On Aerobic Exercise and Behavioral and Neural Plasticity
Abstract
:1. The Effects of Exercise on Humans
1.1. Impact of Exercise on the Developing Brain
1.1.1. Affect
1.1.2. Cognition
1.2. Impact of Exercise on the Adult Brain
1.2.1. Affect
1.2.1.1. Depression
1.2.1.2. Anxiety and Panic Disorders
1.2.2. Cognition
1.2.3. Neurological Damage
2. Effect of Exercise on Behavior in Non-Human Animals
2.1. Acute Exercise
2.1.1. Affect
2.1.1.1. Anxiety
2.1.1.2. Depression
2.1.2. Cognition: Learning and Memory
2.2. Chronic Exercise
2.2.1. Affect
2.2.1.1. Anxiety
2.2.1.2. Depression
2.2.2. Cognition: Learning and Memory
3. Cellular Mechanism of Action
3.1. Neurogenesis
3.2. Angiogenesis
3.3. Apoptosis
4. Molecular Mechanisms
4.1. Vascular Endothelial Growth Factor (VEGF)
4.2. Brain Derived Neurotrophic Factor (BDNF)
4.3. Nerve Growth Factor (NGF)
4.4. Insulin-Like Growth Factor 1 (IGF-1)
5. Conclusions
Conflict of Interest
References
- Kramer, A.F.; Hahn, S.; McAuley, E. Influence of aerobic fitness on the neurocognitive function of older adults. J. Aging Phys. Act. 2000, 8, 379–385. [Google Scholar]
- Parfitt, G.; Eston, R.G. The relationship between children’s habitual activity level and psychological well-being. Acta Paediatr. 2005, 94, 1791–1797. [Google Scholar]
- Brosnahan, J.; Steffen, L.M.; Lytle, L.; Patterson, J.; Boostrom, A. The relation between physical activity and mental health among Hispanic and non-Hispanic white adolescents. Arch. Pediatr. Adolesc. Med. 2004, 158, 818–823. [Google Scholar] [CrossRef]
- Dishman, R.K.; Hales, D.P.; Pfeiffer, K.A.; Felton, G.; Saunders, R.; Ward, D.; Dowda, M.; Pate, R.R. Physical self-concept and self-esteem mediate cross-sectional relations of physical activity and sport participation with depression symptoms among adolescent girls. Health Psychol. 2006, 25, 396–407. [Google Scholar] [CrossRef]
- Jerstad, S.J.; Boutelle, K.N.; Ness, K.K.; Stice, E. Prospective reciprocal relations between physical activity and depression in female adolescents. J. Consult. Clin. Psychol. 2010, 72, 268–272. [Google Scholar]
- Nabkasorn, C.; Miyai, N.; Sootmongkol, A.; Junprasert, S.; Yamamoto, H.; Arita, M.; Miyashita, K. Effects of physical exercise on depression, neuroendocrine stress hormones and physiological fitness in adolescent females with depressive symptoms. Eur. J. Public Health 2005, 16, 179–184. [Google Scholar] [CrossRef]
- Castelli, D.M.; Hillman, C.H.; Buck, S.M.; Erwin, H.E. Physical fitness and academic achievement in third- and fifth-grade students. J. Sport Exerc. Psychol. 2007, 29, 239–252. [Google Scholar]
- Coe, D.P.; Pivarnik, J.M.; Womack, C.J.; Reeves, M.J.; Malina, R.M. Effect of physical education and activity levels on academic achievement in children. Med. Sci. Sport Exerc. 2006, 38, 1515–1519. [Google Scholar]
- Taras, H. Physical activity and student performance at school. J. School Health 2005, 75, 214–218. [Google Scholar]
- Taras, H.; Potts-Datema, W. Obesity and student performance at school. J. School Health 2005, 75, 291–295. [Google Scholar]
- Sibley, B.A.; Etnier, J.L. The relationship between physical activity and cognition in children: A meta-analysis. Pediatr. Exerc. Sci. 2007, 15, 243–256. [Google Scholar]
- Colcombe, S.; Kramer, A.F. Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychol. Sci. 2003, 14, 125–130. [Google Scholar] [CrossRef]
- Hillman, C.H.; Buck, S.M.; Themanson, J.R.; Pontifex, M.B.; Castelli, D.M. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Dev. Psychol. 2009, 45, 114–129. [Google Scholar]
- Kamijo, K.; Nishihira, Y.; Higashiura, T.; Kuroiwa, K. The interactive effect of exercise intensity and task difficulty on human cognitive processing. Int. J. Psychophysiol. 2007, 65, 114–121. [Google Scholar] [CrossRef]
- Buck, S.M.; Hillman, C.H.; Castelli, D.M. The relation of aerobic fitness to stroop task performance in preadolescent children. Med. Sci. Sport Exerc. 2008, 40, 166–172. [Google Scholar]
- Hillman, C.H.; Castelli, D.M.; Buck, S.M. Aerobic fitness and neurocognitive function in healthy preadolescent children. Med. Sci. Sport Exerc. 2005, 37, 1967–1974. [Google Scholar]
- Davis, C.L.; Tomporowski, P.D.; McDowell, J.E.; Austin, B.P.; Miller, P.H.; Naglieri, J.A. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychol. 2011, 30, 91–98. [Google Scholar] [CrossRef]
- Davis, C.L.; Tomporowski, P.D.; Boyle, C.A.; Waller, J.L.; Miller, P.H.; Naglieri, J.A.; Gregoski, M. Effects of aerobic exercise on overweight children’s cognitive functioning: A randomized controlled trial. Res. Q. Exerc. Sport 2007, 78, 510–519. [Google Scholar] [CrossRef]
- Chaddock, L.; Hillman, C.H.; Buck, S.M.; Cohen, N.J. Aerobic fitness and executive control of relational memory in preadolescent children. Med. Sci. Sport Exerc. 2011, 43, 344–349. [Google Scholar]
- Chaddock, L.; Erickson, K.I.; Prakash, R.S.; Kim, J.S.; Voss, M.W.; Kramer, A.F. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res. 2010, 1358, 172–183. [Google Scholar] [CrossRef]
- Chaddock, L.; Erickson, K.I.; Prakash, R.S.; VanPatter, M.; Voss, M.W.; Kramer, A.F. Basal ganglia volume is associated with aerobic fitness in preadolescent children. Dev. Neurosci. 2010, 32, 249–256. [Google Scholar]
- Nithianantharajah, J.; Hannan, A.J. The neurobiology of brain and cognitive reserve: Mental and physical activity as modulators of brain disorders. Prog. Neurobiol. 2009, 89, 369–382. [Google Scholar] [CrossRef]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar]
- Franz, S.I.; Hamilton, G.V. The effects of exercise upon retardation in conditions of depression. Am. J. Psychiatry 1905, 62, 239–256. [Google Scholar]
- Martinsen, E.W.; Medhus, A.; Sandvik, L. Effects of aerobic exercise on depression: A controlled study. BMJ 1985, 291, 109. [Google Scholar]
- Vaux, C.L. A discussion of physical exercise and recreation. Am. J. Phys. Med. 1926, 6, 303–333. [Google Scholar]
- Farmer, M.E.; Locke, B.Z.; Moscicki, E.K.; Dannenberg, A.L.; Larson, D.B.; Radloff, L.S. Physical activity and depressive symptoms: The NHANES I epidemiologic follow-up study. Am. J. Epidemiol. 1988, 128, 1340–1351. [Google Scholar]
- Weyer, S. Physical inactivity and depression in the community. Int. J. Sports Med. 1992, 13, 492–496. [Google Scholar]
- De Moor, M.H.; Been, A.L.; Stubbe, J.H.; Boomsma, D.I.; Geus, E.J. Regular exercise, anxiety, depression, and personality: A population-based study. Prev. Med. 2006, 42, 273–279. [Google Scholar]
- Ströhle, A. Physical activity, exercise, depression, and anxiety disorder. J. Neural Transm. 2006, 116, 777–784. [Google Scholar] [CrossRef]
- North, T.C.; McCullagh, P.; Tran, Z.V. Effects of exercise on depression. Exerc. Sport Sci. Rev. 1990, 18, 379–415. [Google Scholar]
- Craft, L.L.; Landers, D.M. The effects of exercise on clinical depression resulting from mental illness: A meta-analysis. J. Sport Exerc. Psychol. 1998, 20, 339–357. [Google Scholar]
- Lawlor, D.A.; Hopker, S.W. The effectiveness of exercise as an intervention in the management of depression: Systematic review and meta-regression analysis of randomised controlled trials. BMJ 2001, 322, 1–8. [Google Scholar]
- Blumenthal, J.A.; Babyak, M.A.; Forman, L.M.; Moore, K.A.; Craighead, W.E.; Krishnan, K.R. Effects of exercise training on older patients with major depression. Arch. Intern. Med. 1999, 159, 2349–2356. [Google Scholar]
- Blumenthal, J.A.; Babyak, M.A.; Doraiswamy, M.; Watkins, L.; Hoffman, B.M.; Sherwood, A. Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosom. Med. 2007, 69, 587–596. [Google Scholar]
- Dimeo, F.; Bauer, M.; Varahram, I.; Proest, G.; Halter, U. Benefits from aerobic exercise in patients with major depression: A pilot study. Br. J. Sports Med. 2001, 35, 114–117. [Google Scholar]
- Dunn, A.L.; Trivedi, M.H.; Kampert, J.B.; Clark, C.G.; Chambliss, H.O. Exercise treatment for depression efficacy and dose response. Am. J. Prev. Med. 2005, 28, 1–8. [Google Scholar]
- Doyne, E.J.; Ossip-Klein, D.J.; Bowman, E.D.; Osborn, K.M.; McDougall-Wilson, I.B.; Neimeyer, R.A. Runing versus weight lifting in the treatment of depression. J. Consult. Clin. Psychol. 1987, 55, 748–754. [Google Scholar] [CrossRef]
- Knubben, K.; Reischies, F.M.; Adli, M.; Schlattmann, P.; Bauer, M.; Dimeo, F. A randomised, controlled study on the effects of a short-term endurance training programme in patients with major depression. Br. J. Sports Med. 2006, 41, 29–33. [Google Scholar]
- Jorm, A.F.; Christensen, H.; Griffiths, K.M.; Rodgers, B. Effectiveness of complementary and self-help treatments for depression. Med. J. Aust. 2002, 176, S84–S96. [Google Scholar]
- Carek, P.J.; Laibstain, S.E.; Carek, S.M. Exercise for the treatment of depression and anxiety. Int. J. Psychiatry Med. 2002, 41, 15–28. [Google Scholar]
- Broman-Fulks, J.J.; Storey, K.M. Evaluation of a brief aerobic exercise intervention for high anxiety sensitivity. Anxiety Stress Coping 2008, 21, 117–128. [Google Scholar] [CrossRef]
- McEntee, R.J.; Haglin, R.P. Cognitive group therapy and aerobic exercise in the treatment of anxiety. J. Coll. Stud. Psychother. 1999, 13, 37–55. [Google Scholar] [CrossRef]
- Barnes, D.E.; Yaffe, K.; Satariano, W.A.; Tager, I.B. A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. J. Am. Geriatr. Soc. 2003, 51, 549–465. [Google Scholar]
- Weuve, J.; Kang, J.H.; Manson, J.E.; Breteler, M.M.; Ware, J.H.; Grodstein, F. Physical activity, including walking, and cognitive function in older women. JAMA 2004, 292, 1454–1461. [Google Scholar]
- Geda, Y.E.; Roberts, R.O.; Knopman, D.S.; Christianson, T.J.; Pankratz, V.S.; Rocca, W.A. Physical exercise, aging, and mild cognitive impairment. Arch. Neurol. 2010, 67, 80–86. [Google Scholar] [CrossRef]
- Middleton, L.E.; Barnes, D.E.; Lui, L.; Yaffe, K. Physical activity over the life course and its association with cognitive performance and impairment in old age. J. Am. Geriatr. Soc. 2010, 58, 1322–1326. [Google Scholar] [CrossRef]
- Etgen, T.; Sander, D.; Huntgeburth, U.; Poppert, H.; Förstl, H.; Bickel, H. Physical activity and incident cognitive impairment in elderly persons: The INVADE study. Arch. Intern. Med. 2010, 170, 186–193. [Google Scholar]
- Colcombe, S.J.; Erickson, K.I.; Raz, N.; Webb, A.G.; Cohen, N.J.; McAuley, E.; Kramer, A.F. Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. 2003, 58, 176–180. [Google Scholar] [CrossRef]
- Kramer, A.F.; Hahn, S.; Cohen, N.J.; Banich, M.T.; McAuley, E.; Colcombe, A. Aging, fitness, and neurocognitive function. Nature 1999, 400, 418–419. [Google Scholar]
- Colcombe, S.J.; Kramer, A.F.; Erickson, K.I.; Scalf, P.; McAuley, E.; Cohen, N.J.; Webb, A.; Jerome, G.J.; Marquez, D.X.; Elavsky, S. Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. USA 2004, 101, 3316–3321. [Google Scholar]
- Colcombe, S.J.; Erickson, K.I.; Scalf, P.E.; Kim, J.S.; Prakash, R.; Kramer, A.F. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. 2006, 61, 1166–1170. [Google Scholar]
- Burns, J.M.; Cronk, B.B.; Anderson, H.S.; Donnelly, J.E.; Thomas, G.P.; Swerdlow, R.H. Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology 2008, 71, 210–216. [Google Scholar] [CrossRef]
- Heyn, P.; Abreu, B.C.; Ottenbacher, K.J. The effects of exercise training on elderly persons with cognitive impairment and dementia: A meta-analysis. Arch. Phys. Med. Rehabil. 2004, 85, 1694–1704. [Google Scholar] [CrossRef]
- Abbott, R.D.; White, L.R.; Ross, G.W.; Masaki, K.H.; Curb, J.D.; Petrovitch, H. Walking and dementia in physically capable elderly men. J. Am. Med. Assoc. 2004, 292, 1447–1453. [Google Scholar]
- Larson, E.B.; Wang, L.; Bowen, J.D.; McCormick, W.C.; Teri, L.; Crane, P.; Kukull, W. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann. Intern. Med. 2006, 144, 73–81. [Google Scholar]
- Laurin, D.; Verreault, R.; Lindsay, J.; MacPherson, K.; Rockwood, K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch. Neurol. 2001, 58, 498–504. [Google Scholar]
- Hoffmann, M. Higher cortical function deficits after stroke: An analysis of 1000 patients from a dedicated cognitive stroke registry. Neurorehabil. Neural Repair 2001, 15, 113–127. [Google Scholar] [CrossRef]
- Kluding, P.M.; Tseng, B.Y.; Billinger, S.A. Exercise and executive function in individuals with chronic stroke: A pilot study. J. Neurol. Phys. Ther. 2011, 35, 11–17. [Google Scholar]
- Quaney, B.M.; Boyd, L.A.; McDowd, J.M.; Zahner, L.H.; He, J.; Mayo, M.S.; Macko, R.F. Aerobic exercise improves cognition and motor function poststroke. Neurorehabil. Neural Repair 2009, 23, 879–885. [Google Scholar] [CrossRef]
- Lin, M.R.; Chiu, W.T.; Chen, Y.J.; Yu, W.Y.; Huang, S.J.; Tsai, M.D. Longitudinal changes in the health-related quality of life during the first year after traumatic brain injury. Arch. Phys. Med. Rehabil. 2010, 91, 474–478. [Google Scholar]
- Devine, J.M.; Zafonte, R.D. Physical exercise and cognitive recovery in acquired brain injury: A review of the literature. PMR 2009, 1, 560–575. [Google Scholar]
- Gordon, W.A.; Sliwinski, M.; Echo, J.; McLoughlin, M.; Sheerer, M.S.; Meili, T.E. The benefits of exercise in individuals with traumatic brain injury: A retrospective study. J. Head Trauma Rehabil. 1998, 13, 58–67. [Google Scholar] [CrossRef]
- Grealy, M.A.; Johnson, D.A.; Rushton, S.K. Improving cognitive function after brain injury: The use of exercise and virtual reality. Arch. Phys. Med. Rehabil. 1999, 80, 661–667. [Google Scholar]
- Hall, C.S. Emotional behavior in the rat: Defecation and urination as measures of individual differences in emotionality. J. Comp. Psychol. 1934, 18, 385–403. [Google Scholar] [CrossRef]
- Mello, P.B.; Benetti, F.; Cammorota, M.; Izquierdo, I. Effects of acute and chronic physical exercise and stress on different types of memory in rats. An. Acad. Bras. Cienc. 2008, 80, 301–309. [Google Scholar]
- Salam, J.N.; Fox, J.H.; DeTroy, E.M.; Guignon, M.H.; Wohl, D.F.; Falls, W.A. Voluntary exercise in C57 mice in anxiolytic across several measures of anxiety. Behav. Brain Res. 2009, 197, 31–40. [Google Scholar] [CrossRef]
- Hopkins, M.E.; Bucci, D.J. BDNF expression in the perirhinal cortex is associated with exercise-induced improvement in object recognition memory. Neurobiol. Learn. Mem. 2010, 94, 278–284. [Google Scholar] [CrossRef]
- Grant, E.C.; Mackintosh, J.H. A comparison of the social postures of some common laboratory rodents. Behaviour 1963, 21, 246–259. [Google Scholar]
- Ramos, A.; Berton, O.; Mormede, P.; Chaouloff, F. A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behav. Brain Res. 1997, 85, 57–69. [Google Scholar] [CrossRef]
- Belzung, C.; Griebel, G. Measuring normal and pathological anxiety-like behavior in mice: A review. Behav. Brain Res. 2001, 125, 141–149. [Google Scholar] [CrossRef]
- Fox, J.H.; Hammack, S.E.; Falls, W.A. Exercise is associated with reduction in the anxiogenic effect of mCPP on acoustic startle. Behav. Neurosci. 2008, 122, 943–948. [Google Scholar]
- Falls, W.A.; Fox, J.H.; MacAnlay, C.M. Voluntary exercise improves both learning and consolidation of cued conditioned fear in C57 mice. Behav. Brain Res. 2010, 207, 321–331. [Google Scholar] [CrossRef]
- Green, J.T.; Chess, A.C.; Burns, M.; Schachinger, K.M.; Thanello, A. The effects of two forms of physical activity on eyeblink classical conditioning. Behav. Brain Res. 2011, 219, 165–174. [Google Scholar] [CrossRef]
- Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 1981, 11, 47–60. [Google Scholar] [CrossRef]
- Hajisoltani, R.; Rashidy-Pour, A.; Vafaei, A.A.; Ghaderdoost, B.; Bandegi, A.; Motamedi, F. The glucocorticoid system is required for the voluntary exercise-induced enhancement of learning and memory in rats. Behav. Brain Res. 2011, 219, 75–81. [Google Scholar] [CrossRef]
- Vaynman, S.; Ying, Z.; Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 2004, 20, 2580–2590. [Google Scholar]
- Van der Borght, K.; Ferrari, F.; Klauke, K.; Roman, V.; Havekes, R.; Sgoifo, A.; Merlo, P. Hippocampal cell proliferation across the day: Increase by running wheel activity, but no effect of sleep and wakefulness. Behav. Brain Res. 2006, 167, 36–41. [Google Scholar] [CrossRef]
- O’Callaghan, R.M.; Ohle, R.; Kelly, A.M. The effects of forced exercise on hippocampal plasticity in the rat: A comparison of LTP, spatial- and non-spatial learning. Behav. Brain Res. 2007, 176, 362–366. [Google Scholar]
- Van Praag, H.; Christie, B.R.; Sejnowski, T.J.; Gage, F.H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. USA 1999, 96, 13427–13431. [Google Scholar] [CrossRef]
- Leasure, J.L.; Jones, M. Forced and voluntary exercise differentially affect brain and behavior. Neuroscience 1998, 156, 456–465. [Google Scholar]
- Moraska, A.; Deak, T.; Spencer, R.L.; Roth, D.; Fleshner, M. Treadmill running produces both positive and negative physiological adaptations in Sprague-Dawley rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R1321–R1329. [Google Scholar]
- Duman, C.H.; Schlesinger, L.; Kodama, M.; Russell, D.S.; Duman, D.S. A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol. Psychiatry 2007, 61, 661–670. [Google Scholar] [CrossRef]
- Duman, C.H.; Schlesinger, L.; Russell, D.S.; Duman, D.S. Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res. 2008, 1199, 148–158. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Y.; Li, W.; Yang, B.; Chen, D.; Wang, X.; Jiang, Z.; Wang, H.; Wang, Z.; Cornellison, G.; Halberg, F. Beneficial effects of exercise and its molecular mechanisms on depression in rats. Behav. Brain Res. 2006, 1, 47–55. [Google Scholar]
- Burghardt, P.R.; Fulk, L.; Hand, G.; Wilson, M.A. The effects of chronic treadmill and wheel running on behavior in rats. Brain Res. 2004, 1019, 84–96. [Google Scholar] [CrossRef]
- Sigwalt, A.R.; Budde, H.; Helmich, I.; Glaser, V.; Ghisoni, K.; Lanza, S.; Cadore, E.L.; Lhullier, F.L.R. Molecular aspects involved in swimming exercise training reducing anhedonia in a rat model of depression. Neuroscience 2011, 192, 661–674. [Google Scholar]
- Greenwood, B.N.; Foley, T.E.; Day, H.E.; Campisi, J.; Hammack, S.H.; Campeau, S.; Maier, S.F.; Fleshner, M. Freewheel running prevents learned helplessness/behavioral depression: Role of dorsal raphe serotonergic neurons. J. Neurosci. 2003, 23, 2889–2898. [Google Scholar]
- Dishman, R.K.; Renner, K.J.; Youngstedt, S.D.; Reigle, T.G.; Bunnell, B.N.; Burke, K.A.; Yoo, H.S.; Mougey, E.H.; Meyerhoff, J.L. Activity wheel running reduces escape latency and alters brain monoamine levels after footshock. Brain Res. Bull. 1997, 42, 399–406. [Google Scholar] [CrossRef]
- Van Praag, H.; Shubert, T.; Zhao, C.; Gage, F.H. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 2005, 25, 8680–8685. [Google Scholar]
- Rhodes, J.S.; van Praag, H.; Jeffrey, S.; Girard, I.; Mitchell, G.S.; Garland, T.; Gage, F.H. Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running. Behav. Neurosci. 2003, 117, 1006–1016. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Wu, C.; Kuo, Y.; Yu, L.; Huang, A.; Wu, F.; Chaung, J.; Jen, C. Differential effects of treadmill running and wheel running spatial or aversive learning and memory: Roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. J. Physiol. 2009, 587, 3221–3231. [Google Scholar] [CrossRef]
- Anderson, B.J.; Alcantara, A.A.; Greenough, W.T. Motor-skill learning: Changes in synaptic organization of the rat cerebellar cortex. Neurobiol. Learn. Mem. 1996, 66, 221–229. [Google Scholar]
- Black, J.E.; Issacs, K.R.; Anderson, B.J.; Alcantara, A.A.; Greenough, W.T. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc. Natl. Acad. Sci. USA 1990, 87, 5568–5572. [Google Scholar] [CrossRef]
- Black, J.E.; Sirevaag, A.M.; Greenough, W.T. Complex experience promotes capillary formation in young rat visual cortex. Neurosci. Lett. 1987, 83, 351–355. [Google Scholar]
- Christie, B.R.; Eadie, B.D.; Kannangara, T.S.; Robillard, J.M.; Shin, J.; Titterness, A.K. Exercising our brains: How physical activity impacts synaptic plasticity in the dentate gyrus. Neuromolecular Med. 1988, 10, 47–58. [Google Scholar]
- Issacs, K.R.; Anderson, B.J.; Alcantara, A.A.; Black, J.E.; Greenough, W.T. Exercise and the brain: Angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J. Cereb. Blood Flow Metab. 1992, 12, 110–119. [Google Scholar] [CrossRef]
- Kempermann, G.; Kuhn, H.G.; Gage, F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997, 386, 493–495. [Google Scholar] [CrossRef]
- Kempermann, G.; Kuhn, H.G.; Gage, F.H. Experience-induced neurogenesis in the senescent dentate gyrus. J. Neurosci. 1998, 18, 3206–3212. [Google Scholar]
- Swain, R.A.; Harris, A.B.; Wiener, E.C.; Dutka, M.V.; Morris, H.D.; Theien, B.E.; Greenough, W.T. Prolonged exercise induced angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 2003, 117, 1037–1046. [Google Scholar] [CrossRef]
- Cao, L.; Jiao, X.; Zuzga, D.S.; Liu, Y.; Fong, D.M.; Young, D.; During, M.J. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat. Genet. 2004, 36, 827–835. [Google Scholar]
- Carro, E.; Nuñez, A.; Busiguina, S.; Torres-Aleman, I. Circulating insulin-like growth factor 1 mediates effects of exercise on the brain. J. Neurosci. 2000, 20, 2926–2933. [Google Scholar]
- Carro, E.; Trejo, J.L.; Busiguina, S.; Torres-Aleman, I. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J. Neurosci. 2001, 21, 5678–5684. [Google Scholar]
- Ding, Y.; Li, J.; Luan, X.; Ding, Y.H.; Lai, Q.; Rafols, J.A.; Diaz, F.G. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience 2004, 124, 583–591. [Google Scholar]
- Fabel, K.; Fabel, K.; Tam, B.; Kaufer, D.; Baiker, A.; Simmons, N.; Palmer, T.D. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 2003, 18, 2803–2812. [Google Scholar]
- Neeper, S.A.; Gomez-Pinilla, F.; Choi, J.; Cotman, C.W. Exercise and brain neurotrophins. Nature 1995. [Google Scholar] [CrossRef]
- Neeper, S.A.; Gomez-Pinilla, F.; Choi, J.; Cotman, C.W. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 1995, 726, 49–56. [Google Scholar]
- Oliff, H.S.; Berchtold, N.C.; Isackson, P.; Cotman, C.W. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res. Mol. Brain Res. 1998, 61, 147–153. [Google Scholar]
- Van Praag, H. Neurogenesis and exercise: Past and future directions. Neuromolecular Med. 2008, 10, 128–140. [Google Scholar] [CrossRef]
- Altman, J.; Das, G.D. Postnatal neurogenesis in the guinea-pig. Nature 1967, 214, 1098–1101. [Google Scholar]
- Cameron, H.A.; Gould, E. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 1994, 61, 203–209. [Google Scholar] [CrossRef]
- Cameron, H.A.; Woolley, C.S.; McEwen, B.S.; Gould, E. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 2003, 56, 337–344. [Google Scholar]
- Gould, E.; Gross, C.G. Neurogenesis in adult mammals: Some progress and problems. J. Neurosci. 2002, 22, 619–623. [Google Scholar]
- Gould, E.; McEwen, B.S.; Tanapat, P.; Galea, L.A.; Fuchs, E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NDMA receptor activation. J. Neurosci. 1997, 17, 2492–2498. [Google Scholar]
- Eriksson, P.S.; Perfilieva, E.; Bjork-Eriksson, T.; Alborn, A.M.; Nordborg, C.; Peterson, D.A.; Gage, F.H. Neurogenesis in the adult human hippocampus. Nat. Med. 1998, 4, 1313–1317. [Google Scholar]
- Alvarez-Buylla, A.; Garcia-Verdugo, J.M. Neurogenesis in the adult subventricular zone. J. Neurosci. 2002, 22, 629–634. [Google Scholar]
- Nottebohm, F. Neuronal replacement in adult brain. Brain Res. Bull. 2002, 57, 737–749. [Google Scholar]
- Nottebohm, F. Why are some neurons replaced in adult brain? J. Neurosci. 2002, 22, 624–628. [Google Scholar]
- Kim, S.H.; Kim, H.B.; Jang, M.H.; Lim, B.V.; Kim, Y.J.; Kim, Y.P.; Kim, C.J. Treadmill exercise increases cell proliferation without altering of apoptosis in dentate gyrus of Sprague-Dawley rats. Life Sci. 2002, 71, 1331–1340. [Google Scholar]
- Olson, A.K.; Eadie, B.D.; Ernst, C.; Christie, B.R. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 2006, 16, 250–260. [Google Scholar] [CrossRef]
- Uysal, N.; Tugyan, K.; Kayatekin, B.M.; Acikgoz, O.; Bagriyanik, H.A.; Gonenc, S.; Semin, I. The effects of regular aerobic exercise in adolescent period on hippocampal neuron density, apoptosis, and spatial memory. Neurosci. Lett. 2005, 383, 241–245. [Google Scholar] [CrossRef]
- Van der Borght, K.; Kobor-Nyakas, D.E.; Klauke, K.; Eggen, B.J.L.; Nyakas, C.; van der Zee, E.A.; Meerlo, P. Physical exercise leads to rapid adaptations in hippocampal vasculature: Temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus 2009, 19, 928–936. [Google Scholar]
- Kronenberg, G.; Bick-Sander, A.; Bunk, E.; Wolf, C.; Ehninger, D.; Kempermannn, G. Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol. Aging 2006, 27, 1505–1513. [Google Scholar] [CrossRef]
- Kerr, A.L.; Swain, R.A. Rapid cellular genesis and apoptosis: Effects of exercise in the adult rat. Behav. Neurosci. 2011, 125, 1–9. [Google Scholar]
- Anderson, B.J.; Greenwood, S.J.; McCloskey, D. Exercise as an intervention for the age-related decline in neural metabolic support. Front. Aging Neurosci. 2010, 2, 30. [Google Scholar]
- Kerr, A.L.; Steuer, E.L.; Pochtarev, V.; Swain, R.A. Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience 2010, 171, 214–226. [Google Scholar] [CrossRef]
- Meshi, D.; Drew, M.R.; Saxe, M.; Ansorge, M.S.; David, D.; Santarelli, L.; Hen, R. Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat. Neurosci. 2006, 9, 729–731. [Google Scholar]
- Santarelli, L.; Saxe, M.; Gross, C.; Surget, A.; Battaglia, F.; Dulawa, S.; Hen, R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003, 301, 803–809. [Google Scholar]
- Clark, P.J.; Brzezinska, W.J.; Thomas, M.W.; Ryzhenko, N.A.; Toshkov, S.A.; Rhodes, J.S. Intact neurogenesis is required for benefits of exercise on spatial memory but not motor performance or contextual fear conditioning in C57BL/6J mice. Neuroscience 2008, 155, 1048–1058. [Google Scholar] [CrossRef]
- Shors, T.J.; Townsend, D.A.; Zhao, M.; Kozorovitskiy, Y.; Gould, E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 2002, 12, 578–584. [Google Scholar]
- Shors, T.J.; Miesegaes, G.; Beylin, A.; Zhao, M.; Rydel, T.A.; Gould, E. Neurogenesis in the adult is involved in the formation of trace memories. Nature 2001, 410, 372–376. [Google Scholar]
- Sikorski, A.M.; Swain, R.A. Angiogenesis Inhibition Impairs Spatial Learning in Adult Rats. In Presented at the 36th Society of Neuroscience Annual Meeting, Atlanta, GA, USA, 14–18 October 2006.
- Kee, N.; Teixeira, C.M.; Wang, A.H.; Frankland, P.W. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat. Neurosci. 2007, 10, 355–362. [Google Scholar]
- Overstreet, L.S.; Hentges, S.T.; Bumaschny, V.F.; de Souza, F.S.; Smart, J.L.; Santangelo, A.M.; Rubinstein, A. A transgenic marker for newly born granule cells in dentate gyrus. J. Neurosci. 2004, 24, 3251–3259. [Google Scholar]
- Van Praag, H.; Schinder, A.F.; Christie, B.R.; Toni, N.; Palmer, T.D.; Gage, F.H. Functional neurogenesis in the adult hippocampus. Nature 2002, 415, 1030–1034. [Google Scholar]
- Hu, M.; Sun, Y.J.; Zhou, Q.G.; Chen, L.; Hu, Y.; Luo, C.X.; Zhu, D.Y. Negative regulation of neurogenesis and spatial memory by NR2B-containing NMDA receptors. J. Neurochem. 2008, 106, 1900–1913. [Google Scholar]
- Hastings, N.B.; Gould, E. Rapid extension of axons into the CA3 region by adult-generated granule cells. J. Comp. Neurol. 1999, 413, 146–154. [Google Scholar] [CrossRef]
- Zhao, C.; Teng, E.M.; Summers, R.G.; Ming, G.L.; Gage, F.H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 2006, 26, 3–11. [Google Scholar]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef]
- Ferrara, N. Molecular and biological properties of vascular endothelial growth factor. J. Mol. Med. 1999, 77, 527–543. [Google Scholar] [CrossRef]
- Ferrara, N.; Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 1997, 18, 4–25. [Google Scholar]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 1993, 9, 669–676. [Google Scholar]
- Neufeld, G.; Tessler, S.; Gitay-Goren, H.; Cohen, T.; Levi, B. Vascular endothelial growth factor and its receptors. Prog. Growth Factor Res. 1994, 5, 89–97. [Google Scholar]
- Stacker, S.A.; Achen, M.G. The vascular endothelial growth factor family: Signaling for vascular development. Growth Factors 1999, 17, 1–11. [Google Scholar] [CrossRef]
- Yancopoulos, G.D.; Davis, S.; Gale, N.W.; Rudge, J.S.; Wiegand, S.J.; Holash, J. Vascular-specific growth factors and blood vessel formation. Nature 2000, 407, 242–248. [Google Scholar]
- Black, J.E.; Zelazny, A.M.; Greenough, W.T. Capillary and mitochondrial support of neural plasticity in adult rat visual cortex. Exp. Neurol. 1991, 111, 204–209. [Google Scholar]
- Kleim, J.A.; Cooper, N.R.; VandenBerg, P.M. Exercise induces angiogenesis but does not alter movement representation within rat motor cortex. Brain Res. 2002, 934, 1–6. [Google Scholar]
- Sikorski, A.M.; Hebert, N.; Swain, R.A. Conjugated linoleic acid (CLA) inhibits new vessel growth in the mammalian brain. Brain Res. 2008, 1213, 35–40. [Google Scholar] [CrossRef]
- Swain, R.A.; Thompson, K.J.; Kerr, A.L.; Bulinski, S.C.; Dutka, M.V.; Greenough, W.T. Rapid onset of cerebellar angiogenesis following exercise is preceded by Flk-1 upregulation. Behav. Neurosci. 2012, in press.. [Google Scholar]
- Nishijima, T.; Soya, H. Evidence of functional hyperemia in the rat hippocampus during mild treadmill running. Neurosci. Res. 2006, 54, 186–191. [Google Scholar]
- Kim, S.E.; Ko, I.G.; Kim, B.K.; Shin, M.S.; Cho, S.; Kim, C.J.; Jee, Y.S. Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp. Gerontol. 2010, 45, 357–365. [Google Scholar] [CrossRef]
- Borowsky, I.W.; Collins, R.C. Histochemical changes in enzymes of energy metabolism in the dentate gyrus accompany deafferentation and synaptic reorganization. Neuroscience 1989, 33, 253–262. [Google Scholar]
- Czurko, A.; Hirase, H.; Csicsvari, J.; Buzsaki, G. Sustained activation of hippocampal pyramidal cells by ‘space clamping’ in a running wheel. Eur. J. Neurosci. 1999, 11, 344–352. [Google Scholar] [CrossRef]
- Liu, J.; Yeo, H.C.; Overvik-Douki, E.; Hagen, T.; Doniger, S.J.; Chu, D.W.; Ames, B.N. Chronically and acutely exercised rats: Biomarkers of oxidative stress and endogenous antioxidants. J. Appl. Physiol. 2000, 89, 21–28. [Google Scholar]
- Radak, Z.; Chung, H.Y.; Goto, S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic. Biol. Med. 2008, 44, 153–159. [Google Scholar]
- Radak, Z.; Taylor, A.W.; Ohno, H.; Goto, S. Adaptation to exercise-induced oxidative stress: From muscle to brain. Exerc. Immunol. Rev. 2001, 7, 90–107. [Google Scholar]
- Somani, S.M.; Ravi, R.; Rybak, L.P. Effect of exercise training on antioxidant system in brain regions of rat. Pharmacol. Biochem. Behav. 1995, 50, 635–639. [Google Scholar]
- Araya, R.; Uehara, T.; Nomura, Y. Hypoxia induces apoptosis in human neuroblastoma SK-N-MC cells by caspase activation accompanying cytochrome c release from mitochondria. FEBS Lett. 1998, 439, 168–172. [Google Scholar] [CrossRef]
- Thompson, K.J.; Bulinski, S.C.; Powell, S.K.; Sikorski, A.M.; Swain, R.A. Time-Dependent Expression of The Tyrosine Kinase Receptors Flk-1 and Flt-1 in the Cerebellum of the Exercised Rat. In Presented at the 30th Society of Neuroscience Annual Meeting, New Orleans, LA, USA, 4–9 November 2000.
- Hoppeler, H.; Billeter, R. Conditions for oxygen and substrate transport in muscles in exercising mammals. J. Exp. Biol. 1991, 160, 263–283. [Google Scholar]
- Swallow, J.G.; Garland, T., Jr.; Carter, P.A.; Zhan, W.Z.; Sieck, G.C. Effects of voluntary activity and genetic selection on aerobic capacity in house mice (Mus domesticus). J. Appl. Physiol. 1998, 84, 69–76. [Google Scholar]
- Wardlaw, G.M.; Kaplan, M.L.; Lanza-Jacoby, S. Effect of treadmill training on muscle oxidative capacity and accretion in young male obese and nonobese Zucker rats. J. Nutr. 1986, 116, 1841–1852. [Google Scholar]
- Chae, C.; Kim, H. Forced, moderate-intensity treadmill exercise suppresses apoptosis by increasing the level of NGF and stimulating phosphatidylinositol 3-kinase signaling in the hippocampus of induced aging rats. Neurochem. Int. 2009, 55, 208–213. [Google Scholar] [CrossRef]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science, 4th ed; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Hamburger, V. The history of the discovery of the nerve growth factor. J. Neurobiol. 1993, 24, 893–897. [Google Scholar]
- Ding, Y.H.; Li, J.; Zhou, Y.; Rafols, J.A.; Clark, J.C.; Ding, Y. Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr. Neurovasc. Res. 2006, 3, 15–23. [Google Scholar] [CrossRef]
- Ding, Y.H.; Luan, X.D.; Li, J.; Rafols, J.A.; Guthinkonda, M.; Diaz, F.G.; Ding, Y. Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke. Curr. Neurovasc. Res. 2004, 1, 411–420. [Google Scholar]
- Sun, Y.; Jin, K.; Xie, L.; Childs, J.; Mao, X.O.; Logvinova, A.; Greenberg, D.A. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 2003, 111, 1843–1851. [Google Scholar]
- Tang, K.; Xia, F.C.; Wagner, P.D.; Breen, E.C. Exercise-induced VEGF transcriptional activation in brain, lung, and skeletal muscle. Respir. Physiol. Neurobiol. 2010, 170, 16–22. [Google Scholar] [CrossRef]
- Berchtold, N.C.; Castello, N.; Cotman, C.W. Exercise and time-dependent benefits to learning and memory. Neuroscience 2010, 167, 588–597. [Google Scholar] [CrossRef]
- Gomez-Pinilla, F.; Vaynman, S.; Ying, Z. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur. J. Neurosci. 1008, 28, 2278–2287. [Google Scholar]
- Radak, Z.; Toldy, A.; Szabo, Z.; Siamilis, S.; Nyakas, C.; Silye, G.; Goto, S. The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain. Neurochem. Int. 2006, 49, 387–392. [Google Scholar]
- Lopez-Lopez, C.; LeRoith, D.; Torres-Aleman, I. Insulin-like growth factor-I is required for vessel remodeling in the adult brain. Proc. Natl. Acad. Sci. USA 2004, 101, 9833–9838. [Google Scholar]
- Ferrara, N. Vascular endothelial growth factor: Basic science and clinical progress. Endocr. Rev. 2004, 25, 581–611. [Google Scholar] [CrossRef]
- Ferrara, N.; Chen, H.; Davis-Smyth, T.; Gerber, H.; Nugyen, T.; Peers, D.; Schwall, R.H. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 1998, 4, 336. [Google Scholar] [CrossRef]
- Fraser, H.M.; Dickson, S.E.; Lunn, S.F.; Wulff, C.; Morris, K.D.; Carroll, V.A.; Bicknell, R. Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology 2000, 141, 995–1000. [Google Scholar]
- Levy, A.P.; Levy, N.S.; Wegner, S.; Goldberg, M.A. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. Biol. Chem. 1995, 270, 13333–13340. [Google Scholar] [CrossRef]
- Brown, L.F.; Yeo, K.; Berse, B.; Yeo, T.; Senger, D.R.; Dvorak, H.F.; van de Water, L. J. Exp. Med. 1992, 176, 1375–1379. [CrossRef]
- Zhang, F.; Oswald, T.F.; Lin, L.; Wang, S.; Lin, S.; Lineaweaver, W.C. Improvement of full-thickness skin graft survival by application of vascular endothelial growth factor in rats. Ann. Plast. Surg. 2008, 60, 589–593. [Google Scholar] [CrossRef]
- Folkman, J.; Watson, K.; Ingber, D.; Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989, 339, 58–61. [Google Scholar]
- Plate, K.H.; Breier, G.; Weich, H.A.; Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992, 359, 845–848. [Google Scholar]
- Rosenstein, J.M.; Mani, N.; Silverman, W.F.; Krum, J.M. Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc. Natl. Acad. Sci. USA 1998, 95, 7086–7091. [Google Scholar]
- Shalaby, F.; Rossant, J.; Yamaguchi, T.P.; Gertsenstein, M.; Wu, X.; Breitman, M.L.; Schuh, A.C. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995, 376, 62–66. [Google Scholar]
- Shibuya, M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J. Biochem. Mol. Biol. 2006, 39, 469–478. [Google Scholar]
- Millauer, B.; Wizigmann-Voos, S.; Schnurch, H.; Martinez, R.; Moller, N.P.H.; Risau, W.; Ullrich, A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 2003, 72, 835–846. [Google Scholar]
- Fong, G.; Rossant, J.; Gertsenstein, M.; Breitman, M.L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of the vascular endothelium. Nature 1995, 376, 66–70. [Google Scholar]
- Peters, K.G.; de Vries, C.; Williams, L.T. Vascular endothelial growth factor receptor expression during embyogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc. Natl. Acad. Sci. USA 1993, 90, 8915–8919. [Google Scholar] [CrossRef]
- Bulinski, S.C.; Thompson, K.J.; Powell, S.K.; Sikorski, A.M.; Swain, R.A. Increased Immunolabeling of Flk-1 Receptors in Primary Motor Cortex of the Adult Rat Following Exercise. In Presented at the 30th Society of Neuroscience Annual Meeting, New Orleans, LA, USA, 4–9 November 2000.
- Birot, O.J.G.; Koulmann, N.; Peinnequin, A.; Bigard, X.A. Exercise-induced expression of vascular endothelial growth factor mRNA in rat skeletal muscle is dependent on fibre type. J. Physiol. 2003, 552, 213–221. [Google Scholar]
- Lloyd, P.G.; Prior, B.M.; Yang, H.T.; Terjung, R.L. Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H1668–H1678. [Google Scholar]
- Olfert, I.M.; Breen, E.C.; Matheiu-Costello, O.; Wagner, P.D. Skeletal muscle capillarity and angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia. J. Appl. Physiol. 2001, 91, 1176–1184. [Google Scholar]
- Olfert, I.M.; Howlett, R.A.; Wagner, P.D.; Breen, E.C. Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1059–R1067. [Google Scholar] [CrossRef]
- Gustafsson, T.; Puntschart, A.; Kaijser, L.; Jansson, E.; Sundberg, C.J. Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 1999, 276, H679–H685. [Google Scholar]
- Marais, L.; Stein, D.J.; Daniels, W.M.U. Exercise increases BDNF levels in the striatum and decreases depressive-like behavior in chronically stressed rats. Metab. Brain Dis. 2009, 24, 587–597. [Google Scholar]
- Rasmussen, P.; Brassard, P.; Adser, H.; Pedersen, M.V.; Leick, L.; Hart, E.; Pilegaard, H. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 2009, 94, 1062–1069. [Google Scholar] [CrossRef]
- Zhu, S.; Pham, T.M.; Aberg, E.; Brene, S.; Winblad, B.; Mohammed, A.H.; Baumans, V. Neurotrophin levels and behaviour in BALB/c mice: Impact of intermittent exposure to individual housing and wheel running. Behav. Brain Res. 2006, 167, 1–8. [Google Scholar] [CrossRef]
- De la Rosa, E.J.; Arribas, A.; Frade, J.M.; Rodriguez-Tebar, A. Role of neurotrophins in the control of neural development: Neurotrophin-3 promotes both neuron differentiation and survival of cultured chick retinal cells. Neuroscience 1993, 58, 347–352. [Google Scholar]
- Janiga, T.A.; Rind, H.B.; von Bartheld, C.S. Differential effects of the trophic factors BDNF, NT-4, GDNF, and IGF-1 on the isthmo-optic nucleus in chick embryos. J. Neurobiol. 2000, 43, 289–303. [Google Scholar] [CrossRef]
- Maisonpierre, P.C.; Belluscio, L.; Friedman, B.; Alderson, R.F.; Wiegard, S.J.; Furth, M.E.; Yancopoulos, G.D. NT-3, BDNF, and NGF in the developing rat nervous system: Parallel as well as reciprocal patterns of expression. Neuron 1990, 5, 501–509. [Google Scholar]
- Adlard, P.A.; Perreau, V.M.; Engesser-Cesar, C.; Cotman, C.W. The timecourse of induction of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus following voluntary exercise. Neurosci. Lett. 2004, 363, 43–48. [Google Scholar]
- Hu, Y.; Wang, Y.; Guo, T.; Wei, W.; Sun, C.; Zhang, L.; Huang, J. Identification of brain-derived neurotrophic factor as a novel angiogenic protein in multiple myeloma. Cancer Genet. Cytogenet. 2007, 178, 1–10. [Google Scholar]
- Farmer, J.; Zhao, X.; van Praag, H.; Wodtke, K.; Gage, F.H.; Christie, B.R. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 2004, 124, 71–79. [Google Scholar] [CrossRef]
- Levi-Montalcini, R.; Cohen, S. In vitro and in vivo effects of a nerve-growth stimulating agent isolated from snake venom. Proc. Natl. Acad. Sci. USA 1956, 42, 571–574. [Google Scholar]
- Romon, R.; Adriaenssens, E.; Lagadec, C.; Germain, E.; Hondermarck, H.; le Bourhis, X. Nerve growth factor promotes breast cancer angiogenesis by activating multiple pathways. Mol. Cancer 2010, 9, 157–170. [Google Scholar]
- Cantarella, G.; Lempereur, L.; Presta, M.; Ribatti, D.; Lombardo, G.; Lazarovici, P.; Bernardini, R. Nerve growth factor-endothelial cell interaction leads to angiogenesis in vivo and in vitro. FASEB J. 2002, 16, 1307–1309. [Google Scholar]
- Emanueli, C.; Salis, M.B.; Pinna, A.; Graiani, G.; Manni, L.; Madeddu, P. Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation 2002, 106, 2257–2262. [Google Scholar]
- Seo, K.; Choi, J.; Park, M.; Rhee, C. Angiogenesis effects of nerve growth factor (NGF) on rat corneas. J. Vet. Sci. 2001, 2, 125–130. [Google Scholar]
- Russo, V.C.; Gluckman, P.D.; Feldman, E.L.; Werther, G.A. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr. Rev. 2005, 26, 916–943. [Google Scholar]
- Aizenman, Y.; de Vellis, J. Brain neurons develop in a serum and glial free environment: Effects of transferrin, insulin, insulin-like growth factor-I and thyroid hormone on neuronal survival, growth and differentiation. Brain Res. 1987, 406, 32–42. [Google Scholar] [CrossRef]
- Dore, S.; Kar, S.; Quirion, R. Insulin-like growth factor I protects and rescues hippocampal neurons against β-amyloid- and human amilyn-induced toxicity. Proc. Natl. Acad. Sci. USA 1997, 94, 4772–4777. [Google Scholar]
- Trejo, J.L.; Carro, E.; Torres-Aleman, I. Circulating insulin-like growth factor-I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 2001, 21, 1628–1634. [Google Scholar]
- Glasper, E.R.; Llorens-Martin, M.V.; Leuner, B.; Gould, E.; Trejo, J.L. Blockade of insulin-like growth factor-I has complex effects on structural plasticity in the hippocampus. Hippocampus 2010, 20, 706–712. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Swain, R.A.; Berggren, K.L.; Kerr, A.L.; Patel, A.; Peplinski, C.; Sikorski, A.M. On Aerobic Exercise and Behavioral and Neural Plasticity. Brain Sci. 2012, 2, 709-744. https://doi.org/10.3390/brainsci2040709
Swain RA, Berggren KL, Kerr AL, Patel A, Peplinski C, Sikorski AM. On Aerobic Exercise and Behavioral and Neural Plasticity. Brain Sciences. 2012; 2(4):709-744. https://doi.org/10.3390/brainsci2040709
Chicago/Turabian StyleSwain, Rodney A., Kiersten L. Berggren, Abigail L. Kerr, Ami Patel, Caitlin Peplinski, and Angela M. Sikorski. 2012. "On Aerobic Exercise and Behavioral and Neural Plasticity" Brain Sciences 2, no. 4: 709-744. https://doi.org/10.3390/brainsci2040709
APA StyleSwain, R. A., Berggren, K. L., Kerr, A. L., Patel, A., Peplinski, C., & Sikorski, A. M. (2012). On Aerobic Exercise and Behavioral and Neural Plasticity. Brain Sciences, 2(4), 709-744. https://doi.org/10.3390/brainsci2040709