The Role of Adenosine Signaling in Headache: A Review
Abstract
:1. Introduction
2. Modeling Headache and Migraine
3. Adenosine Receptor Signaling in the Nervous System
4. The Role of Adenosine in Pain
5. The Role of Adenosine in Headache Pathophysiology
6. The Role of Adenosine in Common Forms of Headache
6.1. Delayed Ethanol-Induced Headache
6.2. Caffeine Withdrawal Headache
6.3. Cluster Headaches
6.4. Sleep-Wake Cycle Related Headaches
6.5. Post-Traumatic Headache
6.6. Menstrual Migraine
7. Adenosine and Common Headache Triggers
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jacobson, K.A.; Gao, Z.-G. Adenosine receptors as therapeutic targets. Nat. Rev. Drug Discov. 2006, 5, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, F.J.; Orrego, H.; Israel, Y. Acetate-induced adenosine mediated effects of ethanol. Alcohol Alcohol. Suppl. 1993, 2, 411–418. [Google Scholar] [PubMed]
- Correa, M.; Font, L. Is there a major role for adenosine A2A receptors in anxiety? Front. Biosci. J. Virtual Libr. 2008, 13, 4058–4070. [Google Scholar] [CrossRef]
- Gomes, C.V.; Kaster, M.P.; Tomé, A.R.; Agostinho, P.M.; Cunha, R.A. Adenosine receptors and brain diseases: Neuroprotection and neurodegeneration. Biochim. Biophys. Acta 2011, 1808, 1380–1399. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Yin, P.; Reierstad, S.; O’Halloran, M.; Coon, V.J.S.; Pearson, E.K.; Mutlu, G.M.; Bulun, S.E. Adenosine A1 receptor, a target and regulator of estrogen receptoralpha action, mediates the proliferative effects of estradiol in breast cancer. Oncogene 2010, 29, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Lusardi, T. Adenosine Neuromodulation and Traumatic Brain Injury. Curr. Neuropharmacol. 2009, 7, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A. The Role of Adenosine in Alzheimer’s disease. Curr. Neuropharmacol. 2009, 7, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Kobayashi, M.; Kanda, T. Involvement of adenosine A2A receptors in depression and anxiety. Int. Rev. Neurobiol. 2014, 119, 373–393. [Google Scholar] [PubMed]
- Sollevi, A. Adenosine for pain control. Acta Anaesthesiol. Scand. Suppl. 1997, 110, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Schwedt, T.J.; Green, A.L.; Dodick, D.W. Occipital Nerve Stimulation for Migraine: Update from Recent Multicenter Trials. Prog. Neurol. Surg. 2015, 29, 117–126. [Google Scholar] [PubMed]
- Caffeine and Headache. Available online: http://my.clevelandclinic.org/health/diseases_conditions/hic_Overview_of_Headaches_in_Adults/hic_Caffeine_and_Headache (accessed on 29 September 2015).
- Cupini, L.M.; Calabresi, P. Medication-overuse headache: Pathophysiological insights. J. Headache Pain 2005, 6, 199–202. [Google Scholar] [PubMed]
- Derry, C.J.; Derry, S.; Moore, R.A. Caffeine as an analgesic adjuvant for acute pain in adults. Cochrane Database Syst. Rev. 2014, 12, CD009281. [Google Scholar]
- Diamond, S.; Freitag, F.G. The use of ibuprofen plus caffeine to treat tension-type headache. Curr. Pain Headache Rep. 2001, 5, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.R. Clinical importance of caffeine withdrawal. N. Engl. J. Med. 1992, 327, 1160–1161. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.; Whitney, C.; Avery, D.; Dunner, D. The analgesic effects of caffeine in headache. Pain 1991, 44, 151–155. [Google Scholar] [PubMed]
- Headache Classification Subcommittee of the International Headache Society. The International Classification of Headache Disorders: 2nd edition. Cephalalgia 2004, 24, 9–160. [Google Scholar]
- Steiner, T.J.; Stovner, L.J.; Birbeck, G.L. Migraine: The seventh disabler. J. Headache Pain 2013, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Strassman, A.M.; Raymond, S.A.; Burstein, R. Sensitization of meningeal sensory neurons and the origin of headaches. Nature 1996, 384, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.; Burstein, R.; Ashina, M.; Tfelt-Hansen, P. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol. 2009, 8, 679–690. [Google Scholar] [CrossRef]
- Noseda, R.; Burstein, R. Migraine pathophysiology: Anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. Pain 2013. [Google Scholar] [CrossRef] [PubMed]
- Burstein, R.; Jakubowski, M. Unitary hypothesis for multiple triggers of the pain and strain of migraine. J. Comp. Neurol. 2005, 493, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Malick, A.; Burstein, R. Peripheral and central sensitization during migraine. Funct. Neurol. 2000, 15, 28–35. [Google Scholar] [PubMed]
- Burstein, R.; Yamamura, H.; Malick, A.; Strassman, A.M. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J. Neurophysiol. 1998, 79, 964–982. [Google Scholar] [PubMed]
- Maxwell, C.R.; Spangenberg, R.J.; Hoek, J.B.; Silberstein, S.D.; Oshinsky, M.L. Acetate Causes Alcohol Hangover Headache in Rats. PLoS ONE 2010, 5, e15963. [Google Scholar] [CrossRef] [PubMed]
- Oshinsky, M.L.; Gomonchareonsiri, S. Episodic dural stimulation in awake rats: a model for recurrent headache. Headache 2007, 47, 1026–1036. [Google Scholar] [CrossRef] [PubMed]
- Fried, N.T.; Moffat, C.; Seifert, E.L.; Oshinsky, M.L. Functional mitochondrial analysis in acute brain sections from adult rats reveals mitochondrial dysfunction in a rat model of migraine. Am. J. Physiol. Cell Physiol. 2014, 307, C1017–C1030. [Google Scholar] [CrossRef] [PubMed]
- Oshinsky, M.L.; Murphy, A.L.; Hekierski, H.; Cooper, M.; Simon, B.J. Noninvasive vagus nerve stimulation as treatment for trigeminal allodynia. Pain 2014, 155, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Oshinsky, M.L.; Luo, J. Neurochemistry of trigeminal activation in an animal model of migraine. Headache 2006, 46, S39–44. [Google Scholar] [CrossRef] [PubMed]
- Vermeer, L.M.M.; Gregory, E.; Winter, M.K.; McCarson, K.E.; Berman, N.E.J. Exposure to Bisphenol A Exacerbates Migraine-Like Behaviors in a Multibehavior Model of Rat Migraine. Toxicol. Sci. 2014, 137, 416–427. [Google Scholar] [CrossRef]
- Wieseler, J.; Ellis, A.; Sprunger, D.; Brown, K.; McFadden, A.; Mahoney, J.; Rezvani, N.; Maier, S.F.; Watkins, L.R. A novel method for modeling facial allodynia associated with migraine in awake and freely moving rats. J. Neurosci. Methods 2010, 185, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Oshinsky, M.L.; Sanghvi, M.M.; Maxwell, C.R.; Gonzalez, D.; Spangenberg, R.J.; Cooper, M.; Silberstein, S.D. Spontaneous trigeminal allodynia in rats: A model of primary headache. Headache 2012, 52, 1336–1349. [Google Scholar] [CrossRef] [PubMed]
- Drury, A.N.; Szent-Györgyi, A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J. Physiol. 1929, 68, 213–237. [Google Scholar] [CrossRef] [PubMed]
- Brundege, J.M.; Dunwiddie, T.V. Modulation of excitatory synaptic transmission by adenosine released from single hippocampal pyramidal neurons. J. Neurosci. Off. J. Soc. Neurosci. 1996, 16, 5603–5612. [Google Scholar]
- Lovatt, D.; Xu, Q.; Liu, W.; Takano, T.; Smith, N.A.; Schnermann, J.; Tieu, K.; Nedergaard, M. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc. Natl. Acad. Sci. USA 2012, 109, 6265–6270. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, O.J.; Manabe, T.; Nicoll, R.A. Release of adenosine by activation of NMDA receptors in the hippocampus. Science 1994, 265, 2098–2101. [Google Scholar] [CrossRef] [PubMed]
- Martín, E.D.; Fernández, M.; Perea, G.; Pascual, O.; Haydon, P.G.; Araque, A.; Ceña, V. Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia 2007, 55, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Nadjar, A.; Blutstein, T.; Aubert, A.; Laye, S.; Haydon, P.G. Astrocyte-derived adenosine modulates increased sleep pressure during inflammatory response. Glia 2013, 61, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Wall, M.; Dale, N. Activity-Dependent Release of Adenosine: A Critical Re-Evaluation of Mechanism. Curr. Neuropharmacol. 2008, 6, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Zorec, R.; Araque, A.; Carmignoto, G.; Haydon, P.G.; Verkhratsky, A.; Parpura, V. Astroglial excitability and gliotransmission: An appraisal of Ca2+ as a signalling route. ASN Neuro 2012, 4, e00080. [Google Scholar] [CrossRef] [PubMed]
- Sheth, S.; Brito, R.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. Adenosine Receptors: Expression, Function and Regulation. Int. J. Mol. Sci. 2014, 15, 2024–2052. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.A.; Tak, E.; Ehrentraut, S.F.; Kaplan, M.; Giebler, A.; Weng, T.; Choi, D.-S.; Blackburn, M.R.; Kam, I.; Eltzschig, H.K.; et al. Equilibrative nucleoside transporter (ENT)-1-dependent elevation of extracellular adenosine protects the liver during ischemia and reperfusion. Hepatol. Baltim. Md. 2013, 58, 1766–1778. [Google Scholar] [CrossRef] [PubMed]
- McGaraughty, S.; Cowart, M.; Jarvis, M.F.; Berman, R.F. Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr. Top. Med. Chem. 2005, 5, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, H. Extracellular metabolism of ATP and other nucleotides. Naunyn. Schmiedebergs Arch. Pharmacol. 2000, 362, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, S.; Gupta, M. Adenosine and its receptors as therapeutic targets: An overview. Saudi Pharm. J. 2013, 21, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.R.V.; Guiot, E.; Polito, M.; Paupardin-Tritsch, D.; Vincent, P. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors. Biotechnol. J. 2014, 9, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, S.A.; Quinn, R.J. Adenosine receptors: new opportunities for future drugs. Bioorg. Med. Chem. 1998, 6, 619–641. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Cunha, R.A.; Svenningsson, P. Pharmacology of adenosine A2A receptors and therapeutic applications. Curr. Top. Med. Chem. 2003, 3, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.; Augusto, E.; Agostinho, P.; Cunha, R.A.; Chen, J.-F. Antagonistic Interaction between Adenosine A2A Receptors and Na+/K+-ATPase-α2 Controlling Glutamate Uptake in Astrocytes. J. Neurosci. 2013, 33, 18492–18502. [Google Scholar] [CrossRef] [PubMed]
- Cacciari, B.; Pastorin, G.; Bolcato, C.; Spalluto, G.; Bacilieri, M.; Moro, S. A2B adenosine receptor antagonists: recent developments. Mini Rev. Med. Chem. 2005, 5, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Eusemann, T.N.; Willmroth, F.; Fiebich, B.; Biber, K.; van Calker, D. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS) 2, 3 and 4 in Astrocyte-Like Cells. PLoS ONE 2015, 10, e0134934. [Google Scholar] [CrossRef] [PubMed]
- Rosi, S.; McGann, K.; Hauss-Wegrzyniak, B.; Wenk, G.L. The influence of brain inflammation upon neuronal adenosine A2B receptors. J. Neurochem. 2003, 86, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Dunwiddie, T.V.; Diao, L.; Kim, H.O.; Jiang, J.-L.; Jacobson, K.A. Activation of Hippocampal Adenosine A3 Receptors Produces a Desensitization of A1 Receptor-Mediated Responses in Rat Hippocampus. J. Neurosci. 1997, 17, 607–614. [Google Scholar] [PubMed]
- Little, J.W.; Ford, A.; Symons-Liguori, A.M.; Chen, Z.; Janes, K.; Doyle, T.; Xie, J.; Luongo, L.; Tosh, D.K.; Maione, S.; et al. Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states. Brain 2015, 138 Pt 1, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Livingston, M.; Heaney, L.G.; Ennis, M. Adenosine, inflammation and asthma—A review. Inflamm. Res. 2004, 53, 171–178. [Google Scholar] [CrossRef]
- Rivkees, S.A.; Thevananther, S.; Hao, H. Are A3 adenosine receptors expressed in the brain? Neuroreport 2000, 11, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Latini, S.; Pedata, F. Adenosine in the central nervous system: Release mechanisms and extracellular concentrations. J. Neurochem. 2001, 79, 463–484. [Google Scholar] [CrossRef] [PubMed]
- Ballarín, M.; Fredholm, B.B.; Ambrosio, S.; Mahy, N. Extracellular levels of adenosine and its metabolites in the striatum of awake rats: inhibition of uptake and metabolism. Acta Physiol. Scand. 1991, 142, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Pazzagli, M.; Corsi, C.; Latini, S.; Pedata, F.; Pepeu, G. In vivo regulation of extracellular adenosine levels in the cerebral cortex by NMDA and muscarinic receptors. Eur. J. Pharmacol. 1994, 254, 277–282. [Google Scholar] [CrossRef]
- Sharma, R.; Engemann, S.C.; Sahota, P.; Thakkar, M.M. Effects of ethanol on extracellular levels of adenosine in the basal forebrain: An in vivo microdialysis study in freely behaving rats. Alcohol. Clin. Exp. Res. 2010, 34, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Carswell, H.V.; Graham, D.I.; Stone, T.W. Kainate-Evoked Release of Adenosine from the Hippocampus of the Anaesthetised Rat: Possible Involvement of Free Radicals. J. Neurochem. 1997, 68, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Dobolyi, A.; Reichart, A.; Szikra, T.; Nyitrai, G.; Kékesi, K.A.; Juhász, G. Sustained depolarisation induces changes in the extracellular concentrations of purine and pyrimidine nucleosides in the rat thalamus. Neurochem. Int. 2000, 37, 71–79. [Google Scholar] [CrossRef]
- Chefer, V.I.; Thompson, A.C.; Zapata, A.; Shippenberg, T.S. Overview of brain microdialysis. Curr. Protoc. Neurosci. 2009. [Google Scholar] [CrossRef]
- Sawynok, J. Adenosine receptor activation and nociception. Eur. J. Pharmacol. 1998, 347, 1–11. [Google Scholar] [CrossRef]
- Sawynok, J.; Liu, X.J. Adenosine in the spinal cord and periphery: Release and regulation of pain. Prog. Neurobiol. 2003, 69, 313–340. [Google Scholar] [CrossRef]
- Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain. Prog. Neurobiol. 2007, 83, 332–347. [Google Scholar] [CrossRef] [PubMed]
- Taiwo, Y.O.; Levine, J.D. Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 1990, 38, 757–762. [Google Scholar] [CrossRef]
- Karlsten, R.; Gordh, T.; Post, C. Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice. Pharmacol. Toxicol. 1992, 70, 434–438. [Google Scholar] [CrossRef]
- Johansen, J.P.; Fields, H.L.; Manning, B.H. The affective component of pain in rodents: Direct evidence for a contribution of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 2001, 98, 8077–8082. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.-J.; Li, Y.-Y.; Xin, W.-J.; Wei, X.-H.; Cui, Y.; Wang, J.; Liu, Y.; Liu, C.-C.; Li, Y.-Y.; Liu, X.-G. Differential effects of adenosine A1 receptor on pain-related behavior in normal and nerve-injured rats. Brain Res. 2010, 1361, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Goldman, N.; Chen, M.; Fujita, T.; Xu, Q.; Peng, W.; Liu, W.; Jensen, T.K.; Pei, Y.; Wang, F.; Han, X.; et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat. Neurosci. 2010, 13, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Gordh, T.; Karlsten, R.; Kristensen, J. Intervention with spinal NMDA, adenosine, and NO systems for pain modulation. Ann. Med. 1995, 27, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Eisenach, J.C.; Hood, D.D.; Curry, R. Phase I Safety Assessment of Intrathecal Injection of an American Formulation of Adenosine in Humans. J. Am. Soc. Anesthesiol. 2002, 96, 24–28. [Google Scholar] [CrossRef]
- Eisenach, J.C.; Curry, R.; Hood, D.D. Dose Response of Intrathecal Adenosine in Experimental Pain and Allodynia. J. Am. Soc. Anesthesiol. 2002, 97, 938–942. [Google Scholar] [CrossRef]
- Doak, G.J.; Sawynok, J. Complex role of peripheral adenosine in the genesis of the response to subcutaneous formalin in the rat. Eur. J. Pharmacol. 1995, 281, 311–318. [Google Scholar] [CrossRef]
- Liu, X.J.; White, T.D.; Sawynok, J. Potentiation of formalin-evoked adenosine release by an adenosine kinase inhibitor and an adenosine deaminase inhibitor in the rat hind paw: a microdialysis study. Eur. J. Pharmacol. 2000, 408, 143–152. [Google Scholar] [CrossRef]
- Ledent, C.; Vaugeois, J.M.; Schiffmann, S.N.; Pedrazzini, T.; El Yacoubi, M.; Vanderhaeghen, J.J.; Costentin, J.; Heath, J.K.; Vassart, G.; Parmentier, M. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 1997, 388, 674–678. [Google Scholar] [PubMed]
- Li, L.; Hao, J.X.; Fredholm, B.B.; Schulte, G.; Wiesenfeld-Hallin, Z.; Xu, X.J. Peripheral adenosine A2A receptors are involved in carrageenan-induced mechanical hyperalgesia in mice. Neuroscience 2010, 170, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Abo-Salem, O.M.; Hayallah, A.M.; Bilkei-Gorzo, A.; Filipek, B.; Zimmer, A.; Müller, C.E. Antinociceptive Effects of Novel A2B Adenosine Receptor Antagonists. J. Pharmacol. Exp. Ther. 2004, 308, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Adebiyi, M.G.; Luo, J.; Sun, K.; Le, T.-T.T.; Zhang, Y.; Wu, H.; Zhao, S.; Karmouty-Quintana, H.; Liu, H.; et al. Sustained Elevated Adenosine via ADORA2B Promotes Chronic Pain through Neuro-immune Interaction. Cell Rep. 2016, 16, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Bilkei-Gorzo, A.; Abo-Salem, O.M.; Hayallah, A.M.; Michel, K.; Müller, C.E.; Zimmer, A. Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia. Naunyn. Schmiedebergs Arch. Pharmacol. 2008, 377, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, H.; Wu, L.-J.; Kim, S.S.; Chen, T.; Koga, K.; Descalzi, G.; Gong, B.; Vadakkan, K.I.; Zhang, X.; et al. Identification of an Adenylyl Cyclase Inhibitor for Treating Neuropathic and Inflammatory Pain. Sci. Transl. Med. 2011, 3, 65ra3. [Google Scholar] [CrossRef] [PubMed]
- Uncini, A.; Lodi, R.; Di Muzio, A.; Silvestri, G.; Servidei, S.; Lugaresi, A.; Iotti, S.; Zaniol, P.; Barbiroli, B. Abnormal brain and muscle energy metabolism shown by 31P-MRS in familial hemiplegic migraine. J. Neurol. Sci. 1995, 129, 214–222. [Google Scholar] [CrossRef]
- Bresolin, N.; Martinelli, P.; Barbiroli, B.; Zaniol, P.; Ausenda, C.; Montagna, P.; Gallanti, A.; Comi, G.P.; Scarlato, G.; Lugaresi, E. Muscle mitochondrial DNA deletion and 31P-NMR spectroscopy alterations in a migraine patient. J. Neurol. Sci. 1991, 104, 182–189. [Google Scholar] [CrossRef]
- Sangiorgi, S.; Mochi, M.; Riva, R.; Cortelli, P.; Monari, L.; Pierangeli, G.; Montagna, P. Abnormal platelet mitochondrial function in patients affected by migraine with and without aura. Cephalalgia Int. J. Headache 1994, 14, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Welch, K.M.; Levine, S.R.; D’Andrea, G.; Schultz, L.R.; Helpern, J.A. Preliminary observations on brain energy metabolism in migraine studied by in vivo phosphorus 31 NMR spectroscopy. Neurology 1989, 39, 538–541. [Google Scholar] [CrossRef] [PubMed]
- Fried, N.T.; Oshinsky, M.L. Mitochondrial Dysfunction in the Development of Trigeminal Sensitivity in a Chronic Migraine and Spontaneous Trigeminal Allodynia Rat Model. Cephalalgia 2015, 35, 256. [Google Scholar]
- Eltzschig, H.K.; Thompson, L.F.; Karhausen, J.; Cotta, R.J.; Ibla, J.C.; Robson, S.C.; Colgan, S.P. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 2004, 104, 3986–3992. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.R.; Harvison, P.J.; Rush, G.F. The effects of fructose on adenosine triphosphate depletion following mitochondrial dysfunction and lethal cell injury in isolated rat hepatocytes. Toxicol. Appl. Pharmacol. 1991, 108, 407–416. [Google Scholar] [CrossRef]
- Bak, M.I.; Ingwall, J.S. Acidosis during ischemia promotes adenosine triphosphate resynthesis in postischemic rat heart. In vivo regulation of 5′-nucleotidase. J. Clin. Investig. 1994, 93, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Bak, M.I.; Ingwall, J.S. Regulation of cardiac AMP-specific 5′-nucleotidase during ischemia mediates ATP resynthesis on reflow. Am. J. Physiol. 1998, 274, C992–C1001. [Google Scholar] [PubMed]
- Darvish, A.; Metting, P.J. Purification and regulation of an AMP-specific cytosolic 5′-nucleotidase from dog heart. Am. J. Physiol. 1993, 264, H1528–H1534. [Google Scholar] [PubMed]
- Price, T.J.; Dussor, G. AMPK: An emerging target for modification of injury-induced pain plasticity. Neurosci. Lett. 2013, 557 Pt A, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Aymerich, I.; Foufelle, F.; Ferré, P.; Casado, F.J.; Pastor-Anglada, M. Extracellular adenosine activates AMP-dependent protein kinase (AMPK). J. Cell Sci. 2006, 119, 1612–1621. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.S.; Karlsson, H.K.R.; Szekeres, F.; Chibalin, A.V.; Krook, A.; Zierath, J.R. Suppression of 5′-nucleotidase enzymes promotes AMP-activated protein kinase (AMPK) phosphorylation and metabolism in human and mouse skeletal muscle. J. Biol. Chem. 2011, 286, 34567–34574. [Google Scholar] [CrossRef] [PubMed]
- Plaideau, C.; Liu, J.; Hartleib-Geschwindner, J.; Bastin-Coyette, L.; Bontemps, F.; Oscarsson, J.; Hue, L.; Rider, M.H. Overexpression of AMP-metabolizing enzymes controls adenine nucleotide levels and AMPK activation in HEK293T cells. FASEB J. 2012, 26, 2685–2694. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, X.; Silanes, I.L. de; Carling, D.; Gorospe, M. Increased AMP:ATP Ratio and AMP-activated Protein Kinase Activity during Cellular Senescence Linked to Reduced HuR Function. J. Biol. Chem. 2003, 278, 27016–27023. [Google Scholar] [CrossRef] [PubMed]
- Mandapathil, M.; Szczepanski, M.J.; Szajnik, M.; Ren, J.; Jackson, E.K.; Johnson, J.T.; Gorelik, E.; Lang, S.; Whiteside, T.L. Adenosine and prostaglandin E2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J. Biol. Chem. 2010, 285, 27571–27580. [Google Scholar] [CrossRef] [PubMed]
- England, S.; Bevan, S.; Docherty, R.J. PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J. Physiol. 1996, 495 Pt 2, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Kidd, B.L.; Urban, L.A. Mechanisms of inflammatory pain. Br. J. Anaesth. 2001, 87, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, L.F.; Levine, E.; Levine, J.D. Role of a novel nociceptor autocrine mechanism in chronic pain. Eur. J. Neurosci. 2013, 37, 1705–1713. [Google Scholar] [CrossRef] [PubMed]
- Bartley, J. Could glial activation be a factor in migraine? Med. Hypotheses 2009, 72, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Beschorner, R.; Simon, P.; Schauer, N.; Mittelbronn, M.; Schluesener, H.J.; Trautmann, K.; Dietz, K.; Meyermann, R. Reactive astrocytes and activated microglial cells express EAAT1, but not EAAT2, reflecting a neuroprotective potential following ischaemia. Histopathology 2007, 50, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Gosselin, R.-D.; Meylan, P.; Decosterd, I. Extracellular microvesicles from astrocytes contain functional glutamate transporters: Regulation by protein kinase C and cell activation. Front. Cell. Neurosci. 2013, 7, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeiren, C.; Najimi, M.; Vanhoutte, N.; Tilleux, S.; de Hemptinne, I.; Maloteaux, J.-M.; Hermans, E. Acute up-regulation of glutamate uptake mediated by mGluR5a in reactive astrocytes. J. Neurochem. 2005, 94, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Watkins, L.R.; Milligan, E.D.; Maier, S.F. Glial proinflammatory cytokines mediate exaggerated pain states: Implications for clinical pain. Adv. Exp. Med. Biol. 2003, 521, 1–21. [Google Scholar] [PubMed]
- Hindley, S.; Herman, M.A.; Rathbone, M.P. Stimulation of reactive astrogliosis in vivo by extracellular adenosine diphosphate or an adenosine A2 receptor agonist. J. Neurosci. Res. 1994, 38, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Sorkin, L.S.; Maruyama, K.; Boyle, D.L.; Yang, L.; Marsala, M.; Firestein, G.S. Spinal adenosine agonist reduces c-fos and astrocyte activation in dorsal horn of rats with adjuvant-induced arthritis. Neurosci. Lett. 2003, 340, 119–122. [Google Scholar] [CrossRef]
- Matos, M.; Augusto, E.; Santos-Rodrigues, A.D.; Schwarzschild, M.A.; Chen, J.-F.; Cunha, R.A.; Agostinho, P. Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes. Glia 2012, 60, 702–716. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.-X.; Gu, J.; Stephens, R.L. Role of spinal cord glutamate transporter during normal sensory transmission and pathological pain states. Mol. Pain 2005, 1, 30. [Google Scholar] [CrossRef] [PubMed]
- Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. [Google Scholar] [CrossRef]
- da Fonseca, A.C.C.; Matias, D.; Garcia, C.; Amaral, R.; Geraldo, L.H.; Freitas, C.; Lima, F.R.S. The impact of microglial activation on blood-brain barrier in brain diseases. Front. Cell. Neurosci. 2014, 8, 362. [Google Scholar] [CrossRef] [PubMed]
- DosSantos, M.F.; Holanda-Afonso, R.C.; Lima, R.L.; DaSilva, A.F.; Moura-Neto, V. The role of the blood-brain barrier in the development and treatment of migraine and other pain disorders. Front. Cell. Neurosci. 2014, 8, 302. [Google Scholar] [CrossRef] [PubMed]
- Harper, A.M.; MacKenzie, E.T.; McCulloch, J.; Pickard, J.D. Migraine and the blood-brain barrier. Lancet 1977, 1, 1034–1036. [Google Scholar] [CrossRef]
- Teepker, M.; Munk, K.; Mylius, V.; Haag, A.; Möller, J.C.; Oertel, W.H.; Schepelmann, K. Serum concentrations of s100b and NSE in migraine. Headache 2009, 49, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.-M.; Li, L.; Zhang, K.-L.; Chen, X.-H.; Tian, S.-Q.; Zhang, Z.-L. Impact of migraine attacks on the blood-brain barrier. Chin. Med. J. (Engl.) 2010, 123, 2559–2561. [Google Scholar] [PubMed]
- Gonçalves, F.M.; Martins-Oliveira, A.; Lacchini, R.; Belo, V.A.; Speciali, J.G.; Dach, F.; Tanus-Santos, J.E. Matrix metalloproteinase (MMP)-2 gene polymorphisms affect circulating MMP-2 levels in patients with migraine with aura. Gene 2013, 512, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K. CSD, BBB and MMP-9 elevations: animal experiments versus clinical phenomena in migraine. Expert Rev. Neurother. 2009, 9, 1595–1614. [Google Scholar] [CrossRef] [PubMed]
- Gursoy-Ozdemir, Y.; Qiu, J.; Matsuoka, N.; Bolay, H.; Bermpohl, D.; Jin, H.; Wang, X.; Rosenberg, G.A.; Lo, E.H.; Moskowitz, M.A. Cortical spreading depression activates and upregulates MMP-9. J. Clin. Investig. 2004, 113, 1447–1455. [Google Scholar] [CrossRef]
- Kruit, M.C.; van Buchem, M.A.; Launer, L.J.; Terwindt, G.M.; Ferrari, M.D. Migraine is associated with an increased risk of deep white matter lesions, subclinical posterior circulation infarcts and brain iron accumulation: the population-based MRI CAMERA study. Cephalalgia Int. J. Headache 2010, 30, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Kruit, M.C.; Launer, L.J.; van Buchem, M.A.; Terwindt, G.M.; Ferrari, M.D. MRI findings in migraine. Rev. Neurol. (Paris) 2005, 161, 661–665. [Google Scholar] [CrossRef]
- Carman, A.J.; Mills, J.H.; Krenz, A.; Kim, D.-G.; Bynoe, M.S. Adenosine Receptor Signaling Modulates Permeability of the Blood–Brain Barrier. J. Neurosci. 2011, 31, 13272–13280. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-G.; Bynoe, M.S. A2A Adenosine Receptor Regulates the Human Blood-Brain Barrier Permeability. Mol. Neurobiol. 2015, 52, 664–678. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Qian, J.; Zheng, S.; Changyi, Y.; Zhang, J.; Ju, S.; Zhu, J.; Li, C. Overcoming the blood-brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS Nano 2014, 8, 3678–3689. [Google Scholar] [CrossRef] [PubMed]
- Beggs, S.; Liu, X.J.; Kwan, C.; Salter, M.W. Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier. Mol. Pain 2010, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Hohoff, C.; Marziniak, M.; Lesch, K.-P.; Deckert, J.; Sommer, C.; Mössner, R. An Adenosine A2A Receptor Gene Haplotype is Associated with Migraine With Aura. Cephalalgia 2007, 27, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Goadsby, P.J.; Hoskin, K.L.; Storer, R.J.; Edvinsson, L.; Connor, H.E. Adenosine A1 receptor agonists inhibit trigeminovascular nociceptive transmission. Brain 2002, 125, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Sebastião, A.M.; Macedo, M.P.; Ribeiro, J.A. Tonic activation of A2A adenosine receptors unmasks, and of A1 receptors prevents, a facilitatory action of calcitonin gene-related peptide in the rat hippocampus. Br. J. Pharmacol. 2000, 129, 374–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Li, B.; Chen, J.; Su, Y.; Dong, X.; Su, X.; Gao, L. Expression of calcitonin gene-related peptide, adenosine A2a receptor and adenosine A1 receptor in experiment rat migraine models. Biomed. Rep. 2016, 4, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, B.E.; Shuttleworth, C.W. Spreading depolarization-induced adenosine accumulation reflects metabolic status in vitro and in vivo. J. Cereb. Blood Flow Metab. 2014, 34, 1779–1790. [Google Scholar] [CrossRef] [PubMed]
- Noseda, R.; Kainz, V.; Jakubowski, M.; Gooley, J.J.; Saper, C.B.; Digre, K.; Burstein, R. A neural mechanism for exacerbation of headache by light. Nat. Neurosci. 2010, 13, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, P.; Hartwick, A.T.E. Adenosine modulates light responses of rat retinal ganglion cell photoreceptors througha cAMP-mediated pathway. J. Physiol. 2014, 592, 4201–4220. [Google Scholar] [CrossRef] [PubMed]
- Vlajkovic, S.M.; Housley, G.D.; Thorne, P.R. Adenosine and the Auditory System. Curr. Neuropharmacol. 2009, 7, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.C.Y.; Guo, C.X.; Gupta, R.; Housley, G.D.; Thorne, P.R.; Vlajkovic, S.M. Post exposure administration of A1 adenosine receptor agonists attenuates noise-induced hearing loss. Hear. Res. 2010, 260, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Demarquay, G. A causative role of vasodilation in migraine? No. Rev. Neurol. (Paris) 2014, 170, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Kruuse, C.; Thomsen, L.L.; Jacobsen, T.B.; Olesen, J. The Phosphodiesterase 5 Inhibitor Sildenafil Has No Effect on Cerebral Blood Flow or Blood Velocity, but Nevertheless Induces Headache in Healthy Subjects. J. Cereb. Blood Flow Metab. 2002, 22, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Theis, J.G.W.; Deichsel, G.; Marshall, S. Rapid development of tolerance to dipyridamole-associated headaches. Br. J. Clin. Pharmacol. 1999, 48, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, D.K.; Shepherd, D.B. Post-dural puncture headache: pathogenesis, prevention and treatment. Br. J. Anaesth. 2003, 91, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Hamel, E. Serotonin and migraine: Biology and clinical implications. Cephalalgia Int. J. Headache 2007, 27, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Guieu, R.; Devaux, C.; Henry, H.; Bechis, G.; Pouget, J.; Mallet, D.; Sampieri, F.; Juin, M.; Gola, R.; Rochat, H. Adenosine and migraine. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 1998, 25, 55–58. [Google Scholar] [CrossRef]
- Birk, S.; Kruuse, C.; Petersen, K.A.; Tfelt-Hansen, P.; Olesen, J. The headache-inducing effect of cilostazol in human volunteers. Cephalalgia Int. J. Headache 2006, 26, 1304–1309. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Olesen, J.; Ashina, M. Phosphodiesterase 3 inhibitor cilostazol induces migraine-like attacks via cyclic AMP increase. Brain J. Neurol. 2014, 137, 2951–2959. [Google Scholar] [CrossRef] [PubMed]
- Diamond, S.M.; Henrich, W.L. Acetate dialysate versus bicarbonate dialysate: A continuing controversy. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 1987, 9, 3–11. [Google Scholar] [CrossRef]
- Jiang, L.; Gulanski, B.I.; De Feyter, H.M.; Weinzimer, S.A.; Pittman, B.; Guidone, E.; Koretski, J.; Harman, S.; Petrakis, I.L.; Krystal, J.H.; et al. Increased brain uptake and oxidation of acetate in heavy drinkers. J. Clin. Investig. 2013, 123, 1605–1614. [Google Scholar] [CrossRef] [PubMed]
- Jelski, W.; Grochowska-Skiba, B.; Szmitkowski, M. Alcohol dehydrogenase and the metabolism of ethanol in the brain. Postȩpy Hig. Med. Dośw. Online 2007, 61, 226–230. [Google Scholar] [PubMed]
- Waniewski, R.A.; Martin, D.L. Preferential utilization of acetate by astrocytes is attributable to transport. J. Neurosci. Off. J. Soc. Neurosci. 1998, 18, 5225–5233. [Google Scholar]
- Swift, R.; Davidson, D. Alcohol hangover: Mechanisms and mediators. Alcohol Health Res. World 1998, 22, 54–60. [Google Scholar] [PubMed]
- Wei, C.J.; Li, W.; Chen, J.-F. Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim. Biophys. Acta 2011, 1808, 1358–1379. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.A.; Sebastião, A.M. Caffeine and adenosine. J. Alzheimers Dis. 2010, 20, S3–S15. [Google Scholar] [PubMed]
- Capiotti, K.M.; Menezes, F.P.; Nazario, L.R.; Pohlmann, J.B.; de Oliveira, G.M.T.; Fazenda, L.; Bogo, M.R.; Bonan, C.D.; Da Silva, R.S. Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio). Neurotoxicol. Teratol. 2011, 33, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Johansson, B.; Ahlberg, S.; van der Ploeg, I.; Brené, S.; Lindefors, N.; Persson, H.; Fredholm, B.B. Effect of long term caffeine treatment on A1 and A2 adenosine receptor binding and on mRNA levels in rat brain. Naunyn. Schmiedebergs Arch. Pharmacol. 1993, 347, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Traversa, U.; Rosati, A.M.; Florio, C.; Vertua, R. Effects of chronic administration of adenosine antagonists on adenosine A1 and A2a receptors in mouse brain. Vivo Athens Greece 1994, 8, 1073–1078. [Google Scholar]
- Conlay, L.A.; Conant, J.A.; deBros, F.; Wurtman, R. Caffeine alters plasma adenosine levels. Nature 1997, 389, 136. [Google Scholar] [CrossRef] [PubMed]
- Fischera, M.; Marziniak, M.; Gralow, I.; Evers, S. The incidence and prevalence of cluster headache: a meta-analysis of population-based studies. Cephalalgia Int. J. Headache 2008, 28, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Martelletti, P. Cluster headache management and beyond. Expert Opin. Pharmacother. 2015, 16, 1411–1415. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.M.; Gleeson, T.T.; Scholnick, D.A. The effect of oxygen and adenosine on lizard thermoregulation. Physiol. Biochem. Zool. 2003, 76, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Rubio, R.; Berne, R.M.; Bockman, E.L.; Curnish, R.R. Relationship between adenosine concentration and oxygen supply in rat brain. Am. J. Physiol. 1975, 228, 1896–1902. [Google Scholar] [PubMed]
- D’Andrea, G.; Granella, F.; Cadaldini, M. Platelet aggregation profiles in cluster headache. Headache 2003, 43, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Feoktistov, I.; Hollister, A.S.; Robertson, D.; Biaggioni, I. Adenosine inhibits the rise in intracellular calcium and platelet aggregation produced by thrombin: Evidence that both effects are coupled to adenylate cyclase. Mol. Pharmacol. 1990, 37, 870–875. [Google Scholar] [PubMed]
- Holle, D.; Naegel, S.; Obermann, M. Hypnic headache. Cephalalgia Int. J. Headache 2013, 33, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.N.; Sahota, P. Sleep-related headache and its management. Curr. Treat. Options Neurol. 2013, 15, 704–722. [Google Scholar] [CrossRef] [PubMed]
- Antle, M.C.; Steen, N.M.; Mistlberger, R.E. Adenosine and caffeine modulate circadian rhythms in the Syrian hamster. Neuroreport 2001, 12, 2901–2905. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.R.; Roth, T. Neurophysiology of Sleep and Wakefulness: Basic Science and Clinical Implications. Curr. Neuropharmacol. 2008, 6, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Landolt, H.-P. Sleep homeostasis: A role for adenosine in humans? Biochem. Pharmacol. 2008, 75, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- Mackiewicz, M.; Nikonova, E.V.; Zimmerman, J.E.; Galante, R.J.; Zhang, L.; Cater, J.R.; Geiger, J.D.; Pack, A.I. Enzymes of adenosine metabolism in the brain: Diurnal rhythm and the effect of sleep deprivation. J. Neurochem. 2003, 85, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Barloese, M.C.J. Neurobiology and sleep disorders in cluster headache. J. Headache Pain 2015, 16, 562. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.-F.; Wang, S.-J. Hypnic headache: A review of clinical features, therapeutic options and outcomes. Cephalalgia Int. J. Headache 2014, 34, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Langlois, J.A.; Rutland-Brown, W.; Wald, M.M. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 2006, 21, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.J.; Robertson, C.S.; Kochanek, P.M.; Goodman, J.C.; Gopinath, S.P.; Carcillo, J.A.; Clark, R.S.; Marion, D.W.; Mi, Z.; Jackson, E.K. Interstitial brain adenosine and xanthine increase during jugular venous oxygen desaturations in humans after traumatic brain injury. Crit. Care Med. 2001, 29, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Silberstein, S.D. Sex hormones and headache. Rev. Neurol. (Paris) 2000, 156, 4S30–4S41. [Google Scholar] [CrossRef]
- Rose’Meyer, R.B.; Mellick, A.S.; Garnham, B.G.; Harrison, G.J.; Massa, H.M.; Griffiths, L.R. The measurement of adenosine and estrogen receptor expression in rat brains following ovariectomy using quantitative PCR analysis. Brain Res. Brain Res. Protoc. 2003, 11, 9–18. [Google Scholar] [CrossRef]
- Edlow, A.G.; Bartz, D. Hormonal Contraceptive Options for Women With Headache: A Review of the Evidence. Rev. Obstet. Gynecol. 2010, 3, 55–65. [Google Scholar] [PubMed]
- Phillips, W.; Michell, A.; Pruess, H.; Barker, R.A. Animal models of neurodegenerative diseases. Methods Mol. Biol. 2009, 549, 137–155. [Google Scholar] [CrossRef]
- Pençe, S.; Erkutlu, I.; Kurtul, N.; Alptekin, M.; Tan, U. Effects of progesterone on total brain tissue adenosine deaminase activity in experimental epilepsy. Int. J. Neurosci. 2009, 119, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Ashina, M.; Simonsen, H.; Bendtsen, L.; Jensen, R.; Olesen, J. Glyceryl trinitrate may trigger endogenous nitric oxide production in patients with chronic tension-type headache. Cephalalgia Int. J. Headache 2004, 24, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Hsi, D.H.; Roshandel, A.; Singh, N.; Szombathy, T.; Meszaros, Z.S. Headache response to glyceryl trinitrate in patients with and without obstructive coronary artery disease. Heart 2005, 91, 1164–1166. [Google Scholar] [CrossRef] [PubMed]
- Anfossi, G.; Massucco, P.; Piretto, V.; Mularoni, E.; Cavalot, F.; Mattiello, L.; Trovati, M. Glyceryl trinitrate enhances the adenosine-induced inhibition of platelet responses: A mechanism potentially involved in the in vivo anti-aggregating effects of organic nitrates. Clin. Exp. Pharmacol. Physiol. 1995, 22, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Gori, T.; Daiber, A.; Di Stolfo, G.; Sicuro, S.; Dragoni, S.; Lisi, M.; M¨nzel, T.; Forconi, S.; Parker, J.D. Nitroglycerine causes mitochondrial reactive oxygen species production: In vitro mechanistic insights. Can. J. Cardiol. 2007, 23, 990–992. [Google Scholar] [CrossRef]
- Montagna, P.; Sacquegna, T.; Martinelli, P.; Cortelli, P.; Bresolin, N.; Moggio, M.; Baldrati, A.; Riva, R.; Lugaresi, E. Mitochondrial abnormalities in migraine. Preliminary findings. Headache 1988, 28, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Bou, R.; Rocha, M.; Apostolova, N.; Herance, R.; Hernandez-Mijares, A.; Victor, V.M. Evidence for a relationship between mitochondrial Complex I activity and mitochondrial aldehyde dehydrogenase during nitroglycerin tolerance: Effects of mitochondrial antioxidants. Biochim. Biophys. Acta 2012, 1817, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Duley, J.A.; Garrick, D.P.; Pratt, D.A. Raised Plasma Adenosine Associated with Chronic Fatigue Syndrome. Available online: http://informahealthcare.com/doi/abs/10.1300/J092v07n03_07 (accessed on 2 August 2013).
- Koos, B.J. Adenosine A2a receptors and O2 sensing in development. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R601–R622. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, F.; Kamiike, W.; Nishimura, T.; Hashimoto, T.; Tagawa, K. Decrease in mitochondrial levels of adenine nucleotides and concomitant mitochondrial dysfunction in ischemic rat liver. J. Biochem. (Tokyo) 1983, 94, 493–499. [Google Scholar] [CrossRef]
- Nassini, R.; Materazzi, S.; Vriens, J.; Prenen, J.; Benemei, S.; Siena, G.D.; la Marca, G.; Andrè, E.; Preti, D.; Avonto, C.; et al. The “headache tree” via umbellulone and TRPA1 activates the trigeminovascular system. Brain 2012, 135, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Benemei, S.; Cesaris, F.D.; Fusi, C.; Rossi, E.; Lupi, C.; Geppetti, P. TRPA1 and other TRP channels in migraine. J. Headache Pain 2013, 14, 71. [Google Scholar] [CrossRef] [PubMed]
- Wicher, D.; Agricola, H.-J.; Schönherr, R.; Heinemann, S.H.; Derst, C. TRPgamma channels are inhibited by cAMP and contribute to pacemaking in neurosecretory insect neurons. J. Biol. Chem. 2006, 281, 3227–3236. [Google Scholar] [CrossRef] [PubMed]
- Nagatomo, K.; Kubo, Y. Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels. Proc. Natl. Acad. Sci. USA 2008, 105, 17373–17378. [Google Scholar] [CrossRef] [PubMed]
- Egbuniwe, O.; Grover, S.; Duggal, A.K.; Mavroudis, A.; Yazdi, M.; Renton, T.; Di Silvio, L.; Grant, A.D. TRPA1 and TRPV4 activation in human odontoblasts stimulates ATP release. J. Dent. Res. 2014, 93, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, T.; Sokabe, T.; Araki, I.; Fujishita, K.; Shibasaki, K.; Uchida, K.; Naruse, K.; Koizumi, S.; Takeda, M.; Tominaga, M. The TRPV4 Cation Channel Mediates Stretch-evoked Ca2+ Influx and ATP Release in Primary Urothelial Cell Cultures. J. Biol. Chem. 2009, 284, 21257–21264. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, M.; Wada, M.; Masu, M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc. Natl. Acad. Sci. USA 2001, 98, 6951–6956. [Google Scholar] [CrossRef] [PubMed]
- Batalha, V.L.; Pego, J.M.; Fontinha, B.M.; Costenla, A.R.; Valadas, J.S.; Baqi, Y.; Radjainia, H.; Müller, C.E.; Sebastião, A.M.; Lopes, L.V. Adenosine A2A receptor blockade reverts hippocampal stress-induced deficits and restores corticosterone circadian oscillation. Mol. Psychiatry 2013, 18, 320–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaster, M.P.; Machado, N.J.; Silva, H.B.; Nunes, A.; Ardais, A.P.; Santana, M.; Baqi, Y.; Müller, C.E.; Rodrigues, A.L.S.; Porciúncula, L.O.; et al. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc. Natl. Acad. Sci. USA 2015, 112, 7833–7838. [Google Scholar] [CrossRef] [PubMed]
- Deckert, J.; Nöthen, M.M.; Franke, P.; Delmo, C.; Fritze, J.; Knapp, M.; Maier, W.; Beckmann, H.; Propping, P. Systematic mutation screening and association study of the A1 and A2A adenosine receptor genes in panic disorder suggest a contribution of the A2A gene to the development of disease. Mol. Psychiatry 1998, 3, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.P.; Slager, S.L.; De Leon, A.B.; Heiman, G.A.; Klein, D.F.; Hodge, S.E.; Weissman, M.M.; Fyer, A.J.; Knowles, J.A. Evidence for genetic linkage between a polymorphism in the adenosine 2A receptor and panic disorder. Neuropsychopharmacology 2004, 29, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Llort, L.; Fernández-Teruel, A.; Escorihuela, R.M.; Fredholm, B.B.; Tobeña, A.; Pekny, M.; Johansson, B. Mice lacking the adenosine A1 receptor are anxious and aggressive, but are normal learners with reduced muscle strength and survival rate. Eur. J. Neurosci. 2002, 16, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Coelho, J.E.; Alves, P.; Canas, P.M.; Valadas, J.S.; Shmidt, T.; Batalha, V.L.; Ferreira, D.G.; Ribeiro, J.A.; Bader, M.; Cunha, R.A.; et al. Overexpression of Adenosine A2A Receptors in Rats: Effects on Depression, Locomotion, and Anxiety. Front. Psychiatry 2014, 5, 67. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fried, N.T.; Elliott, M.B.; Oshinsky, M.L. The Role of Adenosine Signaling in Headache: A Review. Brain Sci. 2017, 7, 30. https://doi.org/10.3390/brainsci7030030
Fried NT, Elliott MB, Oshinsky ML. The Role of Adenosine Signaling in Headache: A Review. Brain Sciences. 2017; 7(3):30. https://doi.org/10.3390/brainsci7030030
Chicago/Turabian StyleFried, Nathan T., Melanie B. Elliott, and Michael L. Oshinsky. 2017. "The Role of Adenosine Signaling in Headache: A Review" Brain Sciences 7, no. 3: 30. https://doi.org/10.3390/brainsci7030030
APA StyleFried, N. T., Elliott, M. B., & Oshinsky, M. L. (2017). The Role of Adenosine Signaling in Headache: A Review. Brain Sciences, 7(3), 30. https://doi.org/10.3390/brainsci7030030