Virtual Reality for Research in Social Neuroscience
Abstract
:1. Introduction
2. Virtual Reality and Virtual Environments: Key Definitions
2.1. Components of a Virtual Reality System
2.2. Immersion and Presence in Virtual Environments
3. Being Present in Virtual Reality: From the Self to the Others
3.1. Feeling Present in Virtual Reality
3.1.1. Presence: Inside the Body vs. Outside the Body
3.1.2. Social Presence: Self versus Others
3.2. The Layers of Social Presence
- D-intentions (Future-directed intentions): These high-level intentions act both as intra- and interpersonal coordinators, and as prompters of practical reasoning about means and plans. A possible D-Intention is the intention to become a doctor. This intention hides a complex personal path involving many interpersonal relations and achievements that the subject is not fully able to control and predict in advance: the individual should obtain a Bachelor’s degree first, then attend medical school and take part in rotations, residencies, and exams. Then the individual should choose a specialty and train for it. Finally, the individual should apply for a residency program, training, and certification.
- P-intentions (Present-directed intentions): These intentions are responsible for high-level (conscious) forms of guidance and monitoring. They have to ensure that the imagined actions become current through situational control of their unfolding. Within the above D-intention—to become a doctor—an example of P-intention is to join the Anatomy class: the individual should leave home, take a car or a bus to reach the university, finding the right building and entering the class during the scheduled time. Differently from before, the individual is able to predict in advance all the different steps required to enact the intention. In this way, they can use it to control its unfolding, and find situational solutions to possible problems. For example, if the car does not start, the individual can use the bus to reach the university.
- M-intentions (Motor intentions): These intentions are responsible for low-level (unconscious) forms of guidance and monitoring: we may not be aware of them, and we have only partial access to their content. Further, their contents are not propositional. An example of M-Intention within the above P-intention—to join the Anatomy class—is moving the steering wheel while driving the car. This intention, being subpersonal and unconscious (the individual is not aware of the specific movements done during driving) allows for the monitoring and control of the body movements, and the interaction of the body with the surrounding environment.
- Other’s Presence (Other vs. the Self—M-Intentions)
- Interactive Presence (Other toward the Self—P-Intentions)
- Shared Presence (Other is like the Self—D-Intentions)
4. Enhancing Social Neuroscience Protocols with Virtual Environments
4.1. Virtual Reality for Multimodal, Dynamic and Contextually-Rich Stimulus Presentation
4.2. Virtual Reality Allows for Automated Multimodal Data Logging and Analysis
4.3. Virtual Reality for Control and Flexibility in the Administration of Social Cues
5. Virtual Reality for Simulating Impossible Social Interactions
5.1. Virtual Representations of Self and Other
5.2. Virtual Characters for Interpreting Others
6. Virtual Reality-Based Moral Dilemmas
6.1. Virtual Trolley Dilemma
6.2. Authority and Obedience in Virtual Environments
7. Virtual Induction of Social Stress
8. Virtual Induction of Social Pain
9. Conclusions: Virtual Reality in Social Neuroscience and Beyond
9.1. Methodological Issues
9.2. Ethical Considerations
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cacioppo, J.T.; Berntson, G.G.; Decety, J. Social neuroscience and its relation to social psychology. Soc. Cogn. 2010, 28, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Cacioppo, J.T.; Berntson, G.G. Social psychological contributions to the decade of the brain: Doctrine of multilevel analysis. Am. Psychol. 1992, 47, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Ochsner, K.N.; Lieberman, M.D. The emergence of social cognitive neuroscience. Am. Psychol. 2001, 56, 717–734. [Google Scholar] [CrossRef] [PubMed]
- Moscowitz, G.B. Social Cognition: Understanding Self and Others; Guilford Press: New York, NY, USA, 2005. [Google Scholar]
- Bradley, M.M.; Lang, P.J. The International Affective Picture System (IAPS) in the Study of emotion and attention. In Handbook of Emotion Elicitation and Assessment; Coan, J.A., Allen, J.J.B., Eds.; Series in Affective Science; Oxford University: New York, NY, USA, 2007; pp. 29–46. [Google Scholar]
- Fusar-Poli, P.; Placentino, A.; Carletti, F.; Landi, P.; Allen, P.; Surguladze, S.; Benedetti, F.; Abbamonte, M.; Gasparotti, R.; Barale, F.; et al. Functional atlas of emotional faces processing: A voxel-basedmeta-analysis of 105 functional magnetic resonance imaging studies. J. Psychiatry Neurosci. 2009, 34, 418–432. [Google Scholar] [PubMed]
- Burnett, S.; Bird, G.; Moll, J.; Frith, C.; Blakemore, S.J. Development during adolescence of the neural processing of social emotion. J. Cogn. Neurosci. 2009, 21, 1736–1750. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.Y.; Kim, B.K.; Lee, S.Y. Implicit agreeing/disagreeing intention while reading self relevant sentences: A human fMRI study. Soc. Neurosci. 2016, 11, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Bartholow, B.D.; Fabiani, M.; Gratton, G.; Bettencourt, B.A. A psychophysiological examination of cognitive processing of and affective responses to social expectancy violations. Psychol. Sci. 2001, 12, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Jerónimo, R.; Volpert, H.I.; Bartholow, B.D. Event-related potentials reveal early attention bias for negative, unexpected behavior. Soc. Neurosci. 2017. [Google Scholar] [CrossRef] [PubMed]
- Frewen, P.A.; Dozois, D.J.A.; Neufeld, R.W.J.; Densmore, M.; Stevens, T.K.; Lanius, R.A. Neuroimaging social emotional processing in women: fMRI study ofscript-driven imagery. Soc. Cogn. Affect. Neurosci. 2011, 6, 375–392. [Google Scholar] [CrossRef] [PubMed]
- Chiu, I.; Gfrorer, R.I.; Piguet, O.; Berres, M.; Monsch, A.U.; Sollberger, M. “Now I see it, now I don’t”: Determining Threshold Levels of Facial Emotion Recognition for Use in Patient Populations. J. Int. Neuropsychol. Soc. 2015, 21, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.D.; Cowan, D.G.; Lee, T.; Sachdev, P.S. Recent trends in testing social cognition. Curr. Opin. Psychiatry 2015, 28, 133–140. [Google Scholar] [PubMed]
- Zaki, J.; Ochsner, K. The need for a cognitive neuroscience of naturalistic social cognition. Ann. N. Y. Acad. Sci. 2009, 1167, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Risko, E.F.; Laidlaw, K.E.; Freeth, M.; Foulsham, T.; Kingstone, A. Social attention with real versus reel stimuli: Toward an empirical approach to concerns about ecological validity. Front. Hum. Neurosci. 2012, 6, 143. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, B. Parameterising ecological validity and integrating individual differences within second-person neuroscience. Behav. Brain Sci. 2013, 36, 414–415. [Google Scholar] [CrossRef] [PubMed]
- Ochsner, K.N. Current directions in social cognitive neuroscience. Curr. Opin. Neurobiol. 2004, 14, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Schilbach, L.; Wohlschläger, A.M.; Newen, A.; Krämer, N.; Shah, N.J.; Fink, G.R.; Vogeley, K. Being with others: Neural correlates of social interaction. Neuropsychologia 2006, 44, 718–730. [Google Scholar] [CrossRef] [PubMed]
- Schilbach, L.; Timmermans, B.; Reddy, V.; Costall, A.; Bente, G.; Schlicht, T.; Vogeley, K. Toward a second-person neuroscience. Behav. Brain Sci. 2013, 36, 393–414. [Google Scholar] [CrossRef] [PubMed]
- Schilbach, L. Eye to eye, face to face and brain to brain: Novel approaches to study the behavioral dynamics and neural mechanisms of social interactions. Curr. Opin. Behav. Sci. 2015, 3, 130–135. [Google Scholar] [CrossRef]
- Bohil, C.J.; Alicea, B.; Biocca, F.A. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 2011, 12, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.D. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective, and Social Neurosciences. Front. Hum. Neurosci. 2015, 9, 660. [Google Scholar] [CrossRef] [PubMed]
- Gorini, A.; Capideville, C.S.; DeLeo, G.; Mantovani, F.; Riva, G. The role of immersion and narrative in mediated presence: The virtual hospital experience. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Diemer, J.E.; Alpers, G.W.; Peperkorn, H.M.; Shiban, Y.; Mühlberger, A. The impact of perception and presence on emotional reactions: A review of research in virtual reality. Front. Psychol. 2015, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Bailenson, J.N.; Blascovich, J. Avatars. Encyclopedia of Human-Computer Interaction; Berkshire Publishing Group: Great Barrington, MA, USA, 2004; pp. 64–68. [Google Scholar]
- Kenny, P.; Parsons, T.D. Embodied conversational virtual human patients. In Conversational Agents and Natural Language Interaction:Techniques and Effective Practices; Perez-Marin, C., Pascual-Nieto, I., Eds.; IGI Global: Hereshey, PA, USA, 2011; pp. 254–281. [Google Scholar]
- Bowman, D.; Kruijff, E.; LaViola, J.; Poupyrev, I. An introduction to 3-D user interface design. Presence Teleoper. Virtual Environ. 2001, 10, 96–108. [Google Scholar] [CrossRef]
- Fuchs, P.; Guitton, P. Introduction to virtual reality. In Virtual Reality: Concepts And Technologies, 1st ed.; Fuchs, P., Morequ, G., Guitton, P., Eds.; CRC Press, Taylor & Francis Group: London, UK, 2011. [Google Scholar]
- Cruz-Neira, C.; Sandin, D.J.; DeFanti, T.A.; Kenyon, R.V.; Hart, J.C. The CAVE. Audio visual experience automatic virtual environment. Commun. ACM 1992, 35, 65–72. [Google Scholar] [CrossRef]
- Slater, M.; Wilbur, S. A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence Teleoper. Virtual Environ. 1997, 6, 603–616. [Google Scholar] [CrossRef]
- Sheridan, T.B. Musings on Telepresence and Virtual Presence. Presence Teleoper. Virtual Environ. 1992, 1, 120–125. [Google Scholar] [CrossRef]
- IJsselsteijn, W.A.; de Ridder, H.; Freeman, J.; Avons, S.E.; Bouwhuis, D.G. Effects of stereoscopic presentation, image motion, and screen size on subjective and objective corroborative measures of presence. Presence Teleoper. Virtual Environ. 2001, 10, 298–311. [Google Scholar] [CrossRef]
- Parsons, T.D.; Barnett, M.; Melugin, P. Assessment of Personality and Absorption for Mediated Environments in a College Sample. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Sacau, A.; Laarni, J.; Hartmann, T. Influence of individual factors on presence. Comput. Hum. Behav. 2008, 24, 2255–2273. [Google Scholar] [CrossRef]
- Zahorik, P.; Jenison, R.L. Presence as being-in-the-world. Presence Teleoper. Virtual Environ. 1998, 7, 78–89. [Google Scholar] [CrossRef]
- Gibson, J.J. The theory of affordances. In Perceiving, Acting, and Knowing; Shaw, R., Bransford, J., Eds.; Lawrence Erlbaum: Mahwah, NJ, USA, 1977; pp. 67–82. [Google Scholar]
- Short, J.A.; Williams, E.; Christie, B. The Social Psychology of Telecommunications; Wiley: London, UK, 1976. [Google Scholar]
- Sanchez-Vives, M.V.; Slater, M. From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 2005, 6, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Macedonio, M.F.; Parsons, T.D.; Digiuseppe, R.A.; Weiderhold, B.A.; Rizzo, A.A. Immersiveness and physiological arousal within panoramic video-based virtual reality. Cyberpsychol. Behav. 2007, 10, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, T.; Valko, L.; Esslen, M.; Jäncke, L. Neural correlate of spatial presence in an arousing and noninteractive virtual reality: An EEG and psychophysiology study. CyberPsychol. Behav. 2006, 9, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, T.; Speck, D.; Wettstein, D.; Masnari, O.; Beeli, G.; Jäncke, L. Feeling present in arousing virtual reality worlds: Prefrontal brain regions differentially orchestrate presence experience in adults and children. Front. Hum. Neurosci. 2008, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Alcañiz, M.; Rey, B.; Tembl, J.; Parkhutik, V. A Neuroscience Approach to Virtual Reality Experience Using Transcranial Doppler Monitoring. Presence Teleoper. Virtual Environ. 2009, 18, 97–111. [Google Scholar] [CrossRef]
- Lombard, M.; Biocca, F.; Freeman, J.; IJsselsteijn, W.; Schaevitz, R.J. (Eds.) Immersed in Media. Telepresence Theory, Measurement & Technology; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Riva, G.; Waterworth, J.A.; Murray, D. Interacting with Presence: HCI and the Sense of Presence in Computer-Mediated Environments; De Gruyter: Berlin, Germany, 2014. [Google Scholar]
- Lombard, M.; Ditton, T. At the heart of it all: The concept of presence. J. Comput. Mediat. Commun. 1997. [Google Scholar] [CrossRef]
- Waterworth, J.A.; Riva, G. Feeling Present in the Physical World and in Computer-Mediated Environments; Palgrave Macmillan: Basingstoke, UK, 2014. [Google Scholar]
- Biocca, F. The Cyborg’s Dilemma: Progressive Embodiment in Virtual Environments. J. Comput. Mediat. Commun. 1997. [Google Scholar] [CrossRef]
- Jenkinson, P.M.; Preston, C. New reflections on agency and body ownership: The moving rubber hand illusion in the mirror. Conscious. Cogn. 2015, 33, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Tsakiris, M.; Schutz-Bosbach, S.; Gallagher, S. On agency and body-ownership: Phenomenological and neurocognitive reflections. Conscious. Cogn. 2007, 16, 645–660. [Google Scholar] [CrossRef] [PubMed]
- Biocca, F.; Harms, C.; Burgoon, J.K. Toward a more robust theory and measure of social presence: Review and suggested criteria. Presence Teleoper. Virtual Environ. 2003, 12, 456–480. [Google Scholar] [CrossRef]
- Riva, G.; Mantovani, F. Extending the self through the tools and the others: A general framework for presence and social presence in mediated interactions. In Interacting with Presence: HCI and the Sense of Presence in Computer-mediated Environments; De Gruyter: Berlin, Germany, 2014; pp. 9–31. [Google Scholar]
- Wallwork, S.B.; Bellan, V.; Catley, M.J.; Moseley, G.L. Neural representations and the corticalbody matrix: Implications for sports medicine and future directions. Br. J. Sports Med. 2016, 50, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Riva, G. Enacting interactivity: The role of presence. Emerg. Commun. 2008, 10, 97–114. [Google Scholar]
- Riva, G. Is presence a technology issue? Some insights from cognitive sciences. Virtual Real. 2009, 13, 159–169. [Google Scholar] [CrossRef]
- Riva, G.; Waterworth, J.A. Being present in a virtual world. In The Oxford Handbook of Virtuality; Grimshaw, M., Ed.; Oxford University Press: New York, NY, USA, 2014; pp. 205–221. [Google Scholar]
- Riva, G.; Waterworth, J.A.; Waterworth, E.L.; Mantovani, F. From intention to action: The role of presence. New Ideas Psychol. 2011, 29, 24–37. [Google Scholar] [CrossRef]
- Russell, J.A. Agency: Its Role in Mental Development; Erlbaum: Hove, UK, 1996. [Google Scholar]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.; Daunizeau, J.; Kilner, J.; Kiebel, S.J. Action and behavior: A free-energy formulation. Biol. Cybern. 2010, 102, 227–260. [Google Scholar] [CrossRef] [PubMed]
- Knoblich, G.; Thornton, I.; Grosjean, M.; Shiffrar, M. Human Body Perception from the Inside Out; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Wilson, M.; Knoblich, G. The case for motor involvement in perceiving conspecifics. Psychol. Bull. 2005, 131, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Fadiga, L.; Gallese, V.; Fogassi, L. Premotor cortex and the recognition of motor actions. Cogn. Brain Res. 1996, 3, 131–141. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Sinigaglia, C. Milano. So quel che fai. Il Cervello Che Agisce e i Neuroni Specchio; Raffaello Cortina: Milano, Italy, 2006. [Google Scholar]
- Knoblich, G.; Flach, R. Action identity: Evidence from self-recognition, prediction, and coordination. Conscious. Cogn. 2003, 12, 620–632. [Google Scholar] [CrossRef]
- Prinz, W. Perception and action planning. Eur. J. Cogn. Psychol. 1997, 9, 129–154. [Google Scholar] [CrossRef]
- Becchio, C.; Bertone, C. Il paradosso dell’intenzionalità collettiva. G. Ital. Psicol. 2005, 32, 851–860. [Google Scholar]
- Searle, J. Intentionality: An Essay in the Philosophy of Mind; Cambridge University Press: New York, NY, USA, 1983. [Google Scholar]
- Pacherie, E. The phenomenology of action: A conceptual framework. Cognition 2008, 107, 179–217. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Mantovani, F.; Waterworth, E.L.; Waterworth, J.A. Intention, action, self and other: An evolutionary model of presence. In Immersed in Media; Springer: Cham, Switzerland, 2015; pp. 73–99. [Google Scholar]
- Riva, G.; Mantovani, F. From the body to the tools and back: A general framework for presence in mediated interactions. Interact. Comput. 2012, 24, 203–210. [Google Scholar] [CrossRef]
- Searle, J. Collective Intentions and Actions. In Intentions in Communication; Cohen, P., Morgan, J., Pollack, M.E., Eds.; Bradford Books: Cambridge, MA, USA, 1990; pp. 401–416. [Google Scholar]
- Reader, A.T.; Holmes, N.P. Examining ecological validity in social interaction: Problems of visual fidelity, gaze, and social potential. Cult. Brain 2016, 4, 134–146. [Google Scholar] [CrossRef] [PubMed]
- de Jaegher, H.; di Paolo, E.; Gallagher, S. Can social interaction constitute social cognition? Trends Cogn. Sci. 2010, 14, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Gregory, N.J.; López, B.; Graham, G.; Marshman, P.; Bate, S.; Kargas, N. Reduced gaze following and attention to heads when viewing a “live” social scene. PLoS ONE 2015. [Google Scholar] [CrossRef] [PubMed]
- Hogenelst, K.; Schoevers, R.A.; aan het Rot, M. Studying the neurobiology of human social interaction: Making the case for ecological validity. Soc. Neurosci. 2015, 10, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.D. Cyberpsychology and the Brain: The Interaction of Neuroscience and Affective Computing; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Bombari, D.; Schmid Mast, M.; Cañadas, E.; Bachmann, M. Studying social interactions through immersive virtual environment technology: Virtues, pitfalls, and future challenges. Front. Psychol. 2015, 6, 869. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, A.L.; Kuzmanovic, B.; Roth, D.; Bente, G.; Vogeley, K. The Use of Virtual Characters to Assess and Train Non-Verbal Communication in High-Functioning Autism. Front. Hum. Neurosci. 2014, 8, 807. [Google Scholar] [CrossRef] [PubMed]
- Virtual Reality Peripheral Network - Official Repo. Available online: https://github.com/vrpn/vrpn/wiki (accessed on 10 January 2017).
- Steptoe, W.; Steed, A. Multimodal Data Capture and Analysis of Interaction in Immersive Collaborative Virtual Environments. Presence Teleoper. Virtual Environ. 2012, 21, 388–405. [Google Scholar] [CrossRef]
- Bente, G.; Krämer, N.C.; Eschenburg, F. Is there anybody out there? Analyzing the effects of embodiment and nonverbal behavior in avatar-mediated communication. In Mediated Interpersonal Communication; Konijn, E.A., Utz, S., Tanis, M., Barnes, S.B., Eds.; Routledge: New York, NY, USA, 2008; pp. 131–157. [Google Scholar]
- Bente, G.; Krämer, N.C. Virtual gestures: Embodiment and nonverbal behavior in computer-mediated communication. In Face-To-Face Communication Over the Internet: Issues, Research, Challenges; Kappas, A., Krämer, N.C., Eds.; Cambridge Univesity Press: Cambridge, UK, 2011; pp. 176–209. [Google Scholar]
- Bailenson, J.N.; Beall, A.C.; Loomis, J.; Blascovich, J.; Turk, M. Transformed Social Interaction: Decoupling Representation from Behavior and Form in Collaborative Virtual Environments. Presence Teleoper. Virtual Environ. 2004, 13, 428–441. [Google Scholar] [CrossRef]
- Bailenson, J.N.; Beall, A.C.; Blascovich, J.; Loomis, J.; Turk, M. Transformed Social Interaction, Augmented Gaze, and Social Influence in Immersive Virtual Environments. Hum. Commun. Res. 2005, 31, 511–537. [Google Scholar] [CrossRef]
- Borst, A.W.; Gelder, B.D. Is it the real deal? Perception of virtual characters versus humans: An affective cognitive neuroscience perspective. Front. Psychol. 2015, 6, 576. [Google Scholar] [CrossRef] [PubMed]
- Dyck, M.; Winbeck, M.; Leiberg, S.; Chen, Y.; Gur, R.C.; Mathiak, K. Recognition profile of emotions in natural and virtual faces. PLoS ONE 2008, 3, e3628. [Google Scholar] [CrossRef]
- McDonnell, R.; Jorg, S.; McHugh, J.; Newell, F.; O’Cullivan, C. Evaluating the emotional content of human motions on real and virtual characters. In Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization APGV, Los Angeles, CA, USA, 9–10 August 2008; ACM Press: New York, NY, USA, 2008. [Google Scholar]
- Moser, E.; Derntl, B.; Robinson, S.; Fink, B.; Gur, R.C.; Grammer, K. Amygdala activation at 3T in response to human and avatar facial expressions of emotions. J. Neurosci. Methods 2007, 161, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.; Pizarro, R.; Or-Berkers, K.; Neyret, S.; Pan, X.; Slater, M. A method for generating an illusion of backwards time travel using immersive virtual reality-an exploratory study. Front. Psychol. 2014, 5, 943. [Google Scholar] [CrossRef] [PubMed]
- Slater, M.; Sanchez-Vives, M.V. Transcending the self in immersive virtual reality. Computer 2014, 47, 24–30. [Google Scholar] [CrossRef]
- Chirico, A.; Gaggioli, A.; Riva, G.; Yaden, D.B. The Potential of Virtual Reality for the Investigation of Awe. Front. Psychol. 2016, 7, 1766. [Google Scholar] [CrossRef] [PubMed]
- Serino, S.; Pedroli, E.; Keizer, A.; Triberti, S.; Dakanalis, A.; Pallavicini, F.; Chirico, A.; Riva, G. Virtual reality body swapping: A tool for modifying the allocentric memory of the body. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Yee, N.; Bailenson, J. The Proteus Effect: The Effect of Transformed Self-Representation on Behavior. Hum. Commun. Res. 2007, 33, 271–290. [Google Scholar] [CrossRef]
- Yee, N.; Bailenson, J.N.; Ducheneaut, N. The Proteus effect: Implications of transformed digital self-representation on online and offline behavior. Commun. Res. 2009, 36, 285–312. [Google Scholar] [CrossRef]
- Dotsch, R.; Wigboldus, D.H.J. Virtual prejudice. J. Exp. Soc. Psychol. 2008, 44, 1194–1198. [Google Scholar] [CrossRef]
- Parsons, T.D.; Kenny, P.; Cosand, L.; Iyer, A.; Courtney, C.; Rizzo, A.A. A Virtual Human Agent for Assessing Bias in Novice Therapists. Stud. Health Technol. Inform. 2009, 142, 253–258. [Google Scholar] [PubMed]
- Maister, L.; Sebanz, N.; Knoblich, G.; Tsakiris, M. Experiencing ownership over a dark-skinned body reduces implicit racial bias. Cognition 2013, 128, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Peck, T.C.; Seinfeld, S.; Aglioti, S.M.; Slater, M. Putting yourself in the skin of a black avatar reduces implicit racial bias. Conscious. Cogn. 2013, 22, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Slater, M.; Spanlang, B.; Sanchez-Vives, M.V.; Blanke, O. First person experience of body transfer in virtual reality. PLoS ONE 2010, 5, e10564. [Google Scholar] [CrossRef] [PubMed]
- Banakou, D.; Groten, R.; Slater, M. Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proc. Natl. Acad. Sci. USA 2013, 110, 12846–12851. [Google Scholar] [CrossRef] [PubMed]
- Van der Hoort, B.; Guterstam, A.; Ehrsson, H.H. Being barbie: The size of one’s own bodydetermines the perceived size of the world. PLoS ONE 2011, 6, e20195. [Google Scholar] [CrossRef] [PubMed]
- Preston, C.; Ehrsson, H.H. Illusory changes in body size modulate body satisfaction in a way that is related to non-clinical eating disorder psychopathology. PLoS ONE 2014, 9, e85773. [Google Scholar] [CrossRef] [PubMed]
- Normand, J.M.; Giannopoulos, E.; Spanlang, B.; Slater, M. Multisensory stimulation can induce an illusion of larger belly size in immersive virtual reality. PLoS ONE 2011, 6, e16128. [Google Scholar] [CrossRef] [PubMed]
- Carter, E.J.; Pelphrey, K.A. Friend or foe? Brain systems involved in the perception of dynamic signals of menacing and friendly social approaches. Soc. Neurosci. 2008, 3, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Caruana, N.; Brock, J.; Woolgar, A. A frontotemporoparietal networkcommon to initiating and responding to joint attention bids. Neuroimage 2015, 108, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Oberwelland, E.; Schilbach, L.; Barisic, I.; Krall, S.C.; Vogeley, K.; Fink, G.R.; Herpertz-Dahlmann, B.; Konrad, K.; Schulte-Rüther, M. Look into my eyes: Investigating joint attention using interactive eye-tracking and fMRI in a developmental sample. NeuroImage 2016, 130, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Redcay, E.; Kleiner, M.; Saxe, R. Look at this: The neural correlates of initiating and responding to bids for joint attention. Front. Hum. Neurosci. 2012. [Google Scholar] [CrossRef] [PubMed]
- Schilbach, L.; Wilms, M.; Eickhoff, S.B.; Romanzetti, S.; Tepest, R.; Bente, G.; Shah, N.J.; Fink, G.R.; Vogeley, K. Minds made for sharing: Initiating jointattention recruits reward-related neurocircuitry. J. Cogn. Neurosci. 2010, 22, 2702–2715. [Google Scholar] [CrossRef] [PubMed]
- Wilms, M.; Schilbach, L.; Pfeiffer, U.; Bente, G.; Fink, G.R.; Vogeley, K. It’s in your eyes? using gaze-contingent stimuli to create truly interactive paradigmsfor social cognitive and affective neuroscience. Soc. Cogn. Affect. Neurosci. 2010, 5, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Foot, P. Virtues and Vices and Other Essays in Moral Philosophy; University of California Press: Berkeley, CA, USA, 1978. [Google Scholar]
- Greene, J.D.; Sommerville, R.B.; Nystrom, L.E.; Darley, J.M.; Cohen, J.D. An fMRI investigation of emotional engagement in moral judgment. Science 2001, 293, 2105–2108. [Google Scholar] [CrossRef] [PubMed]
- Cushman, F. Action, outcome, and value a dual-system framework for morality. Pers. Soc. Psychol. Rev. 2013, 17, 273–292. [Google Scholar] [CrossRef] [PubMed]
- Greene, J.D.; Nystrom, L.E.; Engell, A.D.; Darley, J.M.; Cohen, J.D. The neural bases of cognitive conflict and control in moral judgment. Neuron 2004, 44, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Francis, K.B.; Howard, C.; Howard, I.S.; Gummerum, M.; Ganis, G.; Anderson, G.; Terbeck, S. Virtual Morality: Transitioning from Moral Judgment to Moral Action? PLoS ONE 2016, 11, e0164374. [Google Scholar] [CrossRef] [PubMed]
- Navarrete, C.D.; McDonald, M.M.; Mott, M.L.; Asher, B. Virtual morality: Emotion and action in a simulated three-dimensional “trolley problem”. Emotion 2012, 12, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Slater, M. Confronting a moral dilemma in virtual reality: A pilot study. In Proceedings of the 25th BCS Conference on Human-Computer Interaction, Newcastle-upon-Tyne, UK, 4–8 July 2011; British Computer Society: Swinton, UK, 2011; pp. 46–51. [Google Scholar]
- Patil, I.; Cogoni, C.; Zangrando, N.; Chittaro, L.; Silani, G. Affective basis of judgment-behavior discrepancy in virtual experiences of moral dilemmas. Soc. Neurosci. 2014, 9, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Skulmowski, A.; Bunge, A.; Kaspar, K.; Pipa, G. Forced-choice decision-making in modified trolley dilemma situations: A virtual reality and eye tracking study. Front. Behav. Neurosci. 2014, 8, 426. [Google Scholar] [CrossRef] [PubMed]
- Slater, M.; Antley, A.; Davison, A.; Swapp, D.; Guger, C.; Barker, C.; Pistrang, N.; Sanchez-Vives, M.V. A virtual reprise of the Stanley Milgram obedience experiments. PLoS ONE 2006, 1, e39. [Google Scholar] [CrossRef] [PubMed]
- Kirschbaum, C.; Pirke, K.M.; Hellhammer, D.H. The ‘Trier Social Stress Test’—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 1993, 28, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Kudielka, B.M.; Buske-Kirschbaum, A.; Hellhammer, D.H.; Kirschbaum, C. HPA axis responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and children: Impact of age and gender. Psychoneuroendocrinology 2004, 29, 83–98. [Google Scholar] [CrossRef]
- Kudielka, B.M.; Schommer, N.C.; Hellhammer, D.H.; Kirschbaum, C. Acute HPA axis responses, heart rate, and mood changes to psychosocial stress (TSST) in humans at different times of day. Psychoneuroendocrinology 2004, 29, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.S.; Peralta-Ramirez, M.I.; Garcia-Rios, M.C.; Muñoz, M.A.; Navarrete-Navarrete, N.; Blazquez-Ortiz, A. Adaptation of the trier social stress test to virtual reality: Psycho-physiological and neuroendocrine modulation. J. Cyber Ther. Rehabil. 2010, 3, 405–415. [Google Scholar]
- Delahaye, M.; Lemoine, P.; Cartwright, S.; Deuring, G.; Beck, J.; Pflueger, M.; Hachtel, H. Learning aptitude, spatial orientation and cognitive flexibility tested in a virtual labyrinth after virtual stress induction. BMC Psychol. 2015, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Fich, L.B.; Jönsson, P.; Kirkegaard, P.H.; Wallergård, M.; Garde, A.H.; Hansen, Å. Can architectural design alter the physiological reaction to psychosocial stress? A virtual TSST experiment. Physiol. Behav. 2014, 135, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, P.; Wallergård, M.; Österberg, K.; Hansen, Å.M.; Johansson, G.; Karlson, B. Cardiovascular and cortisol reactivity and habituation to a virtual reality version of the Trier Social Stress Test: A pilot study. Psychoneuroendocrinology 2010, 35, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Kelly, O.; Matheson, K.; Martinez, A.; Merali, Z.; Anisman, H. Psychosocial stress evoked by a virtual audience: Relation to neuroendocrine activity. Cyberpsychol. Behav. 2007, 10, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Kothgassner, O.D.; Hlavacs, H.; Beutl, L.; Glenk, L.M.; Palme, R.; Felnhofer, A. Two experimental virtual paradigms for stress research: Developing avatar-based approaches for interpersonal and evaluative stressors. In Proceedings of the International Conference on Entertainment Computing ICEC 2016, Vienna, Austria, 28–30 September 2016; Springer: Cham, Switzerland, 2016; pp. 51–62. [Google Scholar]
- Montero-López, E.; Santos-Ruiz, A.; García-Ríos, M.C.; Rodríguez-Blázquez, R.; Pérez-García, M.; Peralta-Ramírez, M.I. A virtual reality approach to the Trier Social Stress Test: Contrasting two distinct protocols. Behav. Res. Methods 2016, 48, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Shiban, Y.; Diemer, J.; Brandl, S.; Zack, R.; Mühlberger, A.; Wüst, S. Trier social stress test in vivo and in virtual reality: Dissociation of response domains. Int. J. Psychophysiol. 2016, 110, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Wallergård, M.; Jönsson, P.; Johansson, G.; Karlson, B. A virtual reality version of the Trier Social Stress Test: A pilot study. Presence 2011, 20, 325–336. [Google Scholar] [CrossRef]
- Kotlyar, M.; Donahue, C.; Thuras, P.; Kushner, M.G.; O’Gorman, N.; Smith, E.A.; Adson, D.E. Physiological response to a speech stressor presented in a virtual reality environment. Psychophysiology 2008, 45, 1034–1037. [Google Scholar] [CrossRef] [PubMed]
- Eisenberger, N.I. The neural bases of social pain: Evidence for shared representations with physical pain. Psychosom. Med. 2012, 74, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Geniole, S.N.; Carré, J.M.; McCormick, C.M. State, not trait, neuroendocrine function predicts costly reactive aggression in men after social exclusion and inclusion. Biol. Psychol. 2011, 87, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Zwolinski, J. Psychological and neuroendocrine reactivity to ostracism. Aggress. Behav. 2012, 38, 108–125. [Google Scholar] [CrossRef] [PubMed]
- Moor, B.G.; Crone, E.A.; van der Molen, M.W. The heartbrake of social rejection heart rate deceleration in response to unexpected peer rejection. Psychol. Sci. 2010, 21, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Sijtsema, J.J.; Shoulberg, E.K.; Murray-Close, D. Physiological reactivity and different forms of aggression in girls: Moderating roles of rejection sensitivity and peer rejection. Biol. Psychol. 2011, 86, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Wesselmann, E.D.; Wirth, J.H.; Mroczek, D.K.; Williams, K.D. Dial a feeling: Detecting moderation of affect decline during ostracism. Pers. Individ. Differ. 2012, 53, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.D. Ostracism. Annu. Rev. Psychol. 2007, 58, 425–452. [Google Scholar] [CrossRef] [PubMed]
- Zadro, L.; Williams, K.D.; Richardson, R. How low can you go? Ostracism by a computer lowers belonging, control, self-esteem and meaningful existence. J. Exp. Soc. Psychol. 2004, 40, 560–567. [Google Scholar] [CrossRef]
- Cacioppo, S.; Frum, C.; Asp, E.; Weiss, R.M.; Lewis, J.W.; Cacioppo, J.T. A quantitative meta-analysis of functional imaging studies of social rejection. Sci. Rep. 2013, 3, 2027. [Google Scholar] [CrossRef] [PubMed]
- Rotge, J.Y.; Lemogne, C.; Hinfray, S.; Huguet, P.; Grynszpan, O.; Tartour, E.; George, N.; Fossati, P. A meta analysis of the anterior cingulate contribution to social pain. Soc. Cogn. Affect. Neurosci. 2014, 10, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Kassner, M.P.; Wesselmann, E.D.; Law, A.T.; Williams, K.D. Virtually ostracized: Studying ostracism in immersive virtual environments. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Kothgassner, O.D.; Kafka, J.; Rudyk, J.; Beutl, L.; Hlavacs, H.; Felnhofer, A. Does Social Exclusion Hurt Virtually Like It Hurts in Real Life? the Role of Agency and Social Presence in the Perception and Experience of Social Exclusion. Available online: https://pdfs.semanticscholar.org/34b8/5e309ee0732ba0d4c4c61d33f3f8788e06b9.pdf (accessed on 10 January 2017).
- Segovia, K.Y.; Bailenson, J.N. Virtual imposters: Responses to avatars that do not look like their controllers. Soc. Influ. 2012, 7, 285–303. [Google Scholar] [CrossRef]
- Venturini, E.; Riva, P.; Serpetti, F.; Romero, L.; Pallavincini, F.; Mantovani, F.; Cloutier, R.; McMahan, T.; Stonecipher, K.; Parsons, T.D. A comparison of 3D versus 2D virtual environments on the feelings of social exclusion, inclusion and over-inclusion. Annu. Rev. Cyber Ther. Telemed. 2016, 14, 89–94. [Google Scholar]
- Wirth, J.H.; Sacco, D.F.; Hugenberg, K.; Williams, K.D. Eye gaze as relational evaluation: Averted eye gaze leads to feelings of ostracism and relational devaluation. Pers. Soc. Psychol. Bull. 2010, 36, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Adamovich, S.V.; August, K.; Merians, A.; Tunik, E. A virtual reality-based system integrated with fmri to study neural mechanisms of action observation-execution: A proof of concept study. Restor. Neurol. Neurosci. 2009, 27, 209–223. [Google Scholar] [PubMed]
- Baumann, S.; Neff, C.; Fetzic, S.; Stangl, G.; Basler, L.; Vereneck, R.; Schneider, W. A virtual reality system for neurobehavioral and functional MRI studies. Cyberpsychol. Behav. 2003, 6, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Mueller, C.; Luehrs, M.; Baecke, S.; Adolf, D.; Luetzkendorf, R.; Luchtmann, M.; Bernarding, J. Building virtual reality fMRI paradigms: A framework for presenting immersive virtual environments. J. Neurosci. Methods 2012, 209, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Du, J.; Lavy, S.; Zhao, D. A Multiuser Shared Virtual Environment for Facility Management. Procedia Eng. 2016, 145, 120–127. [Google Scholar] [CrossRef]
- Noh, W.J.; Shin, C. Novel Control Framework for Multi-User Display and Data Transmission in Networked Virtual Reality Services. J. Nanoelectron. Optoelectron. 2016, 11, 164–169. [Google Scholar] [CrossRef]
- Wendrich, R.E.; Chambers, K.-H.; Al-Halabi, W.; Seibel, E.J.; Grevenstuk, O.; Ullman, D.; Hoffman, H.G. Hybrid Design Tools in a Social Virtual Reality Using Networked Oculus Rift: A Feasibility Study in Remote Real-Time Interaction. In Proceedings of the 36th Computers and Information in Engineering Conference, At Charlotte, NC, USA, 21–24 August 2016. [Google Scholar]
- Antley, A.; Barker, C.; Davison, A.; Guger, C.; Pistrang, N.; Slater, M.; Swapp, D.; Sanchez Vives, M.V. A Virtual Reprise of the Stanley Milgram Obedience Experiments. PLoS ONE 2006, 1, 371–378. [Google Scholar]
- Madary, M.; Metzinger, T. Real Virtuality: A Code of Ethical Conduct. Recommendations for Good Scientific Practice and the Consumers of VR-Technology. Front. Robot. AI 2016. [Google Scholar] [CrossRef]
- Bush, S.S.; Schatz, P. Advanced technology and assessment: Ethical and methodological considerations. In The Role of Technology in Clinical Neuropsychology; Kane, R., Parsons, T.D., Eds.; Oxford University Press: New York, NY, USA, 2017; pp. 457–470. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parsons, T.D.; Gaggioli, A.; Riva, G. Virtual Reality for Research in Social Neuroscience. Brain Sci. 2017, 7, 42. https://doi.org/10.3390/brainsci7040042
Parsons TD, Gaggioli A, Riva G. Virtual Reality for Research in Social Neuroscience. Brain Sciences. 2017; 7(4):42. https://doi.org/10.3390/brainsci7040042
Chicago/Turabian StyleParsons, Thomas D., Andrea Gaggioli, and Giuseppe Riva. 2017. "Virtual Reality for Research in Social Neuroscience" Brain Sciences 7, no. 4: 42. https://doi.org/10.3390/brainsci7040042
APA StyleParsons, T. D., Gaggioli, A., & Riva, G. (2017). Virtual Reality for Research in Social Neuroscience. Brain Sciences, 7(4), 42. https://doi.org/10.3390/brainsci7040042