Multisensory Integration and Child Neurodevelopment
Abstract
:1. Introduction to Multisensory Information
2. MSI and Development
2.1. Innate or Acquired
2.1.1. Early Integration Approach
2.1.2. The Late Integration Approach
2.2. Neuroanatomical Correlated of MSI and Pediatric Brain Activity
3. MSI and Cognitive Development
4. MSI in Neurodevelopmental Disorders
4.1. MSI and Dyslexia
4.1.1. MSI and the Phonological-Deficit and Temporal Processing Hypothesis
4.1.2. Other Sensory Deficits in Dyslexia
4.1.3. Anatomical and Structural Differences in Dyslexia and MSI
4.2. MSI and Attention Deficit Disorder with or without Hyperactivity (ADD/ADHD)
4.3. Neuroanatomical Model for ADHD
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Simon, S.A. Merging of the senses. Front. Neurosci. 2008, 2, 13–14. [Google Scholar] [CrossRef] [PubMed]
- Press, C.; Taylor-Clarke, M.; Kennett, S.; Haggard, P. Visual enhancement of touch in spatial body representation. Exp. Brain Res. 2004, 154, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Diederich, A.; Colonius, H. Why two “Distractors” are better than one: Modeling the effect of non-target auditory and tactile stimuli on visual saccadic reaction time. Exp. Brain Res. 2007, 179, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Lippert, M.; Logothetis, N.K.; Kayser, C. Improvement of visual contrast detection by a simultaneous sound. Brain Res. 2007, 1173, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Kennett, S.; Taylor-Clarke, M.; Haggard, P. Noninformative vision improves the spatial resolution of touch in humans. Curr. Biol. 2001, 11, 1188–1191. [Google Scholar] [CrossRef] [PubMed]
- Gillmeister, H.; Eimer, M. Tactile enhancement of auditory detection and perceived loudness. Brain Res. 2007, 1160, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Clarke, M.; Kennett, S.; Haggard, P. Persistence of visual-tactile enhancement in humans. Neurosci. Lett. 2004, 354, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Schürmann, M.; Caetano, G.; Jousmäki, V.; Hari, R. Hands help hearing: Facilitatory audiotactile interaction at low sound-intensity levels. J. Acoust. Soc. Am. 2004, 115, 830–832. [Google Scholar] [CrossRef] [PubMed]
- Seitz, A.R.; Kim, R.; Shams, L. Sound facilitates visual learning. Curr. Biol. 2006, 16, 1422–1427. [Google Scholar] [CrossRef] [PubMed]
- Ro, T.; Wallace, R.; Hagedorn, J.; Farne, A.; Pienkos, E. Visual enhancing of tactile perception in the posterior parietal cortex. J. Cognit. Neurosci. 2004, 16, 24–30. [Google Scholar] [CrossRef]
- Whiteley, L.; Kennett, S.; Taylor-Clarke, M.; Haggard, P. Facilitated processing of visual stimuli associated with the body. Perception 2004, 33, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Stein, B.E.; Meredith, M. Multisensory integration. Ann. N. Y. Acad. Sci. 1990, 608, 51–70. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.W.; Sloutsky, V.M. Development of cross-modal processing. In Wiley Interdisciplinary Reviews: Cognitive Science; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 1, pp. 135–141. [Google Scholar]
- Bower, T.G.; Broughton, J.M.; Moore, M.K. The coordination of visual and tactual input in infants. Percept. Psychophys. 1970, 8, 51–53. [Google Scholar] [CrossRef]
- Walker-Andrews, A.; Lewkowicz, D.J.; Lickliter, R. Taxonomy for intermodal relations. In The Development of Intersensory Perception: Comparative Perspectives; Psychology Press: Hillsdale, NJ, USA, 2013; pp. 39–56. [Google Scholar]
- Bahrick, L.E.; Lickliter, R. Intersensory redundancy guides attentional selectivity and perceptual learning in infancy. Dev. Psychol. 2000, 36, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Marks, L.E. The Unity of the Senses: Interrelations among the Modalities; Academic Press: Waltham, MA, USA, 1978. [Google Scholar]
- Bahrick, L.E. Infants’ perceptual differentiation of amodal and modality-specific audio-visual relations. J. Exp. Child Psychol. 1992, 53, 180–199. [Google Scholar] [CrossRef] [PubMed]
- Bahrick, L.E. The development of infants’ sensitivity to arbitrary intermodal relations. Ecol. Psychol. 1994, 6, 111–123. [Google Scholar] [CrossRef]
- Streri, A. Cross-modal recognition of shape from hand to eyes in human newborns. Somatosens. Mot. Res. 2003, 20, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Streri, A.; Gentaz, E. Cross-modal recognition of shape from hand to eyes and handedness in human newborns. Neuropsychologia 2004, 42, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Sann, C.; Streri, A. Perception of object shape and texture in human newborns: Evidence from cross-modal transfer tasks. Dev. Sci. 2007, 10, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Meltzoff, A.N.; Borton, R.W. Intermodal matching in human neonates. Nature 1979, 282, 403–404. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.J.; Walker, A.S. Developmental of knowledge of visual-tactual affordances of substances. Child Dev. 1984, 55, 453–451. [Google Scholar] [CrossRef] [PubMed]
- Turkewitz, G.; Gardner, J.M.; Lewkowicz, D.J. Sensory/Perceptual functioning during early infancy: The implications of a quantitative basis for responding. In Behavioral Evolution & Integrative Levels; Greenberg, G., Tobach, E., Eds.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1984; pp. 167–195. [Google Scholar]
- Lewkowicz, D.J.; Turkewitz, G. Cross-modal equivalence in early infancy: Auditory-visual intensity matching. Dev. Psychol. 1980, 16, 597–607. [Google Scholar] [CrossRef]
- Gori, M.; del Viva, M.; Sandini, G.; Burr, D.C. Young children do not integrate visual and haptic form information. Curr. Biol. 2008, 18, 694–698. [Google Scholar] [CrossRef] [PubMed]
- Bahrick, L.E. Increasing specificity in perceptual development: Infants’ detection of nested levels of multimodal stimulation. J. Exp. Child Psychol. 2001, 79, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Bahrick, L.E.; Pickens, J.N. Amodal relations: The basis for intermodal perception and learning. In The Development of Intersensory Perception: Comparative Perspectives; Lewkowicz, D., Lickliter, R., Eds.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1994; pp. 205–233. [Google Scholar]
- Lewkowicz, D.J. Perception of auditory-visual temporal synchrony in human infants. J. Exp. Psychol. 1996, 22, 1094–1106. [Google Scholar]
- Morrongiello, B.A.; Fenwick, K.; Nutley, T. Developmental changes in associations between auditory-visual events. Infant Behav. Dev. 1998, 21, 613–626. [Google Scholar] [CrossRef]
- Slater, A.; Quinn, P.C.; Brown, E.; Hayes, R. Intermodal perception at birth: Intersensory redundancy guides newborn infants’ learning of arbitrary auditory-visual pairings. Dev. Sci. 1999, 2, 333–338. [Google Scholar] [CrossRef]
- Bahrick, L.E.; Flom, R.; Lickliter, R. Intersensory redundancy facilitates discrimination of tempo in 3-month-old infants. Dev. Psychobiol. 2002, 41, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Scheier, C.; Lewkowicz, D.J.; Shimojo, S. Sound induces perceptual reorganization of an ambiguous motion display in human infants. Dev. Sci. 2003, 6, 233–241. [Google Scholar] [CrossRef]
- Spelke, E.S. Perceiving bimodally specified events in infancy. Dev. Psychol. 1979, 15, 626–636. [Google Scholar] [CrossRef]
- Kohl, P.K.; Meltzoff, A.N. The bimodal perception of speech in infancy. Science 1982, 218, 1138–1141. [Google Scholar] [CrossRef] [PubMed]
- Walton, G.E.; Bower, T.G.R. Amodal representation of speech in infants. Infant Behav. Dev. 1993, 16, 233–243. [Google Scholar] [CrossRef]
- Patterson, M.L.; Werker, J.F. Matching phonetic information in lips and voice is robust in 4.5-month-old infants. Infant Behav. Dev. 1999, 22, 237–247. [Google Scholar] [CrossRef]
- Patterson, M.L.; Werker, J.F. Two-month-old infants match phonetic information in lips and voice. Dev. Sci. 2003, 6, 191–196. [Google Scholar] [CrossRef]
- Dodd, B. Lip reading in Infants: Attention to speech presented in- & out-of synchrony. Cogn. Psychol. 1979, 11, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Flom, R.; Bahrick, L.E. The development of infant discrimination of affect in multimodal and unimodal stimulation: The role of intersensory redundancy. Dev. Psychol. 2007, 43, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Caron, A.J.; Caron, R.F.; MacLean, D.J. Infant discrimination of naturalistic emotional expressions: The role of face and voice. Child Dev. 1988, 59, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Paus, T. Mapping brain development and aggression. Can. Child Adolesc. Psychiatr. Rev. 2005, 14, 10–15. [Google Scholar] [PubMed]
- Putzar, L.; Goerendt, I.; Lange, K.; Rösler, F.; Röder, B. Early visual deprivation impairs multisensory interactions in humans. Nat. Neurosci. 2007, 10, 1243–1245. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Rowland, B.A.; Stein, B.E. Initiating the development of multisensory integration by manipulating sensory experience. J. Neurosci. 2010, 30, 4904–4913. [Google Scholar] [CrossRef] [PubMed]
- Hooker, D. The Prenatal Origin of Behavior; Lawrence, University of Kansas Press: Oxford, UK, 1952; pp. 56–90. [Google Scholar]
- Iyengar, S. Development of the human auditory system. J. Indian Inst. Sci. 2012, 92, 427–440. [Google Scholar]
- Atkinson, J. Human visual development over the first 6 months of life: A review and a hypothesis. Hum. Neurobiol. 1983, 3, 61–74. [Google Scholar]
- Brown, A.M.; Dobson, V.; Maier, J. Visual acuity of human infants at scotopic, mesopic & photopic luminances. Vis. Res. 1987, 27, 1845–1858. [Google Scholar] [CrossRef] [PubMed]
- Werner, L.A.; Marean, G.C. Human Auditory Development; Westview Press: Boulder, CO, USA, 1996; pp. 89–131. [Google Scholar]
- Morrongiello, B.A.; Humphrey, G.K.; Timney, B.; Choi, J.; Rocca, P.T. Tactual object exploration & recognition in blind and sighted children. Perception 1994, 23, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Rentschler, I.; Jüttner, M.; Osman, E.; Müller, A.; Caelli, T. Development of configural 3D object recognition. Behav. Brain Res. 2004, 149, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfar, A.A. The multisensory roles for auditory cortex in primate vocal communication. Hear. Res. 2009, 258, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Neil, P.A.; Chee-Ruiter, C.; Scheier, C.; Lewkowicz, D.J.; Shimojo, S. Development of multisensory spatial integration & perception in humans. Dev. Sci. 2006, 9, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Ernst, M.O.; Banks, M.S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 2002, 415, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M.; Jones, P.; Bedford, R.; Braddick, O. Development of cue integration in human navigation. Curr. Biol. 2008, 18, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M.; Bedford, R.; Mareschal, D. Fusion of visual cues is not mandatory in children. Proc. Natl. Acad. Sci. 2010, 107, 17041–17046. [Google Scholar] [CrossRef] [PubMed]
- Gori, M.; Sandini, G.; Burr, D. Development of visuo-auditory integration in space and time. Front. Integr. Neurosci. 2012, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Burr, D.; Gori, M. Multisensory integration develops late in humans. In Frontiers in the Neural Bases of Multisensory Processes; Murray, M.M., Wallace, M.T., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 345–363. [Google Scholar]
- Driver, J.; Spence, C. Multisensory perception: Beyond modularity and convergence. Curr. Biol. 2000, 10. [Google Scholar] [CrossRef]
- Shams, L.; Kamitani, Y.; Shimojo, S. Visual illusion induced by sound. Cogn. Brain Res. 2002, 14, 147–152. [Google Scholar] [CrossRef]
- Van Wassenhove, V.; Grant, K.W.; Poeppel, D. Temporal window of integration in auditory-visual speech perception. Neuropsychologia 2007, 45, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Hillock, A.R.; Powers, A.R.; Wallace, M.T. Binding of sights and sounds: Age-related changes in multisensory temporal processing. Neuropsychologia 2011, 49, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Barutchu, A.; Crewther, D.P.; Crewther, S.G. The race that precedes coactivation: Development of multisensory facilitation in children. Dev. Sci. 2009, 12, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Barutchu, A.; Danaher, J.; Crewther, S.G.; Innes-Brown, H.; Shivdasani, M.N.; Paolini, A.G. Audiovisual integration in noise by children and adults. J. Exp. Child Psychol. 2010, 105, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L.; Hartwich-Young, R. The deep layers of the superior colliculus. Rev. Oculomot. Res. 1989, 3, 213–255. [Google Scholar] [PubMed]
- Burnett, L.R.; Stein, B.E.; Chaponis, D.; Wallace, M.T. Superior colliculus lesions preferentially disrupt multisensory orientation. Neuroscience 2004, 124, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Lomber, S.G.; Payne, B.R.; Cornwell, P. Role of the superior colliculus in analyses of space: Superficial and intermediate layer contributions to visual orienting, auditory orienting, and visuospatial discriminations during unilateral and bilateral deactivations. J. Comp. Neurol. 2001, 441, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Jay, M.F.; Sparks, D.L. Sensorimotor integration in the primate superior colliculus. I. Motor convergence. J. Neurophysiol. 1987, 57, 22–34. [Google Scholar] [PubMed]
- Jay, M.F.; Sparks, D.L. Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. J. Neurophysiol. 1987, 57, 35–55. [Google Scholar] [PubMed]
- Stein, B.E.; Meredith, M.A.; Wallace, M.T. Development and neural basis of multisensory integration. In The Development of Intersensory Perception: Comparative Perspectives; David, J., Lewkowicz, D.J., Lickliter, R., Eds.; Lawrence Elbaum Associates: Hillsdale, NJ, USA, 1994; pp. 81–105. [Google Scholar]
- Wallace, M.T.; Stein, B.E. Development of multisensory neurons & multisensory integration in cat superior colliculus. J. Neurosci. 1997, 17, 2429–2444. [Google Scholar] [PubMed]
- Wallace, M.T.; Carriere, B.N.; Perrault, T.J.; Vaughan, J.W.; Stein, B.E. The development of cortical multisensory integration. J. Neurosci. 2006, 26, 11844–11849. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.T.; McHaffie, J.G.; Stein, B.E. Visual response properties and visuotopic representation in the newborn monkey superior colliculus. J. Neurophysiol. 1997, 78, 2732–2741. [Google Scholar] [PubMed]
- Wallace, M.T.; Stein, B.E. Sensory organization of the superior colliculus in cat and monkey. Prog. Brain Res. 1996, 112, 301–311. [Google Scholar] [PubMed]
- Wallace, M.T.; Stein, B.E. Early experience determines how the senses will interact. J. Neurophysiol. 2007, 97, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Hensch, T.K. Critical period regulation. Ann. Rev. Neurosci. 2004, 27, 549–579. [Google Scholar] [CrossRef] [PubMed]
- Streri, A.; de Hevia, M.D.D.; Izard, V.; Coubart, A. What do we know about neonatal cognition? Behav. Sci. 2013, 3, 154–169. [Google Scholar] [CrossRef] [PubMed]
- Meredith, M.A.; Stein, B.E. Interactions among converging sensory inputs in the superior colliculus. Science 1983, 221, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Molholm, S.; Sehatpour, P.; Mehta, A.D.; Shpaner, M.; Gomez-Ramirez, M.; Ortigue, S.; Dyke, J.P.; Schwartz, T.H.; Foxe, J.J. Audio-visual multisensory integration in superior parietal lobule revealed by human intracranial recordings. J. Neurophysiol. 2006, 96, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Eördegh, G.; Paróczy, Z.; Márkus, Z.; Benedek, G. Multisensory integration in the basal ganglia. Eur. J. Neurosci. 2006, 24, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, T.; Diltz, M.D.; Averbeck, B.B.; Romanski, L.M. Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex. J. Neurosci. 2006, 26, 11138–11147. [Google Scholar] [CrossRef] [PubMed]
- Falchier, A.; Clavagnier, S.; Barone, P.; Kennedy, H. Anatomical evidence of multimodal integration in primate striate cortex. J. Neurosci. 2002, 22, 5749–5759. [Google Scholar] [PubMed]
- Foxe, J.J.; Schroeder, C.E. The case for feedforward multisensory convergence during early cortical processing. Neuroreport 2005, 16, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Driver, J.; Noesselt, T. Multisensory interplay reveals crossmodal influences on “sensory-specific” brain regions, neural responses, and judgments. Neuron 2008, 57, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfar, A.A.; Schroeder, C.E. Is neocortex essentially multisensory? Trends Cogn. Sci. 2006, 10, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, G.D.; Bahrick, L.E.; Lickliter, R.; Guy, M.W. Neural correlates of intersensory processing in 5-month-old infants. Dev. Psychobiol. 2014, 56, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Brandwein, A.B.; Foxe, J.J.; Russo, N.N.; Altschuler, T.S.; Gomes, H.; Molholm, S. The development of audiovisual multisensory integration across childhood and early adolescence: A high-density electrical mapping study. Cereb. Cortex 2011, 21, 1042–1055. [Google Scholar] [CrossRef] [PubMed]
- Brett-Green, B.A.; Miller, L.J.; Gavin, W.J.; Davies, P.L. Multisensory integration in children: A preliminary ERP study. Brain Res. 2008, 1242, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Stephen, J.M.; Romero, L.; Zhang, T.; Okada, Y. Auditory and somatosensory integration in infants. Int. Congr. Ser. 2007, 1300, 107–110. [Google Scholar] [CrossRef]
- Bremner, A.J.; Spence, C. Unimodal experience constrains while multisensory experience enriches cognitive construction. Behav. Brain Sci. 2008, 31, 335–336. [Google Scholar] [CrossRef]
- Jordan, K.E.; Suanda, S.H.; Brannon, E.M. Intersensory redundancy accelerates preverbal numerical competence. Cognition 2008, 108, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Feigenson, L. Predicting sights from sounds: 6-month-olds’ intermodal numerical abilities. J. Exp. Child Psychol. 2011, 110, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Jordan, K.E.; Baker, J. Multisensory information boosts numerical matching abilities in young children. Dev. Sci. 2011, 14, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Bahrick, L.E.; Lickliter, R. Intersensory redundancy guides early perceptual and cognitive development. In Advances in Child Development and Behavior; Academic Press: San Diego, CA, USA, 2002; Volume 30, pp. 153–187. [Google Scholar]
- Gibson, E.J. Principles of Perceptual Learning and Development; Appleton: New York, NY, USA, 1969. [Google Scholar]
- Thelen, E.; Smith, L. A Dynamic Systems Approach to the Development of Cognition and Action; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Birch, H.G.; Belmont, L. Auditory-visual integration in normal and retarded readers. Am. J. Orthopsychiatr. 1964, 34, 852–861. [Google Scholar] [CrossRef]
- Rose, S.A.; Feldman, J.F.; Wallace, I.F. Infant information processing in relation to six-year cognitive outcomes. Child Dev. 1992, 63, 1126–1141. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.A.; Feldman, J.F.; Futterweit, L.R.; Jankowski, J.J. Continuity in tactual-visual cross-modal transfer: Infancy to 11 years. Dev. Psychol. 1998, 34, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Barutchu, A.; Crewther, S.G.; Fifer, J.; Shivdasani, M.N.; Innes-Brown, H.; Toohey, S.; Danaher, J.; Paolini, A.G. The relationship between multisensory integration and IQ in children. Dev. Psychol. 2011, 47, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Ayres, A.J. Sensory Integration and Learning Disabilities; Western Psychological Services: Los Angeles, CA, USA, 1972. [Google Scholar]
- Children and Neurodevelopmental Behavioral Disorders (NDBID). World Health Organization Training Package for the Health Sector. Available online: http://www.who.int/ceh/capacity/neurodevelopmental.pdf (accessed on 20 May 2014).
- McManus, B.M.; Robert, S.A.; Albanese, A.; Sadek-Badawi, M.; Palta, M. Relationship between neighborhood disadvantage and social function of Wisconsin 2-and 3-year-olds born at very low birth weight. Arch. Pediatr. Adolesc. Med. 2011, 165, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Waber, D.P. Rethinking Learning Disabilities: Understanding Children Who Struggle in School; The Guilford Press: New York, NY, USA, 2010; pp. 3–241. [Google Scholar]
- American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders (DSM-V), 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013; pp. 5–947. [Google Scholar]
- Shaywitz, S.E. Dyslexia. N. Engl. J. Med. 1998, 338, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Silverman, L.K. Upside-Down Brilliance: The Visual-Spatial Learner; The Institute for the Study of Advanced Development: Denver, CO, USA, 2005. [Google Scholar]
- Fletcher, J.M. Dyslexia: The evolution of a scientific concept. J. Int. Neuropsychol. Soc. 2009, 15, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Ramus, F. Developmental dyslexia: Specific phonological deficit or general sensorimotor dysfunction? Curr. Opin. Neurobiol. 2003, 13, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Snowling, M.J. From language to reading and dyslexia1. Dyslexia 2001, 7, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Vellutino, F.R.; Fletcher, J.M.; Snowling, M.J.; Scanlon, D.M. Specific reading disability (dyslexia): What have we learned in the past four decades? J. Child Psychol. Psychiatry 2004, 45, 2–40. [Google Scholar] [CrossRef] [PubMed]
- Berninger, V.W.; Raskind, W.; Richards, T.; Abbott, R.; Stock, P. A multidisciplinary approach to understanding developmental dyslexia within working-memory architecture: Genotypes, phenotypes, brain, and instruction. Dev. Neuropsychol. 2008, 33, 707–744. [Google Scholar] [CrossRef] [PubMed]
- Menghini, D.; Finzi, A.; Carlesimo, G.A.; Vicari, S. Working memory impairment in children with developmental dyslexia: Is it just a phonological deficity? Dev. Neuropsychol. 2011, 36, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Helland, T.; Asbjørnsen, A. Executive functions in dyslexia. Child Neuropsychol. 2000, 6, 37–48. [Google Scholar] [CrossRef]
- Brosnan, M.; Demetre, J.; Hamill, S.; Robson, K.; Shepherd, H.; Cody, G. Executive functioning in adults and children with developmental dyslexia. Neuropsychologia 2002, 40, 2144–2155. [Google Scholar] [CrossRef] [PubMed]
- Reiter, A.; Tucha, O.; Lange, K.W. Executive functions in children with dyslexia. Dyslexia 2005, 11, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Altemeier, L.E.; Abbott, R.D.; Berninger, V.W. Executive functions for reading and writing in typical literacy development and dyslexia. J. Clin. Exp. Neuropsychol. 2008, 30, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Thomson, M. Monitoring dyslexics’ intelligence and attainments: A follow-up study. Dyslexia 2003, 9, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Willcutt, E.G.; Pennington, B.F.; Chhabildas, N.A.; Olson, R.K.; Hulslander, J.L. Neuropsychological analyses of comorbidity between RD and ADHD: In search of the common deficit. Dev. Neuropsychol. 2005, 27, 35–78. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, M.A.; Pennington, B.F.; Yerys, B.E.; Scott, A.; Boada, R.; Willcutt, E.G.; Olson, R.K.; DeFries, J.C. Processing speed deficits in attention deficit/hyperactivity disorder and reading disability. J. Abnorm. Child Psychol. 2006, 34, 585–602. [Google Scholar] [CrossRef] [PubMed]
- Marzocchi, G.M.; Ornaghi, S.; Barboglio, S. What are the causes of the attention deficits observed in children with dyslexia? Child Neuropsychol. 2009, 15, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Stanovich, K.E. Explaining the differences between the dyslexic and the garden-variety poor reader: The phonological-core variable-difference model. J. Learn. Disabil. 1988, 21, 590–604. [Google Scholar] [CrossRef] [PubMed]
- Pennington, B.F.; Gilger, J.W.; Pauls, D.; Smith, S.A.; Smith, S.D.; DeFries, J.C. Evidence for major gene transmission of developmental dyslexia. JAMA 1991, 266, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Tallal, P.; Miller, S.; Fitch, R.H. Neurobiological basis of speech: A case for the preeminence of temporal processing. Ann. N. Y. Acad. Sci. 1993, 682, 27–47. [Google Scholar] [CrossRef] [PubMed]
- Massaro, D.W.; Cohen, M.M.; Smeele, P.M. Perception of asynchronous and conflicting visual and auditory speech. J. Acoust. Soc. Am. 1996, 100, 1777–1786. [Google Scholar] [CrossRef] [PubMed]
- Mayringer, H.; Wimmer, H. Pseudoname learning by German-speaking children with dyslexia: Evidence for a phonological learning deficit. J. Exp. Child Psychol. 2000, 75, 116–133. [Google Scholar] [CrossRef] [PubMed]
- Windfuhr, K.L.; Snowling, M.J. The relationship between paired associate learning and phonological skills in normally developing readers. J. Exp. Child Psychol. 2001, 80, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Share, D.L. Phonological recoding and self-teaching: Sine qua non of reading acquisition. Cognition 1995, 55, 151–218. [Google Scholar] [CrossRef] [PubMed]
- Ehri, L.C. Development of sight word reading: Phases and findings. In The Science of Reading: A Handbook; Snowling, M.J., Hulme, C., Eds.; Blackwell Publishing: Oxford, UK, 2005; pp. 135–145. [Google Scholar]
- Ziegler, J.C.; Pech-Georgel, C.; Dufau, S.; Grainger, J. Rapid processing of letters, digits and symbols: What purely visual-attentional deficit in developmental dyslexia? Dev. Sci. 2010, 13. [Google Scholar] [CrossRef]
- Blau, V.; Reithler, J.; van Atteveldt, N.; Seitz, J.; Gerretsen, P.; Goebel, R.; Blomert, L. Deviant processing of letters and speech sounds as proximate cause of reading failure: A functional magnetic resonance imaging study of dyslexic children. Brain 2010, 133, 868–879. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Cohen, H. Influence of auditory-verbal, visual-verbal, visual, and visual-visual processing speed on reading and spelling at the end of Grade 1. Brain Cogn. 2005, 57, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.; Walsh, V. To see but not to read; the magnocellular theory of dyslexia. Trends Neurosci. 1997, 20, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.; Hartnegg, K.; Mokler, A. Dynamic visual perception of dyslexic children. Perception 2000, 29, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Laasonen, M.; Virsu, V.J. Temporal order and processing acuity of visual, auditory, and tactile perception in developmentally dyslexic young adults. Cogn. Affect. Behav. Neurosci. 2001, 1, 394–410. [Google Scholar] [CrossRef] [PubMed]
- Stein, J. The magnocellular theory of developmental dyslexia. Dyslexia 2001, 7, 12–36. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.; Hartnegg, K. On the development of low-level auditory discrimination and deficits in dyslexia. Dyslexia 2004, 10, 105–118. [Google Scholar] [CrossRef] [PubMed]
- McGurk, H.; MacDonald, J. Hearing lips & seeing voices. Nature 1976, 264, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Hayes, E.A.; Tiippana, K.; Nicol, T.G.; Sams, M.; Kraus, N. Integration of heard and seen speech: A factor in learning disabilities in children. Neurosci. Lett. 2003, 351, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.A.; Feldman, J.F.; Jankowski, J.J.; Futterweit, L.R. Visual and auditory temporal processing, cross-modal transfer, and reading. J. Learn. Disabil. 1999, 32, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Laasonen, M.; Tomma-Halme, J.; Lahti-Nuuttila, P.; Service, E.; Virsu, V. Rate of information segregation in developmentally dyslexic children. Brain Lang. 2000, 75, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.; Quercia, P.; Michel, C.; Pozzo, T.; Bonnetblanc, F. Cognitive demands impair postural control in developmental dyslexia: A negative effect that can be compensated. Neurosci. Lett. 2009, 462, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Bucci, M.P.; Gerard, C.L.; Bui-Quoc, E. The effect of a cognitive task on the postural control of dyslexic children. Res. Dev. Disabil. 2013, 34, 3727–3735. [Google Scholar] [CrossRef] [PubMed]
- Barela, J.A.; Dias, J.L.; Godoi, D.; Viana, A.R.; de Freitas, P.B. Postural control and automaticity in dyslexic children: The relationship between visual information and body sway. Res. Dev. Disabil. 2011, 32, 1814–1821. [Google Scholar] [CrossRef] [PubMed]
- Quercia, P.; Demougeot, L.; Dos Santos, M.; Bonnetblanc, F. Integration of proprioceptive signals and attentional capacity during postural control are impaired but subject to improvement in dyslexic children. Exp. Brain Res. 2011, 209, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Welcome, S.E.; Chiarello, C.; Thompson, P.M.; Sowell, E.R. Reading skill is related to individual differences in brain structure in college students. Hum. Brain Mapp. 2011, 32, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Temple, E.; Poldrack, R.A.; Salidis, J.; Deutsch, G.K.; Tallal, P.; Merzenich, M.M.; Gabrieli, J.D. Disrupted neural responses to phonological and orthographic processing in dyslexic children: An fMRI study. Neuroreport 2001, 12, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Simos, P.G.; Breier, J.I.; Fletcher, J.M.; Bergman, E.; Papanicolaou, A.C. Cerebral mechanisms involved in word reading in dyslexic children: A magnetic source imaging approach. Cereb. Cortex 2000, 10, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Simos, P.G.; Breier, J.I.; Fletcher, J.M.; Foorman, B.R.; Bergman, E.; Fishbeck, K.; Papanicolaou, A.C. Brain activation profiles in dyslexic children during non-word reading: A magnetic source imaging study. Neurosci. Lett. 2000, 290, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Van Atteveldt, N.; Formisano, E.; Goebel, R.; Blomert, L. Integration of letters and speech sounds in the human brain. Neuron 2004, 43, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Van Atteveldt, N.M.; Formisano, E.; Blomert, L.; Goebel, R. The effect of temporal asynchrony on the multisensory integration of letters and speech sounds. Cereb Cortex 2007, 4, 962–974. [Google Scholar]
- Georgiewa, P.; Rzanny, R.; Gaser, C.; Gerhard, U.J.; Vieweg, U.; Freesmeyer, D.; Mentzel, H.J.; Kaiser, W.A.; Blanz, B. Phonological processing in dyslexic children: A study combining functional imaging and event related potentials. Neurosci. Lett. 2002, 318, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Maisog, J.M.; Einbinder, E.R.; Flowers, D.L.; Turkeltaub, P.E.; Eden, G.F. A meta-analysis of functional neuroimaging studies of dyslexia. Ann. N. Y. Acad. Sci. 2008, 1145, 237–259. [Google Scholar] [CrossRef] [PubMed]
- Gabrieli, J.D. Dyslexia: A new synergy between education and cognitive neuroscience. Science 2009, 325, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Eckert, M.A.; Leonard, C.M.; Richards, T.L.; Aylward, E.H.; Thomson, J.; Berninger, V.W. Anatomical correlates of dyslexia: Frontal and cerebellar findings. Brain 2003, 126, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Shaywitz, S.E.; Shaywitz, B.A.; Pugh, K.R.; Fulbright, R.K.; Constable, R.T.; Mencl, W.E.; Shankweiler, D.P.; Liberman, A.M.; Skudlarski, P.; Fletcher, J.M.; et al. Functional disruption in the organization of the brain for reading in dyslexia. Proc. Natl. Acad. Sci. 1998, 95, 2636–2641. [Google Scholar] [CrossRef] [PubMed]
- Pugh, K.R.; Mencl, W.E.; Shaywitz, B.A.; Shaywitz, S.E.; Fulbright, R.K.; Constable, R.T.; Skudlarski, P.; Marchione, K.E.; Jenner, A.R.; Fletcher, J.M.; et al. The angular gyrus in developmental dyslexia: Task-specific differences in functional connectivity within posterior cortex. Psychol. Sci. 2000, 11, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, R.; Kuniyoshi, L.S. Learning letters in adulthood: Direct visualization of cortical plasticity for forming a new link between orthography and phonology. Neuron 2004, 42, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Schachar, R. The MTA Study: Implications for medication management. ADHD Rep. 2000, 8, 2–6. [Google Scholar]
- Goldman, L.S.; Genel, M.; Bezman, R.J.; Slanetz, P.J. Diagnosis and treatment of attention-deficit/hyperactivity disorder in children and adolescents. JAMA 1998, 279, 1100–1107. [Google Scholar] [CrossRef] [PubMed]
- Mangeot, S.D.; Miller, L.J.; McIntosh, D.N.; McGrath-Clarke, J.; Simon, J.; Hagerman, R.J.; Goldson, E. Sensory modulation dysfunction in children with attention-deficit-hyperactivity disorder. Dev. Med. Child Neurol. 2001, 43, 399–406. [Google Scholar] [PubMed]
- Willcutt, E.G. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: A meta-analytic review. Neurotherapeutics 2012, 9, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Pennington, B.F.; Ozonoff, S. Executive functions and developmental psychopathology. J. Child Psychol. Psychiatry 1996, 37, 51–87. [Google Scholar] [CrossRef] [PubMed]
- Barkley, R.A. Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol. Bull. 1997, 121, 65–94. [Google Scholar] [CrossRef] [PubMed]
- Oosterlaan, J.; Logan, G.D.; Sergeant, J.A. Response inhibition in ADHD, CD, comorbid ADHD + CD, anxious, and control children: A meta-analysis of studies with the stop task. J. Child Psychol. Psychiatry 1998, 39, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Tannock, R. Attention deficit hyperactivity disorder: Advances in cognitive, neurobiological, and genetic research. J. Child Psychol. Psychiatry 1998, 39, 65–99. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.P.; Himelstein, J.; Halperin, J.M.; Newcorn, J.H. Neurobiological models of attention-deficit/hyperactivity disorder: A brief review of the empirical evidence. CNS Spectr. 2000, 5, 34–44. [Google Scholar] [PubMed]
- Nyden, A.; Billstedt, E.; Hjelmquist, E.; Gillberg, C. Neurocognitive stability in Asperger syndrome, ADHD, and reading and writing disorder: A pilot study. Dev. Med. Child Neurol. 2001, 43, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Mayes, S.D.; Calhoun, S.L. The gordon diagnostic system and WISC-III freedom from distractibility index: Validity in identifying clinic-referred children with and without ADHD. Psychol. Rep. 2002, 91, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Rucklidge, J.J.; Tannock, R. Neuropsychological profiles of adolescents with ADHD: Effects of reading difficulties and gender. J. Child Psychol. Psychiatry 2002, 43, 988–1003. [Google Scholar] [CrossRef] [PubMed]
- Vance, A.L.; Maruff, P.; Barnett, R. Attention deficit hyperactivity disorder, combined type: Better executive function performance with longer-term psychostimulant medication. Aust. N. Z. J. Psychiatry 2003, 37, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Pliszka, S.; Glahn, D.; Semrud-Clikeman, M.; Franklin, C.; Perez, R., III; Liotti, M. Neuroimaging of inhibitory control in treatment naive and chronically treated children with ADHD. Am. J. Psychiatry 2006, 163, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Semrud-Clikeman, M.; Plizska, S.; Liotti, M.; Higgins, K.; Lancaster, J.L. Neuroimaging in children with ADHD, treated and treatment naive. Neurology 2006, 67, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
- Ek, U.; Fernell, E.; Westerlund, J.; Holmberg, K.; Olsson, P.O.; Gillberg, C. Cognitive strengths and deficits in schoolchildren with ADHD. Acta Paediatr. 2007, 96, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Semrud-Clikeman, M.; Pliszka, S.; Liotti, M. Executive functioning in children with attention-deficit/hyperactivity disorder: Combined type with and without a stimulant medication history. Neuropsychology 2008, 22, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Cermak, S.A. Somatodyspraxia. In Sensory Integration: Theory and Practice; Fisher, A.G., Murray, E.A., Bundy, A.C., Eds.; F.A. Davis Company: Philadelphia, PA, USA, 1991; pp. 137–170. [Google Scholar]
- Parush, S.; Sohmer, H.; Steinberg, A.; Kaitz, M. Somatosensory functioning in children with attention deficit hyperactivity disorder. Dev. Med. Child Neurol. 1997, 39, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.J.; Reisman, J.; McIntosh, D.N.; Simon, J. An ecological model of sensory modulation. In The Nature of Sensory Integration with Diverse Population; Smith-Roley, S., Imperatore-Blanche, E., Schaaf, R.C., Eds.; The Psychological Corporation: San Antonio, TX, USA, 2001; pp. 57–88. [Google Scholar]
- Engel-Yeger, B.; Ziv-On, D. The relationship between sensory processing difficulties and leisure activity preference of children with different types of ADHD. Res. Dev. Disabil. 2011, 32, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W.; Bennett, D. Patterns of sensory processing in children with attention deficit hyperactivity disorder. Occup. Ther. J. Res. 2002, 22, 4–15. [Google Scholar]
- Ayres, A.J. Sensory Integration and the Child; Western Psychological Services: Los Angeles, CA, USA, 1979. [Google Scholar]
- Fisher, A. Vestibular-proprioceptive processing and bilateral integration and sequencing deficits. In Sensory Integration: Principles and Theory; Fisher, A., Murray, E., Bundy, A., Eds.; F.A. Davis: Philadelphia, PA, USA, 1991; pp. 71–107. [Google Scholar]
- Hassan, D.M.; Azzam, H. Sensory Integration in Attention Deficit Hyperactivity Disorder: Implications to Postural Control. In Contemporary trends in ADHD research; Norvilitis, J.M., Ed.; INTECH Open Access: Rijeka, Croatia, 2012; pp. 1–12. [Google Scholar]
- Guskiewicz, K.; Perrin, D. Research and clinical applications of assessing balance. J. Sport Rehabil. 1996, 5, 45–53. [Google Scholar]
- Hern, K.L.; Hynd, G.W. Clinical differentiation of the attention deficit disorder subtypes: Do sensorimotor deficits characterize children with ADD/WO? Arch. Clin. Neuropsychol. 1992, 7, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Ghanizadeh, A. Visual fields in children with attention-deficit/hyperactivity disorder before and after treatment with stimulants. Acta Ophthalmol. 2010, 88. [Google Scholar] [CrossRef]
- Cook, J.R.; Mausbach, T.; Burd, L.; Gascon, G.G.; Slotnick, H.B.; Patterson, B.; Johnson, R.D.; Hankey, B.; Reynolds, B.W. A preliminary study of the relationship between central auditory processing disorder and attention deficit disorder. J. Psychiatry Neurosci. 1993, 18, 130–137. [Google Scholar] [PubMed]
- Riccig, C.A.; Hynd, G.W. Relationship between ADHD and central auditory processing disorder a review of the literature. Sch. Psychol. Int. 1996, 17, 235–252. [Google Scholar] [CrossRef]
- Ghanizadeh, A. Screening signs of auditory processing problem: Does it distinguish attention deficit hyperactivity disorder subtypes in a clinical sample of children? Int. J. Pediatr. Otorhinolaryngol. 2009, 73, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.P.; Siu, A.M. A comparison of patterns of sensory processing in children with and without developmental disabilities. Res. Dev. Disabil. 2009, 30, 1468–1480. [Google Scholar] [CrossRef] [PubMed]
- Koziol, L.F.; Budding, D. ADHD and sensory processing disorders: Placing the diagnostic issues in context. Appl. Neuropsychol. Child 2012, 1, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Posner, M. Progress in attention research. In Cognitive Neuroscience of Attention, 2nd ed.; Posner, M., Ed.; The Guilford Press: New York, NY, USA, 2012; pp. 3–8. [Google Scholar]
- Krain, A.L.; Castellanos, F.X. Brain development and ADHD. Clin. Psychol. Rev. 2006, 26, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Biederman, J. Neurobiology of attention-deficit hyperactivity disorder. Biol. Psychiatry 1998, 44, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Bush, G.; Valera, E.M.; Seidman, L.J. Functional neuroimaging of attention-deficit/hyperactivity disorder: A review and suggested future directions. Biol. Psychiatry 2005, 57, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Krienen, F.M.; Buckner, R.L. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb. Cortex 2009, 19, 2485–2497. [Google Scholar] [CrossRef] [PubMed]
- Seidman, L.J.; Valera, E.M.; Bush, G. Brain function and structure in adults with attention-deficit/hyperactivity disorder. Psychiatr. Clin. N. Am. 2004, 27, 323–347. [Google Scholar] [CrossRef]
- Seidman, L.J.; Valera, E.M.; Makris, N. Structural brain imaging of attention-deficit/hyperactivity disorder. Biol. Psychiatry 2005, 57, 1263–1272. [Google Scholar] [CrossRef] [PubMed]
- Sergeant, J.A.; Geurts, H.; Oosterlaan, J. How specific is a deficit of executive functioning for attention-deficit/hyperactivity disorder? Behav. Brain Res. 2002, 130, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.J.; Biederman, J.; Mick, E. Attention-deficit/hyperactivity disorder: Diagnosis, lifespan, comorbidities, and neurobiology. J. Pediatr. Psychol. 2007, 32, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.C.; Kiehl, K.A.; Pearlson, G.D.; Calhoun, V.D. Functional neural networks underlying response inhibition in adolescents and adults. Behav. Brain Res. 2007, 181, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.C.; Kiehl, K.A.; Pearlson, G.D.; Calhoun, V.D. Brain network dynamics during error commission. Hum. Brain Mapp. 2009, 30, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, F.X.; Lee, P.P.; Sharp, W.; Jeffries, N.O.; Greenstein, D.K.; Clasen, L.S.; Blumenthal, J.D.; James, R.S.; Ebens, C.L.; Walter, J.M.; et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 2002, 288, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, F.X.; Giedd, J.N.; Marsh, W.L.; Hamburger, S.D.; Vaituzis, A.C.; Dickstein, D.P.; Sarfatti, S.E.; Vauss, Y.C.; Snell, J.W.; Lange, N.; et al. Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch. Gen. Psychiatry 1996, 53, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Yeo, R.A.; Hill, D.E.; Campbell, R.A.; Vigil, J.; Petropoulos, H.; Hart, B.; Zamora, L.; Brooks, W.M. Proton magnetic resonance spectroscopy investigation of the right frontal lobe in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 2003, 42, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Durston, S.; Pol, H.E.H.; Schnack, H.G.; Buitelaar, J.K.; Steenhuis, M.P.; Minderaa, R.B.; Kahn, R.S. Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings. J. Am. Acad. Child Adolesc. Psychiatry 2004, 43, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Jiang, T.; Liang, M.; Zang, Y.; He, Y.; Sui, M.; Wang, Y. Enhanced resting-state brain activities in ADHD patients: A fMRI study. Brain Dev. 2008, 30, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Gitelman, D.R.; Nobre, A.C.; Parrish, T.B.; LaBar, K.S.; Mesulam, M. The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. Neuroimage 1999, 9, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Talsma, D.; Senkowski, D.; Soto-Faraco, S.; Woldorff, M.G. The multifaceted interplay between attention and multisensory integration. Trends Cogn. Sci. 2010, 14, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Koziol, L.F.; Budding, D.E.; Chidekel, D. Sensory integration, sensory processing, and sensory modulation disorders: Putative functional neuroanatomic underpinnings. Cerebellum 2011, 10, 770–792. [Google Scholar] [CrossRef] [PubMed]
- Koziol, L.F.; Budding, D.E.; Chidekel, D. From movement to thought: Executive function, embodied cognition, and the cerebellum. Cerebellum 2012, 11, 505–525. [Google Scholar] [CrossRef] [PubMed]
- Chudler, E.H.; Sugiyama, K.; Dong, W.K. Multisensory convergence and integration in the neostriatum and globus pallidus of the rat. Brain Res. 1995, 674, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Paróczy, Z.; Norita, M.; Benedek, G. Multisensory responses and receptive field properties of neurons in the substantia nigra and in the caudate nucleus. Eur. J. Neurosci. 2005, 22, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.E.; Yeo, R.A.; Campbell, R.A.; Hart, B.; Vigil, J.; Brooks, W. Magnetic resonance imaging correlates of attention-deficit/hyperactivity disorder in children. Neuropsychology 2003, 17, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Casey, B.J.; Epstein, J.N.; Buhle, J.; Liston, C.; Davidson, M.C.; Tonev, S.T.; Spicer, J.; Niogi, S.; Millner, A.J.; Reiss, A.; et al. Frontostriatal connectivity and its role in cognitive control in parent-child dyads with ADHD. Am. J. Psychiatry 2007, 164, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Mackie, S.; Shaw, P.; Lenroot, R.; Pierson, R.; Greenstein, D.K.; Nugent, T.F., III; Sharp, W.S.; Giedd, J.N.; Rapoport, J. Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am. J. Psychiatry 2007, 164, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Bledsoe, J.; Semrud-Clikeman, M.; Pliszka, S.R. A magnetic resonance imaging study of the cerebellar vermis in chronically treated and treatment-naive children with attention-deficit/hyperactivity disorder combined type. Biol. Psychiatry 2009, 65, 620–624. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dionne-Dostie, E.; Paquette, N.; Lassonde, M.; Gallagher, A. Multisensory Integration and Child Neurodevelopment. Brain Sci. 2015, 5, 32-57. https://doi.org/10.3390/brainsci5010032
Dionne-Dostie E, Paquette N, Lassonde M, Gallagher A. Multisensory Integration and Child Neurodevelopment. Brain Sciences. 2015; 5(1):32-57. https://doi.org/10.3390/brainsci5010032
Chicago/Turabian StyleDionne-Dostie, Emmanuelle, Natacha Paquette, Maryse Lassonde, and Anne Gallagher. 2015. "Multisensory Integration and Child Neurodevelopment" Brain Sciences 5, no. 1: 32-57. https://doi.org/10.3390/brainsci5010032
APA StyleDionne-Dostie, E., Paquette, N., Lassonde, M., & Gallagher, A. (2015). Multisensory Integration and Child Neurodevelopment. Brain Sciences, 5(1), 32-57. https://doi.org/10.3390/brainsci5010032