electrical spinal stimulation promotes lon-term recovery of upper extremity function in chronic tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1272–1278. [Google Scholar] [CrossRef]
- Inanici, F.; Brighton, L.N.; Samejima, S.; Hofstetter, C.P.; Moritz, C.T. Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function after Spinal Cord Injury. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 310–319. [Google Scholar] [CrossRef]
- Minassian, K.; Persy, I.; Rattay, F.; Dimitrijevic, M.R.; Hofer, C.; Kern, H. Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle Nerve 2007, 35, 327–336. [Google Scholar] [CrossRef]
- Minassian, K.; Hofstoetter, U.S. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans. CNS Neurosci Ther. 2016, 22, 262–270. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Krenn, M.; Danner, S.M.; Hofer, C.; Kern, H.; McKay, W.B.; Mayr, W.; Minassian, K. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals. Artif. Organs 2015, 39, E176–E186. [Google Scholar] [CrossRef] [PubMed]
- Hofstoetter, U.S.; Freundl, B.; Lackner, P.; Binder, H. Transcutaneous Spinal Cord Stimulation Enhances Walking Performance and Reduces Spasticity in Individuals with Multiple Sclerosis. Brain Sci. 2021, 11, 472. [Google Scholar] [CrossRef] [PubMed]
- Kumru, H.; García-Alén, L.; Ros-Alsina, A.; Albu, S.; Valles, M.; Vidal, J. Transcutaneous Spinal Cord Stimulation Improves Respiratory Muscle Strength and Function in Subjects with Cervical Spinal Cord Injury: Original Research. Biomedicines 2023, 11, 2121. [Google Scholar] [CrossRef]
- Kumru, H.; Ros-Alsina, A.; García Alén, L.; Vidal, J.; Gerasimenko, Y.; Hernandez, A.; Wrigth, M. Improvement in Motor and Walking Capacity during Multisegmental Transcutaneous Spinal Stimulation in Individuals with Incomplete Spinal Cord Injury. Int. J. Mol. Sci. 2024, 25, 4480. [Google Scholar] [CrossRef] [PubMed]
- García-Alén, L.; Kumru, H.; Castillo-Escario, Y.; Benito-Penalva, J.; Medina-Casanovas, J.; Gerasimenko, Y.P.; Edgerton, V.R.; García-Alías, G.; Vidal, J. Transcutaneous Cervical Spinal Cord Stimulation Combined with Robotic Exoskeleton Rehabilitation for the Upper Limbs in Subjects with Cervical SCI: Clinical Trial. Biomedicines 2023, 11, 589. [Google Scholar] [CrossRef]
- Moritz, C.; Field-Fote, E.C.; Tefertiller, C.; van Nes, I.; Trumbower, R.; Kalsi-Ryan, S.; Purcell, M.; Janssen, T.W.J.; Krassioukov, A.; Morse, L.R.; et al. Non-invasive spinal cord electrical stimulation for arm and hand function in chronic tetraplegia: A safety and efficacy trial. Nat. Med. 2024, 30, 1276–1283. [Google Scholar] [CrossRef]
- Estes, S.; Zarkou, A.; Hope, J.M.; Suri, C.; Field-Fote, E.C. Combined Transcutaneous Spinal Stimulation and Locomotor Training to Improve Walking Function and Reduce Spasticity in Subacute Spinal Cord Injury: A Randomized Study of Clinical Feasibility and Efficacy. J. Clin. Med. 2021, 10, 1167. [Google Scholar] [CrossRef]
- Gad, P.; Kreydin, E.; Zhong, H.; Edgerton, V.R. Enabling respiratory control after severe chronic tetraplegia: An exploratory case study. J. Neurophysiol. 2020, 124, 774–780. [Google Scholar] [CrossRef]
- Kirshblum, S.C.; Burns, S.P.; Biering-Sorensen, F.; Donovan, W.; Graves, D.E.; Jha, A.; Johansen, M.; Jones, L.; Krassioukov, A.; Mulcahey, M.J.; et al. International standards for neurological classification of spinal cord injury (Revised 2011). J. Spinal Cord Med. 2011, 34, 535–546. [Google Scholar] [CrossRef]
- Ledsome, J.R.; Sharp, J.M. Pulmonary function in acute cervical cord injury. Am. Rev. Respir. Dis. 1981, 124, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Black, L.F.; Hyatt, R.E. Maxinal respiratory pressures: Normal values and relationship to age and sex. Am. Rev. Respir. Dis. 1969, 99, 696–702. [Google Scholar] [CrossRef]
- Edgerton, V.R.; Tillakaratne, N.J.; Bigbee, A.J.; de Leon, R.D.; Roy, R.R. Plasticity of the spinal neural circuitry after injury. Annu. Rev. Neurosci. 2004, 27, 145–167. [Google Scholar] [CrossRef]
- Forssberg, H.; Grillner, S.; Rossignol, S. Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res. 1975, 85, 103–107. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Roy, R.R.; de Leon, R.; Dobkin, B.; Edgerton, V.R. Can the mammalian lumbar spinal cord learn a motor task? Med. Sci. Sports Exerc. 1994, 26, 1491–1497. [Google Scholar] [CrossRef] [PubMed]
- Taccola, G.; Sayenko, D.; Gad, P.; Gerasimenko, Y.; Edgerton, V.R. And yet it moves: Recovery of volitional control after spinal cord injury. Prog. Neurobiol. 2018, 160, 64–81. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Rath, M.; Ferguson, A.R.; Burdick, J.W.; Havton, L.A.; Edgerton, V.R.; Gerasimenko, Y.P. Self-Assisted Standing Enabled by Non-Invasive Spinal Stimulation after Spinal Cord Injury. J Neurotrauma 2019, 36, 1435–1450. [Google Scholar] [CrossRef] [PubMed]
- Milosevic, M.; Masugi, Y.; Sasaki, A.; Sayenko, D.G.; Nakazawa, K. On the reflex mechanisms of cervical transcutaneous spinal cord stimulation in human subjects. J. Neurophysiol. 2019, 121, 1672–1679. [Google Scholar] [CrossRef]
- DiMarco, A.F.; Kowalski, K.E.; Geertman, R.T.; Hromyak, D.R.; Frost, F.S.; Creasey, G.H.; Nemunaitis, G.A. Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: Results of a National Institutes of Health-Sponsored clinical trial. Part II: Clinical outcomes. Arch. Phys. Med. Rehabil. 2009, 90, 726–732. [Google Scholar] [CrossRef]
- DiMarco, A.F.; Kowalski, K.E. Intercostal muscle pacing with high frequency spinal cord stimulation in dogs. Respir. Physiol. Neurobiol. 2010, 171, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Sayenko, D.G.; Angeli, C.; Harkema, S.J.; Edgerton, V.R.; Gerasimenko, Y.P. Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. J. Neurophysiol. 2014, 111, 1088–1099. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.M.; Knikou, M. Transspinal stimulation increases motoneuron output of multiple segments in human spinal cord injury. Nógrádi A, editor. PLoS ONE 2019, 14, e0213696. [Google Scholar] [CrossRef]
- Minyaeva, A.V.; Moiseev, S.A.; Pukhov, A.M.; Shcherbakova, N.A.; Gerasimenko, Y.P.; Moshonkina, T.R. Dependence of Respiratory Reaction on the Intensity of Locomotor Response to Transcutaneous Electrical Stimulation of the Spinal Cord. Hum. Physiol. 2019, 45, 262–270. [Google Scholar] [CrossRef]
- Kalsi-Ryan, S.; Beaton, D.; Curt, A.; Popovic, M.R.; Verrier, M.C.; Fehlings, M.G. Outcome of the upper limb in cervical spinal cord injury: Profiles of recovery and insights for clinical studies. J. Spinal Cord Med. 2014, 37, 503–510. [Google Scholar] [CrossRef]
- Kalsi-Ryan, S.; Kapadia, N.; Gagnon, D.H.; Verrier, M.C.; Holmes, J.; Flett, H.; Farahani, F.; Alavinia, S.M.; Omidvar, M.; Wiest, M.J.; et al. Development of Reaching, Grasping & Manipulation indicators to advance the quality of spinal cord injury rehabilitation: SCI-High Project. J. Spinal Cord Med. 2021, 44 (Suppl. S1), S134–S146. [Google Scholar] [CrossRef] [PubMed]
Age | Sex | Etiology | UEMS (/50) | NLI | AIS | Time Since SCI (Months) | tSCS Intensity | ||
---|---|---|---|---|---|---|---|---|---|
C3–4 Segment | C6–7 Segment | ||||||||
tSCS | 25 ** | M | T | 11 | C4 | A | 4 | 67 | 86 |
tSCS | 46 ** | M | T | 15 | C4 | C | 4 | 80 | 80 |
tSCS | 36 * | M | T | 14 | C5 | B | 6 | 74 | 86 |
tSCS | 36 | M | T | 41 | C7 | D | 6 | 63 | 85 |
tSCS | 18 | M | T | 28 | C5 | B | 5 | 76 | 82 |
tSCS | 28 | M | T | 26 | C5 | A | 4 | 86 | 86 |
tSCS | 28 | M | T | 48 | C5 | C | 6 | 63 | 85 |
tSCS | 38 * | M | T | 33 | C4 | B | 5 | 54 | 77 |
tSCS | 56 * | M | No-T | 42 | C4 | C | 9 | 86 | 86 |
tSCS | 60 | M | T | 43 | C5 | D | 3 | 86 | 86 |
tSCS | 21 * | M | T | 22 | C6 | B | 9 | 61 | 72 |
tSCS | 22 * | F | T | 43 | C7 | C | 5 | 85 | 86 |
tSCS | 55 | M | T | 41 | C3 | D | 4 | 86 | 86 |
tSCS | 47 | M | T | 31 | C6 | D | 10 | 86 | 86 |
tSCS | 42 | M | T | 31 | C4 | D | 3 | 80 | 76 |
Mean | 37.2 | 31.3 | 5.7 | 75.5 | 83.0 | ||||
SD | 13.5 | 11.8 | 2.2 | 11.2 | 4.6 | ||||
Control | 36 * | M | T | 37 | C4 | B | 5 | - | - |
Control | 46 ** | M | T | 17 | C4 | C | 6 | - | - |
Control | 25 ** | M | T | 15 | C4 | A | 8 | - | - |
Control | 36 | F | T | 36 | C4 | C | 6 | - | - |
Control | 38 * | M | T | 48 | C7 | B | 3 | - | - |
Control | 56 * | M | No-T | 26 | C4 | C | 6 | - | - |
Control | 58 | M | T | 44 | C6 | A | 6 | - | - |
Control | 21 * | M | T | 22 | C6 | B | 8 | - | - |
Control | 53 | M | No-T | 40 | T1 | B | 3 | - | - |
Control | 18 | M | T | 17 | C6 | B | 4 | - | - |
Control | 22 * | F | T | 41 | C7 | C | 4 | - | - |
Mean | 37.2 | 31.2 | 5.4 | ||||||
SD | 14.6 | 12.1 | 1.7 | ||||||
p | 0.68 | 1.0 | 0.83 |
Group | Age | UEMS (/50) | Total Motor Score (/100) | Total Sensory Score (/112) | |||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | ||
tSCS | 25 ** | 11 | 15 | 11 | 15 | 24 | 20 |
tSCS | 46 ** | 15 | 17 | 21 | 23 | 62 | 62 |
tSCS | 36 * | 14 | 15 | 14 | 15 | 92 | 92 |
tSCS | 36 | 41 | 41 | 74 | 74 | 109 | 109 |
tSCS | 18 | 28 | 28 | 28 | 28 | 22 | 22 |
tSCS | 28 | 26 | 30 | 52 | 56 | 64 | 64 |
tSCS | 28 | 48 | 48 | 48 | 48 | 67 | 67 |
tSCS | 38 * | 33 | 36 | 47 | 50 | 91 | 100 |
tSCS | 56 * | 42 | 42 | 92 | 92 | 112 | 112 |
tSCS | 60 | 43 | 45 | 88 | 90 | 68 | 68 |
tSCS | 21 * | 22 | 22 | 22 | 22 | 75 | 75 |
tSCS | 22 * | 43 | 45 | 44 | 51 | 60 | 60 |
tSCS | 55 | 41 | 45 | 87 | 91 | 73 | 73 |
tSCS | 47 | 31 | 33 | 57 | 59 | 60 | 60 |
tSCS | 42 | 31 | 36 | 69 | 86 | 100 | 100 |
Mean | 31.3 | 33.2 | 50.3 | 53.3 | 71.9 | 72.3 | |
SD | 11.8 | 11.6 | 27.4 | 28.4 | 26.5 | 27.6 | |
Effect size | 1.10 | 0.70 | 0.13 | ||||
p | 0.0008 | 0.02 | 0.63 | ||||
Control | 36 * | 37 | 37 | 73 | 73 | 62 | 62 |
Control | 46 ** | 17 | 17 | 23 | 23 | 20 | 20 |
Control | 25 ** | 15 | 15 | 15 | 15 | 71 | 71 |
Control | 36 | 36 | 38 | 59 | 65 | NA | NA |
Control | 38 * | 48 | 48 | 48 | 48 | 67 | 67 |
Control | 56 * | 26 | 33 | 46 | 46 | 35 | 35 |
Control | 58 | 44 | 46 | 44 | 46 | 26 | 26 |
Control | 21 * | 22 | 22 | 22 | 22 | 68 | 68 |
Control | 53 | 40 | 44 | 51 | 65 | 112 | 106 |
Control | 18 | 17 | 18 | 17 | 18 | 59 | 59 |
Control | 22 * | 41 | 43 | 42 | 44 | 73 | 73 |
Mean | 31.2 | 32.8 | 40.0 | 41.4 | 59.3 | 58.7 | |
SD | 12.1 | 12.6 | 18.6 | 20.4 | 26.8 | 25.6 | |
Effect size | 0.74 | 0.53 | −0.32 | ||||
p | 0.03 | 0.11 | 0.34 |
Age | Height | Weight | Group | MIP (cmH2O) | MEP (cmH2O) | MIP% | MEP% | ||||
(cm) | (kg) | Pre | Post | Pre | Post | Pre | Post | Pre | Post | ||
25 ** | 186 | 76 | tSCS | 37.3 | 45.3 | 52.0 | 72.3 | 29 | 35 | 21 | 30 |
46 ** | 174 | 76 | tSCS | 38.7 | 43.0 | 18.7 | 18.3 | 33 | 37 | 9 | 8 |
36 * | 172 | 57 | tSCS | 45.7 | 47.7 | 29.7 | 33.7 | 37 | 39 | 13 | 22 |
36 | 175 | 95 | tSCS | 62.0 | 77.0 | 46.0 | 53.3 | 50 | 63 | 20 | 23 |
18 | 174 | 48 | tSCS | 17.0 | 24.7 | 57.3 | 66.0 | 13 | 19 | 23 | 26 |
28 | 176 | 71 | tSCS | 83.7 | 84.0 | 48.0 | 71.3 | 66 | 66 | 20 | 30 |
28 | 170 | 65 | tSCS | 82.7 | 90.7 | 53.3 | 77.3 | 65 | 71 | 22 | 32 |
38 * | 165 | 54 | tSCS | 98.7 | 133.0 | 59.0 | 97.7 | 43 | 109 | 26 | 48 |
56 * | 164 | 71 | tSCS | 91.3 | 100.0 | 48.7 | 51.3 | 81 | 80 | 23 | 24 |
60 | 180 | 77 | tSCS | 54.3 | 69.0 | 78.0 | 97.7 | 49 | 63 | 38 | 47 |
21 * | 173 | 66 | tSCS | 60.0 | 60.7 | 73.3 | 89.3 | 46 | 46 | 30 | 36 |
22 * | 170 | 51 | tSCS | 86.7 | 91.7 | 55.3 | 53.0 | 93 | 99 | 35 | 33 |
55 | 182 | 79 | tSCS | 94.7 | 108.3 | 126.7 | 130.3 | 84 | 96 | 60 | 62 |
47 | 172 | 82 | tSCS | 89.3 | 89.7 | 36.7 | 40.3 | 76 | 77 | 17 | 18 |
42 | 192 | 82 | tSCS | 55.3 | 75.3 | 41.3 | 63.7 | 46 | 63 | 18 | 28 |
Mean | 66.5 | 76.0 | 54.9 | 67.7 | 54.1 | 64.2 | 25.0 | 31.1 | |||
SD | 25.0 | 28.4 | 24.9 | 28.5 | 22.7 | 25.8 | 12.3 | 13.3 | |||
95% confidential interval | 41.5–66.7 | 49.9–78.5 | 18.2–31.8 | 23.7–38.5 | |||||||
effect size | 1.05 | 1.09 | 0.62 | 1.00 | |||||||
p | 0.001 | 0.001 | 0.002 | 0.002 | |||||||
36 * | 172 | 57 | Control | 61.0 | 55.7 | 29.0 | 28.7 | 52 | 48 | 13 | 12 |
46 ** | 174 | 72 | Control | 33.7 | 32.7 | 21.0 | 18.0 | 26 | 26 | 9 | 7 |
25 ** | 186 | 76 | Control | 67.7 | 63.7 | 86.7 | 81.3 | 52 | 49 | 36 | 34 |
36 | 167 | 61 | Control | 49.7 | 44.3 | 25.0 | 27.7 | 58 | 52 | 17 | 18 |
38 * | 165 | 54 | Control | 101.0 | 98.7 | 75.7 | 59.0 | 83 | 81 | 33 | 26 |
56 * | 164 | 71 | Control | 55.3 | 85.3 | 38.7 | 48.3 | 49 | 76 | 18 | 23 |
58 | 176 | 75 | Control | 49.0 | 59.3 | 35.0 | 42.7 | 44 | 53 | 17 | 21 |
21 * | 173 | 66 | Control | 52.3 | 56.0 | 76.3 | 79.7 | 40 | 43 | 31 | 32 |
53 | 180 | 64 | Control | 58.7 | 53.3 | 45.3 | 43.0 | 52 | 47 | 21 | 20 |
18 | 179 | 61 | Control | 64.3 | 50.7 | 46.3 | 65.3 | 49 | 38 | 19 | 26 |
22 * | 170 | 51 | Control | NA | NA | NA | NA | NA | NA | NA | NA |
Mean | 59.3 | 60.0 | 47.9 | 49.4 | 50.5 | 51.3 | 21.4 | 21.9 | |||
SD | 17.5 | 19.2 | 23.5 | 21.7 | 14.4 | 16.4 | 8.9 | 8.3 | |||
95% confidence interval | 40.2–60.8 | 39.6–63.0 | 15.0–27.8 | 16.0–27.9 | |||||||
effect size | 0.06 | 0.13 | 0.07 | 0.13 | |||||||
p | 0.50 | 0.57 | 0.63 | 0.83 |
(a) | |||||||||||||||
Age | Group | Pre | Pre | Pre | Pre | Pre | Pre | Pre | POST | POST | POST | POST | POST | POST | POST |
FVC (L) | FEV1 (L) | FEV1/FVC (%) | PEF (L/s) | FEF50 (L/s) | FEF25/75% (L/s) | FEV1/FEV0.5 | FVC (L) | FEV1 (L) | FEV1/FVC (%) | PEF (L/s) | FEF50 (L/s) | FEF25/75% (L/s) | FEV1/FEV0.5 | ||
25 ** | tSCS | 1.5 | 1.4 | 92.0 | 1.4 | 2.2 | 1.4 | 1.6 | 1.5 | 89.8 | 3.7 | 2.4 | 2.2 | 1.2 | |
46 ** | tSCS | 1.3 | 1.0 | 80.0 | 2.1 | 1.1 | 1.0 | 1.3 | 1.4 | 0.8 | 59.4 | 1.7 | 0.4 | 0.5 | 1.4 |
36 * | tSCS | 1.5 | 1.1 | 69.7 | 1.7 | 1.0 | 0.8 | 1.5 | 2.0 | 1.4 | 70.4 | 2.0 | 1.3 | 1.2 | 1.7 |
36 | tSCS | 3.5 | 2.7 | 77.7 | 6.3 | 3.3 | 2.1 | 1.2 | 3.5 | 2.1 | 63.1 | 5.3 | 1.6 | 1.0 | 1.3 |
18 | tSCS | 0.7 | 0.6 | 93.1 | 1.8 | 1.3 | 1.1 | 1.1 | 0.8 | 0.7 | 95.2 | 1.6 | 1.1 | 1.1 | 1.2 |
28 | tSCS | 2.1 | 1.5 | 70.2 | 3.0 | 1.6 | 1.3 | 1.4 | 2.5 | 1.9 | 76.7 | 5.6 | 2.0 | 1.6 | 1.3 |
28 | tSCS | 2.9 | 2.8 | 92.2 | 5.4 | 4.0 | 3.6 | 1.3 | 3.9 | 3.4 | 86.8 | 5.7 | 4.0 | 3.7 | 1.4 |
38 * | tSCS | 2.8 | 2.3 | 82.6 | 3.7 | 2.4 | 2.3 | 1.5 | 3.0 | 2.5 | 81.9 | 5.2 | 2.6 | 2.4 | 1.4 |
56 * | tSCS | 2.8 | 2.1 | 76.0 | 3.7 | 2.2 | 1.8 | 1.4 | 3.1 | 2.4 | 79.1 | 5.0 | 2.7 | 2.2 | 1.3 |
60 | tSCS | 3.5 | 2.8 | 79.4 | 6.3 | 4.3 | 2.7 | 1.2 | 3.5 | 2.8 | 79.5 | 7.8 | 3.2 | 2.5 | 1.3 |
21 * | tSCS | 2.3 | 2.0 | 89.3 | 3.6 | 2.7 | 2.5 | 1.4 | 2.4 | 2.1 | 88.2 | 3.9 | 2.5 | 2.3 | 1.4 |
22 * | tSCS | 2.1 | 1.7 | 81.6 | 3.2 | 1.6 | 1.5 | 1.5 | 2.0 | 1.5 | 79.2 | 2.9 | 1.4 | 1.4 | 1.5 |
55 | tSCS | 3.8 | 1.3 | 33.2 | 7.4 | 3.2 | 2.5 | 1.5 | 4.2 | 1.9 | 45.6 | 2.1 | 1.8 | 1.7 | 1.8 |
47 | tSCS | 3.1 | 2.1 | 67.0 | 3.2 | 1.7 | 1.4 | 1.5 | 2.9 | 2.1 | 71.9 | 3.5 | 2.0 | 1.5 | 1.3 |
42 | tSCS | 3.5 | 1.7 | 46.7 | 2.2 | 1.0 | 1.0 | 1.7 | 4.1 | 2.7 | 66.9 | 4.5 | 2.0 | 2.0 | 1.6 |
Mean | 2.5 | 1.8 | 75.4 | 3.7 | 2.2 | 1.9 | 1.4 | 2.7 | 2.0 | 75.6 | 4.0 | 2.1 | 1.8 | 1.4 | |
SD | 0.9 | 0.7 | 16.8 | 1.9 | 1.1 | 0.8 | 0.2 | 1.0 | 0.7 | 13.1 | 1.8 | 0.9 | 0.8 | 0.2 | |
Effect size | 0.61 | 0.24 | 0.10 | 0.23 | 0.14 | 0.06 | 0.01 | ||||||||
p | 0.01 | 0.86 | 0.88 | 0.15 | 0.62 | 0.88 | 0.73 | ||||||||
36 * | cont | 2.1 | 1.8 | 88.4 | 3.6 | 2.1 | 2.0 | 1.4 | 1.9 | 1.6 | 85.7 | 3.5 | 2.0 | 2.0 | 1.3 |
46 ** | cont | 1.5 | 1.3 | 80.4 | 2.6 | 1.4 | 1.2 | 1.3 | 1.5 | 1.2 | 79.2 | 2.0 | 1.1 | 1.1 | 1.5 |
25 ** | cont | 1.9 | 1.8 | 94.8 | 4.6 | 3.2 | 3.1 | 1.2 | 1.9 | 1.8 | 92.1 | 4.2 | 2.8 | 2.6 | 1.3 |
36 | cont | 1.5 | 1.0 | 73.7 | 2.2 | 0.9 | 0.9 | 1.4 | 1.8 | 1.3 | 71.5 | 2.2 | 1.2 | 1.0 | 1.5 |
38 * | cont | 3.2 | 2.5 | 78.2 | 4.7 | 2.4 | 2.2 | 1.4 | 2.8 | 2.3 | 82.6 | 3.7 | 2.4 | 2.3 | 1.5 |
56 * | cont | 2.5 | 1.9 | 75.2 | 2.7 | 1.9 | 1.7 | 1.6 | 3.2 | 2.2 | 70.2 | 3.6 | 2.0 | 1.7 | 1.4 |
58 | cont | 2.4 | 1.7 | 71.8 | 3.7 | 1.4 | 1.3 | 1.4 | 3.3 | 2.6 | 77.8 | 4.5 | 2.9 | 2.4 | 1.5 |
21 * | cont | 2.4 | 2.1 | 88.2 | 3.9 | 2.5 | 2.3 | 1.4 | 2.4 | 2.2 | 82.9 | 4.6 | 3.2 | 2.4 | 1.3 |
53 | cont | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
18 | cont | 1.8 | 1.7 | 91.2 | 3.2 | 2.2 | 2.1 | 1.3 | 1.8 | 1.7 | 91.7 | 3.0 | 2.1 | 2.0 | 1.4 |
22 * | cont | 2.0 | 1.8 | 89.7 | 3.4 | 2.0 | 2.0 | 1.4 | 1.8 | 1.7 | 91.2 | 3.2 | 2.2 | 2.1 | 1.3 |
Mean | 2.1 | 1.8 | 83.1 | 3.4 | 2.0 | 1.9 | 1.4 | 2.2 | 1.9 | 82.5 | 3.4 | 2.2 | 2.0 | 1.4 | |
SD | 0.5 | 0.4 | 8.2 | 0.8 | 0.7 | 0.6 | 0.1 | 0.6 | 0.5 | 7.9 | 0.9 | 0.7 | 0.5 | 0.1 | |
Effect size | 0.25 | 0.30 | −0.22 | 0.08 | 0.32 | 0.25 | 0.00 | ||||||||
p | 0.46 | 0.48 | 0.50 | 0.89 | 0.47 | 0.55 | 0.64 | ||||||||
(b) | |||||||||||||||
Parameter | Pre-tSCS Mean ± SD (95% CI) | Post-tSCS Mean ± SD (95% CI) | Pre-Control Mean ± SD (95% CI) | Post-Control Mean ± SD (95% CI) | |||||||||||
FVC (L) | 2.5 ± 0.9 → [2.00, 2.998] | 2.7 ± 1.0 → [2.15, 3.25] | 2.1 ± 0.5 → [1.72, 2.48] | 2.2 ± 0.6 → [1.74, 2.66] | |||||||||||
FEV1 (L) | 1.8 ± 0.7 → [1.41, 2.19] | 2.0 ± 0.7 → [1.61, 2.39] | 1.8 ± 0.4 → [1.49, 2.11] | 1.9 ± 0.5 → [1.52, 2.28] | |||||||||||
FEV1/FVC (%) | 75.4 ± 16.8 → [66.1, 84.7] | 75.6 ± 13.1 → [68.4, 82.9] | 83.1 ± 8.2 → [76.8, 89.4] | 82.5 ± 7.9 → [76.4, 88.6] | |||||||||||
PEF (L/s) | 3.7 ± 1.9→ [2.65, 4.75] | 4.0 ± 1.8 → [3.00, 5.00] | 3.4 ± 0.8 → [2.78, 4.02] | 3.4 ± 0.9 → [2.71, 4.09] | |||||||||||
FEF50 (L/s) | 2.2 ± 1.1→ [1.59, 2.81] | 2.1 ± 0.9 → [1.60, 2.60] | 2.0 ± 0.7 → [1.46, 2.54] | 2.2 ± 0.7 → [1.66, 2.74] | |||||||||||
FEF25/75 (L/s) | 1.9 ± 0.8 → [1.46, 2.34] | 1.8 ± 0.8 → [1.36, 2.24] | 1.9 ± 0.6 → [1.44, 2.36] | 2.0 ± 0.5→ [1.61, 2.39] | |||||||||||
FEV1/FEV0.5 | 1.4 ± 0.2 → [1.29, 1.51] | 1.4 ± 0.21 → [1.29, 1.51] | 1.4 ± 0.1 → [1.32, 1.48] | 1.4 ± 0.1 → [1.32, 1.48] |
Score Changes | |||
---|---|---|---|
Control Mean (SD) | tSCS Mean (SD) | p | |
UEMS | 1.6 (2.2) | 1.9 (1.8) | 0.50 |
Total motor score | 2.3 (4.3) | 3.1 (4.4) | 0.30 |
Total sensory score | −0.6 (1.9) | 0.3 (2.6) | 0.68 |
MIP (cmH2O) | 0.7 (12.1) | 9.5 (9.1) | 0.008 |
MIP% | 0.8 (10.7) | 10.1 (16.4) | 0.01 |
MEP (cmH2O) | 0.8 (9.6) | 10.1 (16.4) | 0.01 |
MEP% | 0.5 (4.1) | 6.1 (6.1) | 0.01 |
FVC (L) | 0.1 (0.4) | 0.2 (0.3) | 0.17 |
FEV1 (L) | 0.1 (0.3) | 0.2 (0.4) | 0.36 |
FEV1/FVC (%) | −0.6 (3.3) | 0.0 (8.9) | 0.46 |
PEF (L/s) | 0.0 (0.5) | 0.3 (1.7) | 0.21 |
FEF50 (L/s) | 0.2 (0.5) | 0.0 (0.9) | 0.68 |
FEF25/75% (L/s) | 0.1 (0.4) | 0.0 (0.5) | 0.76 |
FEV1/FEV0.5 | 0.0 (0.1) | 0.0 (0.1) | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumru, H.; Hernandez-Navarro, A.; Albu, S.; García-Alén, L. Non-Invasive Cervical Spinal Stimulation and Respiratory Recovery After Spinal Cord Injury: A Randomized Controlled Trial with a Partial Crossover Design. Brain Sci. 2025, 15, 982. https://doi.org/10.3390/brainsci15090982
Kumru H, Hernandez-Navarro A, Albu S, García-Alén L. Non-Invasive Cervical Spinal Stimulation and Respiratory Recovery After Spinal Cord Injury: A Randomized Controlled Trial with a Partial Crossover Design. Brain Sciences. 2025; 15(9):982. https://doi.org/10.3390/brainsci15090982
Chicago/Turabian StyleKumru, Hatice, Agustin Hernandez-Navarro, Sergiu Albu, and Loreto García-Alén. 2025. "Non-Invasive Cervical Spinal Stimulation and Respiratory Recovery After Spinal Cord Injury: A Randomized Controlled Trial with a Partial Crossover Design" Brain Sciences 15, no. 9: 982. https://doi.org/10.3390/brainsci15090982
APA StyleKumru, H., Hernandez-Navarro, A., Albu, S., & García-Alén, L. (2025). Non-Invasive Cervical Spinal Stimulation and Respiratory Recovery After Spinal Cord Injury: A Randomized Controlled Trial with a Partial Crossover Design. Brain Sciences, 15(9), 982. https://doi.org/10.3390/brainsci15090982