Changes in Cognition and Decision Making Capacity Following Brain Tumour Resection: Illustrated with Two Cases
Abstract
:1. Introduction
2. Decision Making in Brain Tumour Patients
2.1. Tumour and Treatment Factors Affecting Capacity
2.2. Medical Decision Making
2.3. Return to Occupational Functioning
2.4. Research Participation
2.5. The Role of Caregivers
3. Capacity Assessment
3.1. The Role of Fatigue
3.2. Cognitive Screening Tools
3.3. Decision Specific Assessment
3.4. The Role of the Multidisciplinary Team
4. Cognition in Decision Making
4.1. Executive Functions
4.2. Attention
4.3. Working Memory
4.4. Memory
4.5. Language
- Neuropsychological Assessment (ideally pre-post brain tumour resection)
- -
- Executive functions: flexibility and adaptability in identifying the available choices, selection or inhibition of choices that are immediate, evaluating the choices in terms of probabilities and value, and predicting the impact of a choice on the overall goals [86].
- -
- Language: ability to understand and appreciate the significance of relevant information for a specific decision, and express a decision [56].
- -
- Memory: recall of previous actions and their associated emotional responses in individual events at a particular place and point in time [117].
- -
- Attention: conscious deliberation and allocation of a high level of attentional resources [106].
- Decision specific assessment of knowledge and skills related to each issue (e.g., medical treatment, return to work or other activities, managing finances, etc.)
5. Emotion in Decision Making
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Triebel, K.; Martin, R.; Nabors, L.; Marson, D. Medical decision-making capacity in patients with malignant glioma. Neurology 2009, 73, 2086–2092. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K. Neuropsychological assessment of mental capacity. Neuropsychol. Rev. 2004, 14, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Boele, F.; Rooney, A.; Grant, R.; Klein, M. Psychiatric symptoms in glioma patients: From diagnosis to management. Neuropsychiatr. Dis. Treat. 2015, 10, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Australian Law Reform Commission. Equality, Capacity and Disability in Commonwealth Laws: Issue Paper 44; Commonwealth of Australia: Sydney, Australia, 2013.
- Mental Capacity Act 2005. Available online: http://www.legislation.gov.uk/ukpga/2005/9/section/1 (accessed on 5 August 2017).
- Kim, S.Y.; Marson, D.C. Assessing decisional capacity in patients with brain tumors. Neurology 2014, 83, 482–483. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, S.; Dengu, F.; Erridge, S.; Grant, R.; Whittle, I.R. Recognition of mental incapacity when consenting patients with intracranial tumours for surgery: How well are we doing? Br. J. Neurosurg. 2012, 26, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Hein, I.; Troost, P.; Broersma, A.; de Vries, M.; Daams, J.; Lindauer, R. Why is it hard to make progress in assessing children’s decision-making competence? BMC Med. Eth. 2015, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- McCabe, M. Involving children and adolescents in medical decision making: Developmental and clinical considerations. J. Pediatr. Psychol. 1996, 21, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M. Competence and consent to treatment in children and adolescents. Adv. Psychiatr. Treat. 2001, 7, 150–159. [Google Scholar] [CrossRef]
- Clinical Excellence Division. Guide to Informed Decision-Making in Heath Care; Queensland Health: Brisbane, Australia, 2017.
- Wong, J.; Scully, P. A practical guide to capacity assessment and patient consent in Hong Kong. Hong Kong Med. J. 2003, 9, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, M. Under-recognized mental incapacity in brain tumour patients. Nat. Rev. Neurol. 2014, 10, 487–488. [Google Scholar] [CrossRef] [PubMed]
- Triebel, K.; Gerstenecker, A.; Meneses, K.; Fiveash, J.; Meyers, C.; Cutter, G.; Marson, D.C.; Martin, R.C.; Eakin, A.; Watts, O.; et al. Capacity of patients with brain metastases to make treatment decisions. Psychooncology 2015, 24, 1448–1455. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, S.; Erridge, S.; Liaquat, I.; Graham, C.; Grant, R. Mental incapacity in patients undergoing neuro-oncologic treatment: A cross-sectional study. Neurology 2014, 83, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Talacchi, A.; Santini, B.; Savazzi, S.; Gerosa, M. Cognitive effects of tumour and surgical treatment in glioma patients. J. Neurooncol. 2011, 103, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Meskal, I.; Gehring, K.; Rutten, G.; Sitskoorn, M. Cognitive functioning in meningioma patients: A systematic review. J. Neurooncol. 2016, 128, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Meskal, I.; Gehring, K.; Linden, S.; Rutten, D.; Sitskoorn, G. Cognitive improvement in meningioma patients after surgery: Clinical relevance of computerized testing. J. Neurooncol. 2015, 121, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Tucha, O.; Smely, C.; Preoer, M.; Becker, E.; Geraldine, M.; Paul, B.; Lange, K. Preoperative and postoperative cognitive functioning in patients with frontal meningiomas. J. Neurosurg. 2003, 98, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Scheibel, R.; Meyers, S.; Levin, C. Cognitive dysfunction following surgery for intracerebral glioma: Influence of histopathology, lesion location, and treatment. J. Neurooncol. 1996, 30, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Habets, E.; Kloet, A.; Walchenbach, R.; Vecht, C.; Klein, M.; Taphoorn, M. Tumour and surgery effects on cognitive functioning in high-grade glioma patients. Acta Neurochir. 2014, 156, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Lilja, A.; Brun, A.; Salford, L.; Öhman, R.; Smith, G.; Hagstadius, S.; Risberg, J. Neuropsychological indexes of a partial frontal syndrome in patients with nonfrontal gliomas. Neuropsychology 1992, 6, 315–326. [Google Scholar] [CrossRef]
- Miotto, E.; Junior, A.; Silva, C.; Cabrera, H.; Machado, M.; Benute, G.; Lucia, M.C.; Scaff, M.; Teixeira, M. Cognitive impairments in patients with low grade gliomas and high grade gliomas. Arq. Neuropsiquiatr. 2011, 69, 596–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehcordi, S.; Mariano, M.; Mazza, M.; Galzio, R. Cognitive deficits in patients with low and high grade gliomas. J. Neurosurg. Sci. 2013, 57, 259–266. [Google Scholar]
- Duffau, H.; Capelle, L.; Denvil, D.; Sichez, N.; Gatignol, P.; Lopes, M.; Mitchell, M.C.; Sichez, J.P.; Van Effenterre, R. Functional recovery after surgical resection of low grade gliomas in eloquent brain: Hypothesis of brain compensation. J. Neurol. Neurosurg. Psychiatry 2003, 74, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Schagen, S.; Klein, M.; Reijneveld, J.; Brain, E.; Deprez, S.; Joly, F.; Scherwath, A.; Schrauwen, W.; Wefel, J.S. Monitoring and optimising cognitive function in cancer patients: Present knowledge and future directions. EJC Suppl. 2014, 12, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Clouston, P.; DeAngelis, L.; Posner, J. The spectrum of neurological disease in patients with systemic cancer. Ann. Neurol. 1992, 31, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Taphoorn, M.J.B.; Klein, M. Cognitive deficits in adult patients with brain tumours. Lancet 2004, 3, 159–168. [Google Scholar] [CrossRef]
- Anderson-Hanley, C.; Sherman, M.; Riggs, R.; Agocha, V.; Compas, B. Neuropsychological effects of treatments for adults with cancer: A meta-analysis a review of the literature. J. Int. Neuropsychol. Soc. 2003, 9, 967–982. [Google Scholar] [CrossRef] [PubMed]
- Ahles, T.; Saykin, A. Cognitive effects of standard-dose chemotherapy in patients with cancer. Cancer Investig. 2001, 19, 812–820. [Google Scholar] [CrossRef]
- Tallet, A.V.; Azria, D.; Barlesi, F.; Spano, J.P.; Carpentier, A.F.; Goncalves, A.; Metellus, P. Neurocognitive function impairment after whole brain radiotherapy for brain metastases: Actual assessment. Radiat. Oncol. 2012, 7, 77. [Google Scholar] [CrossRef] [PubMed]
- Cross, N.E.; Glantz, M.J. Neurologic complications of radiation therapy. Neurol. Clin. 2003, 21, 249–277. [Google Scholar] [CrossRef]
- Li, J.; Bentzen, S.M.; Renschler, M.; Mehta, M.P. Regression after whole-brain radiation therapy for brain metastases correlates with survival and improved neurocognitive function. J. Clin. Oncol. 2007, 25, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Newton, H.; Otero, J. Overview of epidemiology, pathology, and treatment of primary brain tumors. In Neuro-Oncology Part I: Handbook of Clinical Neurology; Aminoff, B., Boller, F., Swaab, D., Eds.; Elsevier Science: Burlington, ON, Canada, 2015; pp. 11–28. ISBN 9780444534958. [Google Scholar]
- Grisso, T.; Applelbaum, P. Comparison of standards for assessing patients’ capacities to make treatment decisions. Am. J. Psychiatry 1995, 152, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Patchell, R.A. The management of brain metastases. Cancer Treat. Rev. 2003, 29, 533–540. [Google Scholar] [CrossRef]
- Robinson, G.A.; Biggs, V.; Walker, D.G. Cognitive screening in brain tumors: Short but sensitive enough? Front. Oncol. 2015, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Braddock, C.; Fihn, S.; Levinson, W.; Jonsen, A.; Pearlman, R. How doctors and patients discuss routine clinical decisions: Informed decision making in the outpatient setting. J. Gen. Intern. Med. 1997, 12, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Behin, A.; Hoang-Xuan, K.; Carpentier, A.F.; Delattre, J.Y. Primary brain tumours in adults. Lancet 2003, 361, 323–331. [Google Scholar] [CrossRef]
- Cordasco, K.M. Obtaining informed consent from patients: Brief update review. In Making Health Care Safer II: An Updated Critical Analysis of the Evidence for Patient Safety Practices (Report No. 211); Agency for Healthcare Research and Quality: Rockville, MD, USA, 2013. [Google Scholar]
- Braddock, C.; Hudak, P.L.; Feldman, J.J.; Bereknyei, S.; Frankel, R.M.; Levinson, W. “Surgery is certainly one good option”: Quality and time-efficiency of informed decision-making in surgery. J. Bone Jt. Surg. Am. 2008, 90, 1830–1838. [Google Scholar] [CrossRef] [PubMed]
- Etchells, E.; Ferrari, M.; Kiss, A.; Martyn, N.; Zinman, D.; Levinson, W. Informed decision-making in elective major vascular surgery: Analysis of 145 surgeon-patient consultations. Can J Surg. 2011, 54, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Page, M.; Solhein, K.; Fox, S.; Chang, S. Quality of life in adults with brain tumors: Current knowledge and future directions. Neuro Oncol. 2009, 11, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Heimans, J.J.; Taphoorn, M.J.B. Impact of brain tumour treatment on quality of life. J. Neurol. 2002, 249, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Meyers, C.; Kayl, A. Neurocognitive function. In Cancer in the Nervous System, 2nd ed.; Levin, V., Ed.; Oxford University Press: New York, NY, USA, 2002; pp. 557–571. ISBN 9780195137286. [Google Scholar]
- Fan, X.; Els, C.; Corbet, K.; Straube, S. “Decision-critical” work: A conceptual framework. J. Occup. Med. Toxicol. 2016, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Bonafede, N.; Mohile, N. Treatment patterns, survival, and healthcare costs of patients with malignant gliomas in a large US commercially insured population. Am. Health Drug Benefits 2014, 7, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Krzyzanowska, M.; Kaplan, R.; Sullivan, R. How may clinical research improve healthcare outcomes? Ann. Oncol. 2011, 22, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Marson, D.; Martin, R.; Triebel, K.; Nabors, L. Capacity to consent to research participation in adults with malignant glioma. J. Clin. Oncol. 2010, 28, 3844–3850. [Google Scholar] [CrossRef] [PubMed]
- Spira, N.; Kenemore, E. Cancer as a life transition: A relational approach to cancer wellness in women. Clin. Soc. Work J. 2002, 30, 173–186. [Google Scholar] [CrossRef]
- Laidsaar-Powell, R.; Butow, P.; Bu, S.; Charles, C.; Gafni, A.; Fisher, A.; Juraskova, I. Family involvement in cancer treatment decision-making: A qualitative study of patient, family, and clinician attitudes and experiences. Patient Educ. Couns. 2016, 99, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, G.; Illingworth, N.; Rowa-Dewar, N.; Forbat, L.; Kearney, N. Treatment decision-making in cancer care: The role of the carer. J. Clin. Nurs. 2010, 19, 2023–2031. [Google Scholar] [CrossRef] [PubMed]
- Dwan, T.; Ownsworth, T.; Chambers, S.; Walker, D.; Shum, D. Neuropsychological assessment of individuals with brain tumor: Comparison of approaches used in the classification of impairment. Front. Oncol. 2015, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Mullaly, E.; Kinsella, G.; Berberovic, N.; Cohen, Y.; Dedda, K.; Froud, B.; Leach, K.; Neath, J. Assessment of decision-making capacity: Exploration of common practices among neuropsychologists. Aust. Psychol. 2007, 42, 178–186. [Google Scholar] [CrossRef]
- Appelbaum, P.; Grisso, T. Assessing patients' capacities to consent to treatment. N. Engl. J. Med. 1988, 319, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Tucha, O.; Smely, C.; Preier, M.; Lange, K. Cognitive deficits before treatment among patients with brain tumors. Neurosurgery 2000, 47, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Ishii, A.; Watanabe, Y. Neural effects of mental fatigue caused by continuous attention load: A magnetoencephalography study. Brain Res. 2014, 1561, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Osoba, D.; Brada, M.; Prados, M.D.; Yung, W.K. Effect of disease burden on health-related quality of life in patients with malignant gliomas. Neuro Oncol. 2000, 2, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.; Cron, S.; Bolanos, E.; Gilbert, M.; Kang, D. Risk factors for fatigue severity in primary brain tumor patients. Cancer 2010, 116, 2707–2715. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Ishii, A.; Watanabe, Y. Effects of mental fatigue on brain activity and cognitive performance: A magnetoencephalography study. Anat. Physiol. 2015, 5, 1–5. [Google Scholar] [CrossRef]
- Boksem, M.A.S.; Meijman, T.F.; Lorist, M.M. Effects of mental fatigue on attention: An ERP study. Cogn. Brain Res. 2005, 25, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Van Der Linden, D.; Frese, M.; Meijman, T.F. Mental fatigue and the control of cognitive processes: Effects on perseveration and planning. Acta Psychol. 2003, 113, 45–65. [Google Scholar] [CrossRef]
- Kato, Y.; Endo, H.; Kizuka, T. Mental fatigue and impaired response processes: Event-related brain potentials in a Go/NoGo task. Int. J. Pyschophysiol. 2009, 72, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Janda, M.; Steginga, S.; Dunn, J.; Langbecker, D.; Walker, D.; Eakin, E. Unmet supportive care needs and interest in services among patients with a brain tumour and their carers. Patient Educ. Couns. 2008, 71, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Olson, R.; Parkinson, M.; McKenzie, M. Selection bias introduced by neuropsychological assessments. Can. J. Neurol. Sci. 2010, 37, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Papagno, C.; Casarotti, A.; Comi, A.; Gallucci, M.; Riva, N.; Bello, L. Measuring clinical outcomes in neuro-oncology. A battery to evaluate low-grade gliomas (LGG). J. Neurooncol. 2012, 108, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Gerstenecker, A.; Duff, K.; Meneses, K.; Fiveash, J.; Nabors, L.; Triebel, K. Cognitive predictors of reasoning through treatment decisions in patients with newly diagnosed brain metastases. J. Int. Neuropsychol. Soc. 2015, 21, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Gerstenecker, A.; Meneses, K.; Duff, K.; Fiveash, J.; Marson, D.; Triebel, K. Cognitive predictors of understanding treatment decisions in patients with newly diagnosed brain metastasis. Cancer 2015, 121, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- Etchells, E.; Darzins, P.; Silberfeld, M.; Singer, P.; McKenny, J.; Naglie, G.; Katz, M.; Guyatt, G.H.; Molloy, D.W.; Strang, D. Assessment of patient capacity to consent to treatment. J. Gen. Intern. Med. 1999, 14, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Karlawish, J.T.; Cary, M.; Moelter, S.; Siderowf, A.; Sullo, E.; Xie, S.; Weintraub, D. Cognitive impairment and PD patients’ capacity to consent to research. Neurology 2013, 81, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State” a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Klein, M.; Heimans, J. The measurement of cognitive functioning in low-grade glioma patients after radiotherapy. J. Clin. Oncol. 2004, 22, 966–968. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.; Phillips, N.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Chertkow, H. The Montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Caine, E. Utility and limits of the Mini Mental State Examination in evaluating consent capacity in Alzheimer’s Disease. Psychiatr. Serv. 2002, 53, 1322–1324. [Google Scholar] [CrossRef] [PubMed]
- Pachet, A.; Astner, K.; Brown, L. Clinical utility of the Mini-Mental Status Examination when assessing decision-making capacity. J. Geriatr. Psychiatry Neurol. 2010, 23, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Mezey, M.; Teresi, J.; Ramsey, G.; Mitty, E.; Bobrowitz, T. Decision-making capacity to execute a health care proxy: Development and testing of guidelines. J. Am. Geriatr. Soc. 2000, 48, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Olson, R.; Chhanabhai, T.; McKenzie, M. Feasibility study of the Montreal cognitive assessment (MoCA) in patients with brain metastases. Support Care Cancer 2008, 16, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
- Olson, R.; Iverson, G.; Carolan, H.; Parkinson, M.; Brooks, B.; McKenzie, M. Prospective comparison of two cognitive screening tests; Diagnostic accuracy and correlation with community integration and quality of life. J. Neuro Oncol. 2011, 105, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Ganzini, L.; Volicer, L.; Nelson, W.; Derse, A. Pitfalls in assessment of decision-making capacity. Psychosomatics 2003, 44, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, L.; Barry, M.; Stoeckle, J.; Ettelson, L.; Emanuel, E. Advance directives for medical care—A case for greater use. N. Engl. J. Med. 1991, 324, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Schmand, B.H.; Gouwenberg, B.; Smit, J. Jonker, C. Assessment of mental competency in community-dwelling elderly. Alzheimer Dis. Assoc. Disord. 1999, 13, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Moye, J.; Marson, D.C. Assessment of decision-making capacity in older adults: An emerging area of practice and research. J. Gerontol. B Psychol. Sci. Soc. Sci. 2007, 62, P3–P11. [Google Scholar] [CrossRef] [PubMed]
- Darzins, P. Can this patient go home? Assessment of decision-making capacity. Aust. Occup. Ther. J. 2010, 57, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Remington, R.; Boehm-Davis, D.; Folk, C. Decision Making. In Introduction to Humans in Engineered Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Balleine, B. The neural basis of choice and decision making. J. Neurosci. 2007, 27, 8159–8160. [Google Scholar] [CrossRef]
- Coutlee, C.G.; Huettel, S.A. The functional neuroanatomy of decision making: Prefrontal control of thought and action. Brain Res. 2012, 1428, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Mackie, M.A.; Van Dam, N.T.; Fan, J. Cognitive control and attentional functions. Brain Cogn. 2013, 82, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Pachet, A.; Allan, L.; Erskine, L. Assessment of fluctuating decision-making capacity in individuals with communication barriers: A case study. (Report). Top. Stroke Rehabil. 2012, 19, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Wallis, J. Orbitofrontal cortex and its contribution to decision-making. Annu. Rev. Neurosci. 2007, 30, 31–56. [Google Scholar] [CrossRef] [PubMed]
- Koechlin, E.; Hyafil, A. Anterior prefrontal function and the limits of human decision-making. Science 2007, 318, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Bechara, A. The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain Cogn. 2004, 55, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Campanella, F.; Shallice, T.; Ius, T.; Fabbro, F.; Skrap, M. Impact of brain tumour location on emotion and personality: A voxel-based lesion–symptom mapping study on mentalization processes. Brain 2014, 137, 2532–2545. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Martin, J.; Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Ann. Rev. Biomed. Eng. 2014, 16, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, K.; Kegelman, T.; Dash, R.; Das, S.; Choi, J.; Emdad, L.; Howlett, E.L.; Jeon, H.Y.; Su, Z.Z.; et al. Oncogene AEG-1 promotes glioma-induced neurodegeneration by increasing glutamate excitotoxicity. Cancer Res. 2011, 71, 6514–6523. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Frith, C.; Gallagher, H.; Maguire, E. Mechanisms of Control. In Human Brain Function; Friston, K.J., Frith, C.D., Dolan, R.J., Price, C.J., Zeki, S., Ashburner, J.T., Penny, W.D., Eds.; Academic Press: San Diego, CA, USA, 2004; pp. 329–365. [Google Scholar]
- Saver, J.; Damasio, A. Preserved access and processing of social knowledge in a patient with acquired sociopathy due to ventromedial frontal damage. Neuropsychologia 1991, 29, 1241–1249. [Google Scholar] [CrossRef]
- Wunderlich, K.; Rangel, A.; O’Doherty, J.P. Neural computations underlying action-based decision making in the human brain. Proc. Natl. Acad. Sci. USA 2009, 106, 17199–17204. [Google Scholar] [CrossRef] [PubMed]
- Daw, N.D.; O’Doherty, J.P.; Dayan, P.; Seymour, B.; Dolan, R.J. Cortical substrates for exploratory decisions in humans. Nature 2006, 441, 876–879. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Lieberman, M. The common neural basis of exerting self-control in multiple domains. Self Control Soc. Mind Brain 2010, 1, 141–160. [Google Scholar]
- Robinson, G.; Cipolotti, L.; Walker, D.; Biggs, V.; Bozzali, M.; Shallice, T. Verbal suppression and strategy use: A role for the right lateral prefrontal cortex? Brain 2015, 138, 1084–1096. [Google Scholar] [CrossRef] [PubMed]
- Franken, I.H.A.; van Strien, J.W.; Nijs, I.; Muris, P. Impulsivity is associated with behavioral decision-making deficits. Psychiatry Res. 2008, 158, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Torregrossa, M.M.; Quinn, J.J.; Taylor, J.R. Impulsivity, compulsivity, and habit: The role of orbitofrontal cortex revisited. Biol. Psychiatry 2008, 63, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Szczepanski, S.M.; Knight, R.T. Insights into human behavior from lesions to the prefrontal cortex. Neuron 2014, 83, 1002–1018. [Google Scholar] [CrossRef] [PubMed]
- Pashler, H.E. The Psychology of Attention; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Mukherjee, S.; Srinivasan, N. Attention in preferential choice. Q. J. Exp. Psychol. Hove 2013, 202, 117–134. [Google Scholar] [CrossRef]
- Godefroy, O.; Rousseaux, M. Divided and focused attention in patients with lesion of the prefrontal cortex. Brain Cogn. 1996, 30, 155–174. [Google Scholar] [CrossRef] [PubMed]
- Lazar, M. Working memory. Neuroscientist 2017, 23, 197–210. [Google Scholar] [CrossRef]
- Pecchinenda, A.; Dretsch, M.; Chapman, P. Working memory involvement in emotion-based processes underlying choosing advantageously. Exp. Psychol. 2006, 53, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Dretsch, M.N.; Tipples, J. Working memory involved in predicting future outcomes based on past experiences. Brain Cogn. 2008, 66, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, J.M.; Marks, A.D.G.; Hine, D.W. Working memory capacity and cognitive styles in decision-making. Personal. Individ. Dif. 2011, 50, 1136–1141. [Google Scholar] [CrossRef]
- Hinson, J.; Jameson, T.; Whitney, P. Impulsive decision making and working memory. J. Exp. Psychol. Learn. Mem. Cogn. 2003, 29, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Damasio, A.; Tranel, D.; Damasio, H. Somatic markers and the guidance of behaviour: Theory and preliminary testing. In Frontal Lobe Function and Dysfunction; Levin, H., Eisenberg, H., Benton, A., Eds.; Oxford University Press: New York, NY, USA, 1991; pp. 217–229. ISBN 9780195062847. [Google Scholar]
- Hinson, J.; Jameson, M.; Whitney, T. Somatic markers, working memory, and decision making. Cogn. Affect Behav. Neurosci. 2002, 2, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Jameson, T.; Hinson, L.; Whitney, J. Components of working memory and somatic markers in decision making. Psychon Bull. Rev. 2004, 11, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Müller, N.G.; Knight, R.T. The functional neuroanatomy of working memory: Contributions of human brain lesion studies. Neuroscience 2006, 139, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Euston, D.; Gruber, A.; Mcnaughton, B. The role of medial prefrontal cortex in memory and decision making. Neuron 2012, 76, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Del Missier, F.; Mäntylä, T.; Hansson, P.; Bruine de Bruin, W.; Parker, A.; Nilsson, L.; Greene, R.L. The multifold relationship between memory and decision making: An individual-differences study. J. Exp. Psychol. Learn. Mem. Cogn. 2013, 39, 1344–1364. [Google Scholar] [CrossRef] [PubMed]
- Fleck, M.; Daselaar, S.; Dobbins, I.; Cabeza, R. Role of prefrontal and anterior cingulate regions in decision-making processes ahared by memory and nonmemory tasks. Cereb. Cortex 2006, 16, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Marson, D.; Ingram, K.; Cody, H.; Harrell, L. Assessing the competency of patients with Alzheimer’s Disease under different legal standards: A prototype instrument. Arch. Neurol. 1995, 52, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Ojemann, G. Cortical organization of language and verbal memory based on intraoperative investigations. In Progress in Sensory Physiology, 12th ed.; Ottoson, D., Perl, E., Autrum, H., Eds.; Springer: Heidelberg/Berlin, Germany, 1991; pp. 193–230. ISBN 978-3-642-75964-2. [Google Scholar]
- Lezak, M. Neuropsychological Assessment, 4th ed.; Oxford University Press: Oxford, UK, 2004; p. 407. [Google Scholar]
- Suleman, S.; Hopper, T. Decision-making capacity and aphasia: Speech-language pathologists’ perspectives. Aphasiology 2015, 1–15. [Google Scholar] [CrossRef]
- Baldo, J.; Paulraj, S.; Curran, B.; Dronkers, N. Impaired reasoning and problem-solving in individuals with language impairment due to aphasia or language delay. Front. Psychol. 2015, 6, 1523. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.; Blair, J.; Cipolotti, L. Dynamic aphasia: An inability to select between competing verbal responses? Brain 1998, 121, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.; Shallice, T.; Bozzali, M.; Cipolotti, L. Differing roles of the frontal cortex in fluency tasks. Brain 2012, 135, 1202–1214. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.; Walker, D.; Biggs, V.; Shallice, T. When does a strategy intervention overcome a failure of inhibition? Evidence from two left frontal brain tumour cases. Cortex 2016, 79, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Davie, G.; Hutcheson, K.; Barringer, D.; Weinberg, J.; Lewin, J. Aphasia in patients after brain tumour resection. Aphasiology 2009, 23, 1196–1206. [Google Scholar] [CrossRef]
- Whittle, I.; Pringle, A.; Taylor, R. Effects of resective surgery for left-sided intracranial tumours on language function: A prospective study. Lancet 1998, 351, 1014–1018. [Google Scholar] [CrossRef]
- Tandon, P.; Mahapatra, A.K.; Khosla, A. Operations in gliomas involving speech centres. Acta Neurochir. Suppl. 1993, 56, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Raven, J. Advanced Progressive Matrices Sets I and II; Oxford Psychologists Press Ltd.: Oxford, UK.
- Nelson, H.; Willison, J. The National Adult Reading Test, 2nd ed.; The NFER-Nelson Publishing Co, Ltd.: Windsor, UK, 1991; ISBN 9780700504756. [Google Scholar]
- Wechsler, D. Wechsler Adult Intelligence Scale, 3rd ed.; The Psychological Corporation: San Antonio, TX, USA, 1997; ISBN 0158981030. [Google Scholar]
- Lezak, M.D. Neuropsychological Assessment; Oxford University Press: New York, NY, USA, 1983; ISBN 0195030397. [Google Scholar]
- Rey, A. L’examen psychologique dans les cas d’encéphalopathie traumatique. Arch. Psychol. 1941, 28, 215–285. [Google Scholar]
- Goodglass, H.; Kaplan, E. The Boston Diagnostic Aphasia Examination; Lea & Febiger: Philadelphia, PA, USA, 1972; ISBN 9780683305593. [Google Scholar]
- Warrington, E. The Graded Naming Test: A restandardisation. Neuropsycholol. Rehabil. 1997, 7, 143–146. [Google Scholar] [CrossRef]
- Warrington, K.; Mckenna, P.; Orpwood, L. Single Word Comprehension: A Concrete and Abstract Word Synonym Test. Neuropsychol. Rehabil. 1998, 2, 143–154. [Google Scholar] [CrossRef]
- Benton, A. Differential behavioural effects in frontal lobe disease. Neuropsychologia 1968, 6, 53–60. [Google Scholar] [CrossRef]
- Stroop, J. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Burgess, P.; Shallice, T. The Hayling and Brixton Tests: Test Manual; Thames Valley Test Company: Bury St. Edmunds, UK, 1997; ISBN 9780749130343. [Google Scholar]
- Reitan, R.; Wolfson, D. The Halstead–Reitan Neuropsycholgical Test Battery: Therapy and Clinical Interpretation; Neuropsychological Press: Tucson, AZ, USA, 1985; ISBN 9780934515146. [Google Scholar]
- Robertson, I.; Ward, T.; Ridgeway, V.; Nimmo-Smith, I. The structure of normal human attention: The test of everyday attention. J. Int. Neuropsychol. Soc. 1996, 2, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.; Brady Wagner, L. Is Informed Consent a “Yes or No” Response? Enhancing the Shared Decision-Making Process for Persons with Aphasia. Top. Stroke Rehabil. 2006, 13, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Luce, M.; Bettman, J.; Payne, J.; Neely, J.H. Choice Processing in Emotionally Difficult Decisions. J. Exp. Psychol. Learn. Mem. Cogn. 1997, 23, 384–405. [Google Scholar] [CrossRef] [PubMed]
- Lerner, J.; Keltner, D. Beyond valence: Toward a model of emotion-specific influences on judgement and choice. Cogn. Emot. 2000, 14, 473–493. [Google Scholar] [CrossRef]
- Isen, A.; Shalker, T.; Clark, M.; Karp, L.; Greenwald, A. Affect, accessibility of material in memory, and behavior: A cognitive loop? J. Personal. Soc. Psychol. 1978, 36, 1–12. [Google Scholar] [CrossRef]
- Damasio, A. The frontal lobes. In Clinical Neuropsychology; Heilman, K., Valenstein, E., Eds.; Oxford University Press: New York, NY, USA, 1979; pp. 360–412. [Google Scholar]
- Dimitrov, M.; Phipps, M.; Zahn, T.; Grafman, J. Associative learning impairments in patients with frontal lobe damage. Brain Cogn. 1999, 41, 213–230. [Google Scholar] [CrossRef] [PubMed]
- Bechara, A.; Damasio, H.; Damasio, A. Emotion, decision making and the orbitofrontal cortex. Cereb. Cortex 2000, 10, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Wager, T.; Davidson, M.; Hughes, B.; Lindquist, M.; Ochsner, K. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 2008, 59, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.N.; Delgado, M.R. The influence of emotion regulation on decision-making under risk. J. Cogn. Neurosci. 2011, 23, 2569–2581. [Google Scholar] [CrossRef] [PubMed]
- Heilman, R.; Crişan, L.; Houser, D.; Miclea, M.; Miu, A.; Phelps, E. Emotion Regulation and Decision Making Under Risk and Uncertainty. Emotion 2010, 10, 257–265. [Google Scholar] [CrossRef] [PubMed]
DOMAIN/TEST | Patient JD | Patient KG |
---|---|---|
COGNITIVE SCREENING TEST | Raw Score (Percentile) | |
MoCA [57] | 21/30 (Impaired) | 27/30 (Intact) |
INTELLECTUAL FUNCTIONING | ||
Fluid intelligence (RAPM 1 [131]) | 4 (23) | 7 (72) |
Premorbid estimate (NART 2 [132]) | FSIQ = 111 | FSIQ = 113 |
MEMORY | ||
Working memory (Digit Span, WAIS-III 3 [133]) | 13 (25) | 16 (63) |
Verbal memory—learning (RAVLT 4 [134]) | 27 (<1) | 26 (~23) |
Verbal memory—recall (RAVLT) | 2 (<1) | 2 (1) |
Verbal memory—delayed (RAVLT) | 2 (<1) | 3 (16) |
Visual memory—recall (RCFT 5 [135]) | 14.5 (<10) | 10 (<10) |
Visual memory—delayed (RCFT) | 20.5 (17) | 11.5 (<10) |
VISUO-CONSTRUCTIONAL | ||
Visuo-constructional (RCFT) | 36 (>99) | 25.5 (<10) |
LANGUAGE | ||
Spontaneous speech (cookie thief [136]) | 101 words/min | 129 words/min |
Naming (graded naming test [137]) | 6 (<1) | 18 (25-50) |
Concrete word comprehension (synonyms [138]) | 17 (25) | 23 (75) |
Abstract word comprehension (Synonyms ) | 20 (37) | 23 (75) |
EXECUTIVE FUNCTIONS | ||
Verbal fluency—phonemic (F [139]) | 2 (<1) | 11 (25) |
Verbal fluency—phonemic (S) | 8 (5) | 4 (2) |
Verbal fluency—semantic (Animals) | 10 (5) | 13 (16–25) |
Inhibition (Stroop [140]) | 66 (14) | 72 (16) |
Verbal initiation reaction time (Hayling [141]) | Moderate Average | Average |
Verbal suppression errors (Hayling) | Impaired | Impaired |
Trail Making B ([142] completion time) | 116′′ (<1) | 116′′ (50) |
Trail Making A (completion time) | 32′′ (50) | 45′′ (50) |
ATTENTION | ||
Selective auditory attention (TEA 6 [143]) | 9 (50) | 10 (75) |
Selective visual attention (TEA) | 4.4′′ (10–25) | 5.5′′ (10–25) |
Dual visual and auditory attention (TEA) | 5.95′′ (25–50) | 6.05′′ (25–50) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veretennikoff, K.; Walker, D.; Biggs, V.; Robinson, G. Changes in Cognition and Decision Making Capacity Following Brain Tumour Resection: Illustrated with Two Cases. Brain Sci. 2017, 7, 122. https://doi.org/10.3390/brainsci7100122
Veretennikoff K, Walker D, Biggs V, Robinson G. Changes in Cognition and Decision Making Capacity Following Brain Tumour Resection: Illustrated with Two Cases. Brain Sciences. 2017; 7(10):122. https://doi.org/10.3390/brainsci7100122
Chicago/Turabian StyleVeretennikoff, Katie, David Walker, Vivien Biggs, and Gail Robinson. 2017. "Changes in Cognition and Decision Making Capacity Following Brain Tumour Resection: Illustrated with Two Cases" Brain Sciences 7, no. 10: 122. https://doi.org/10.3390/brainsci7100122
APA StyleVeretennikoff, K., Walker, D., Biggs, V., & Robinson, G. (2017). Changes in Cognition and Decision Making Capacity Following Brain Tumour Resection: Illustrated with Two Cases. Brain Sciences, 7(10), 122. https://doi.org/10.3390/brainsci7100122