Mini Review of Controlled Cortical Impact: A Well-Suited Device for Concussion Research
Abstract
:1. Introduction
2. Model Overview
2.1. CCI Devices
2.2. Test Animals
3. Applications for Studying Mild TBI and Concussion with CCI
3.1. Overview of CCI for Studying mTBI and Concussion
3.2. Open Head Mild TBI
3.3. Closed Head Mild TBI
3.4. Repeated mTBIs or Concussions
4. Alternative Models and Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wojnarowicz, M.W.; Fisher, A.M.; Minaeva, O.; Goldstein, L.E. Considerations for Experimental Animal Models of Concussion, Traumatic Brain Injury, and Chronic Traumatic Encephalopathy-These Matters Matter. Front. Neurol. 2017, 8, 240. [Google Scholar] [CrossRef] [PubMed]
- Giza, C.C.; Kutcher, J.S.; Ashwal, S.; Barth, J.; Getchius, T.S.D.; Gioia, G.A.; Gronseth, G.S.; Guskiewicz, K.; Mandel, S.; Manley, G.; et al. Summary of evidence-based guideline update: evaluation and management of concussion in sports: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2013, 80, 2250–2257. [Google Scholar] [CrossRef] [PubMed]
- McCrory, P.; Meeuwisse, W.H.; Aubry, M.; Cantu, B.; Dvorak, J.; Echemendia, R.J.; Engebretsen, L.; Johnston, K.; Kutcher, J.S.; Raftery, M.; et al. Consensus statement on concussion in sport: The 4th International Conference on Concussion in Sport held in Zurich, November 2012. Br. J. Sports Med. 2013, 47, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Harmon, K.G.; Drezner, J.; Gammons, M.; Guskiewicz, K.; Halstead, M.; Herring, S.; Kutcher, J.; Pana, A.; Putukian, M.; Roberts, W. American Medical Society for Sports Medicine position statement: Concussion in sport. Br. J. Sports Med. 2013, 23, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kramer, S.P. A contribution to the theory of cerebral concussion. Ann. Surg. 1896, 23, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Rinder, L.; Olsson, Y. Studies on vascular permeability changes in experimental brain concussion. I. Distribution of circulating fluorescent indicators in brain and cervical cord after sudden mechanical loading of the brain. Acta Neuropathol. 1968, 11, 183–200. [Google Scholar] [PubMed]
- Denny-Brown, D.; Russell, W. Experimental cerebral concussion. Brain 1941, 64, 93–184. [Google Scholar] [CrossRef]
- Lindgren, S.; Rinder, L. Experimental studies in head injury. I. Some factors influencing results of model experiments. Biophysik 1965, 2, 320–329. [Google Scholar] [PubMed]
- Govons, S.R.; Govons, R.B.; VanHuss, W.D.; Heusner, W.W. Brain concussion in the rat. Exp. Neurol. 1972, 34, 121–128. [Google Scholar] [CrossRef]
- Ommaya, A.K.; Gennarelli, T.A. Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain 1974, 97, 633–654. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, D.; West, M.; Pathiraja, T. Concussion: Comparison of humans and rats. Neurosurgery 1978, 3, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Lighthall, J.W. Controlled Cortical Impact: A New Experimental Brain Injury Model. J. Neurotrauma 1988, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dixon, C.E.; Clifton, G.L.; Lighthall, J.W.; Yaghmai, A.A.; Hayes, R.L. A controlled cortical impact model of traumatic brain injury in the rat. J. Neurosci. Methods 1991, 39, 253–262. [Google Scholar] [CrossRef]
- Smith, D.; Soares, H.; Pierce, J.; Perlman, K.; Saatman, K.; Meaney, D.; Dixon, C.; McIntosh, T. A model of parasagittal controlled cortical impact in the mouse: Cognitive and histopathologic effects. J. Neurotrauma 1995, 12, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Manley, G.T.; Rosenthal, G.; Lam, M.; Morabito, D.; Yan, D.; Derugin, N.; Bollen, A.; Knudson, M.M.; Panter, S.S. Controlled cortical impact in swine: Pathophysiology and biomechanics. J. Neurotrauma 2006, 23, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Kilbaugh, T.J.; Bhandare, S.; Lorom, D.H.; Saraswati, M.; Robertson, C.L.; Margulies, S.S. Cyclosporin A preserves mitochondrial function after traumatic brain injury in the immature rat and piglet. J. Neurotrauma 2011, 28, 763–774. [Google Scholar] [CrossRef] [PubMed]
- King, C.; Robinson, T.; Dixon, C.E.; Rao, G.R.; Larnard, D.; Nemoto, C.E.M. Brain temperature profiles during epidural cooling with the ChillerPad in a monkey model of traumatic brain injury. J. Neurotrauma 2010, 27, 1895–1903. [Google Scholar] [CrossRef] [PubMed]
- Febinger, H.Y.; Thomasy, H.E.; Pavlova, M.N.; Ringgold, K.M.; Barf, P.R.; George, A.M.; Grillo, J.N.; Bachstetter, A.D.; Garcia, J.A.; Cardona, A.E.; et al. Time-dependent effects of CX3CR1 in a mouse model of mild traumatic brain injury. J. Neuroinflamm. 2015, 12, 154. [Google Scholar] [CrossRef] [PubMed]
- Osier, N.D.; Pham, L.; Pugh, B.J.; Puccio, A.; Ren, D.; Conley, Y.P.; Alexander, S.; Dixon, C.E. Brain injury results in lower levels of melatonin receptors subtypes MT1 and MT2. Neurosci. Lett. 2017, 650, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Songarj, P.; Luh, C.; Staib-Lasarzik, I.; Engelhard, K.; Moosmann, B.; Thal, S.C. The antioxidative, non-psychoactive tricyclic phenothiazine reduces brain damage after experimental traumatic brain injury in mice. Neurosci. Lett. 2015, 584, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Zhang, Q.; Hamblin, M.R.; Wu, M.X. Low-level light in combination with metabolic modulators for effective therapy of injured brain. J. Cereb. Blood Flow Metab. 2015, 35, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Kong, X.; Acosta, S.; Sava, V.; Borlongan, C.; Sanchez-Ramos, J. Granulocyte colony-stimulating factor promotes behavioral recovery in a mouse model of traumatic brain injury. J. Neurosci. Res. 2016, 94, 409–423. [Google Scholar] [CrossRef] [PubMed]
- Brody, D.L.; Mac Donald, C.; Kessens, C.C.; Yuede, C.; Parsadanian, M.; Spinner, M.; Kim, E.; Schwetye, K.E.; Holtzman, D.M.; Bayly, P.V. Electromagnetic Controlled Cortical Impact Device for Precise, Graded Experimental Traumatic Brain Injury. J. Neurotrauma 2007, 24, 657–673. [Google Scholar] [CrossRef] [PubMed]
- Washington, P.M.; Forcelli, P.A.; Wilkins, T.; Zapple, D.N.; Parsadanian, M.; Burns, M.P. The effect of injury severity on behavior: A phenotypic study of cognitive and emotional deficits after mild, moderate, and severe controlled cortical impact injury in mice. J. Neurotrauma 2012, 29, 2283–2296. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.-L.; Hu, Y.; Zhang, P.; Zhang, Z.; Li, L.-H.; Gao, G.-D.; Zhou, X.-F.; Wang, T.-H. Neural Stem Cell Transplantation Promotes Functional Recovery from Traumatic Brain Injury via Brain Derived Neurotrophic Factor-Mediated Neuroplasticity. Mol. Neurobiol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.L.; Kobori, N.; Zhao, J.; Rozas, N.S.; Hylin, M.J.; Moore, A.N.; Dash, P.K. Traumatic brain injury decreases AMP-activated protein kinase activity and pharmacological enhancement of its activity improves cognitive outcome. J. Neurochem. 2016, 139, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Saatman, K.E.; Feeko, K.J.; Pape, R.L.; Raghupathi, R. Differential behavioral and histopathological responses to graded cortical impact injury in mice. J. Neurotrauma 2006, 23, 1241–1253. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, T.; Potts, M.B.; Noble-Haeusslein, L.J. Injury severity determines Purkinje cell loss and microglial activation in the cerebellum after cortical contusion injury. Exp. Neurol. 2007, 203, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Jin, X.; Zhang, L.; Yang, K.H.; Igarashi, T.; Noble-Haeusslein, L.J.; King, A.I. Finite element analysis of controlled cortical impact-induced cell loss. J. Neurotrauma 2010, 27, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Duhaime, A.C.; Margulies, S.S.; Durham, S.R.; O’Rourke, M.M.; Golden, J.A.; Marwaha, S.; Raghupathi, R. Maturation-dependent response of the piglet brain to scaled cortical impact. J. Neurosurg. 2000, 93, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Sindelar, B.; Bailes, J.; Sherman, S.; Finan, J.; Stone, J.; Lee, J.; Ahmadian, S.; Zhou, Y.; Patel, V.; Smith, D. Effect of Internal Jugular Vein Compression on Intracranial Hemorrhage in a Porcine Controlled Cortical Impact Model. J. Neurotrauma 2017, 34, 1703–1709. [Google Scholar] [CrossRef] [PubMed]
- Pareja, J.C.M.; Keeley, K.; Duhaime, A.-C.; Dodge, C.P. Modeling Pediatric Brain Trauma: Piglet Model of Controlled Cortical Impact. Methods Mol. Biol. 2016, 1462, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Hawryluk, G.W.J.; Phan, N.; Ferguson, A.R.; Morabito, D.; Derugin, N.; Stewart, C.L.; Knudson, M.M.; Manley, G.; Rosenthal, G. Brain tissue oxygen tension and its response to physiological manipulations: Influence of distance from injury site in a swine model of traumatic brain injury. J. Neurosurg. 2016, 125, 1217–1228. [Google Scholar] [CrossRef] [PubMed]
- Schwerin, S.C.; Hutchinson, E.B.; Radomski, K.L.; Ngalula, K.P.; Pierpaoli, C.M.; Juliano, S.L. Establishing the ferret as a gyrencephalic animal model of traumatic brain injury: Optimization of controlled cortical impact procedures. J. Neurosci. Methods 2017, 285, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, E.B.; Schwerin, S.C.; Radomski, K.L.; Irfanoglu, M.O.; Juliano, S.L.; Pierpaoli, C.M. Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret. Shock 2016, 46, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Mierzwa, A.J.; Sullivan, G.M.; Beer, L.A.; Ahn, S.; Armstrong, R.C. Comparison of cortical and white matter traumatic brain injury models reveals differential effects in the subventricular zone and divergent Sonic hedgehog signaling pathways in neuroblasts and oligodendrocyte progenitors. ASN Neuro 2014, 6. [Google Scholar] [CrossRef] [PubMed]
- Haselkorn, M.L.; Shellington, D.K.; Jackson, E.K.; Vagni, V.A.; Janesko-Feldman, K.; Dubey, R.K.; Gillespie, D.G.; Cheng, D.; Bell, M.J.; Jenkins, L.W.; et al. Adenosine A1 receptor activation as a brake on the microglial response after experimental traumatic brain injury in mice. J. Neurotrauma 2010, 27, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Kelso, M.L.; Scheff, S.W.; Pauly, J.R.; Loftin, C.D. Effects of genetic deficiency of cyclooxygenase-1 or cyclooxygenase-2 on functional and histological outcomes following traumatic brain injury in mice. BMC Neurosci. 2009, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Golding, E.M.; Steenberg, M.L.; Contant, C.F.; Krishnappa, I.; Robertson, C.S.; Bryan, R.M. Cerebrovascular reactivity to CO2 and hypotension after mild cortical impact injury. Am. J. Physiol. 1999, 277, H1457–H1466. [Google Scholar] [PubMed]
- Redell, J.B.; Moore, A.N.; Grill, R.J.; Johnson, D.; Zhao, J.; Liu, Y.; Dash, P.K. Analysis of functional pathways altered after mild traumatic brain injury. J. Neurotrauma 2013, 30, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Klemenhagen, K.C.; O’Brien, S.P.; Brody, D.L. Repetitive concussive traumatic brain injury interacts with post-injury foot shock stress to worsen social and depression-like behavior in mice. PLoS ONE 2013, 8, e74510. [Google Scholar] [CrossRef] [PubMed]
- Petraglia, A.L.; Plog, B.A.; Dayawansa, S.; Chen, M.; Dashnaw, M.L.; Czerniecka, K.; Walker, C.T.; Viterise, T.; Hyrien, O.; Iliff, J.J.; et al. The spectrum of neurobehavioral sequelae after repetitive mild traumatic brain injury: A novel mouse model of chronic traumatic encephalopathy. J. Neurotrauma 2014, 31, 1211–1224. [Google Scholar] [CrossRef] [PubMed]
- Shitaka, Y.; Tran, H.T.; Bennett, R.E.; Sanchez, L.; Levy, M.A.; Dikranian, K.; Brody, D.L. Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J. Neuropathol. Exp. Neurol. 2011, 70, 551–567. [Google Scholar] [CrossRef] [PubMed]
- Jamnia, N.; Urban, J.H.; Stutzmann, G.E.; Chiren, S.G.; Reisenbigler, E.; Marr, R.; Peterson, D.A.; Kozlowski, D.A. A Clinically Relevant Closed-Head Model of Single and Repeat Concussive Injury in the Adult Rat Using a Controlled Cortical Impact Device. J. Neurotrauma 2017, 34, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Zhi, L.; Bhayana, B.; Wu, M.X. Cortisol-induced immune suppression by a blockade of lymphocyte egress in traumatic brain injury. J. Neuroinflamm. 2016, 13, 197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhou, C.; Hamblin, M.R.; Wu, M.X. Low-level laser therapy effectively prevents secondary brain injury induced by immediate early responsive gene X-1 deficiency. J. Cereb. Blood Flow Metab. 2014, 34, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Clausen, F.; Hillered, L. Intracranial pressure changes during fluid percussion, controlled cortical impact and weight drop injury in rats. Acta Neurochir. 2005, 147, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Peterson, T.C.; Maass, W.R.; Anderson, J.R.; Anderson, G.D.; Hoane, M.R. A behavioral and histological comparison of fluid percussion injury and controlled cortical impact injury to the rat sensorimotor cortex. Behav. Brain Res. 2015, 294, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.; Schiding, J.K.; Kaczorowski, S.L.; Marion, D.W.; Kochanek, P.M. Neutrophil Accumulation After Traumatic Brain Injury in Rats: Comparison of Weight Drop and Controlled Cortical Impact Models. J. Neurotrauma 1994, 11, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Hallam, T.M.; Floyd, C.L.; Folkerts, M.M.; Lee, L.L.; Gong, Q.-Z.; Lyeth, B.G.; Muizelaar, J.P.; Berman, R.F. Comparison of behavioral deficits and acute neuronal degeneration in rat lateral fluid percussion and weight-drop brain injury models. J. Neurotrauma 2004, 21, 521–539. [Google Scholar] [CrossRef] [PubMed]
- Osier, N.D.; Carlson, S.W.; DeSana, A.; Dixon, C.E.E. Chronic Histopathological and Behavioral Outcomes of Experimental Traumatic Brain Injury in Adult Male Animals. J. Neurotrauma 2015, 32, 1861–1882. [Google Scholar] [CrossRef] [PubMed]
- Singleton, M.D. Differential protective effects of motorcycle helmets against head injury. Traffic Inj. Prev. 2017, 18, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Karpman, S.; Reid, P.; Phillips, L.; Qin, Z.; Gross, D.P. Combative Sports Injuries: An Edmonton Retrospective. Clin. J. Sport Med. 2016, 26, 332–334. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.H.; Hicks, R.R.; Johnson, V.E.; Bergstrom, D.A.; Cummings, D.M.; Noble, L.J.; Hovda, D.; Whalen, M.; Ahlers, S.T.; LaPlaca, M.; et al. Pre-Clinical Traumatic Brain Injury Common Data Elements: Toward a Common Language Across Laboratories. J. Neurotrauma 2015. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osier, N.; Dixon, C.E. Mini Review of Controlled Cortical Impact: A Well-Suited Device for Concussion Research. Brain Sci. 2017, 7, 88. https://doi.org/10.3390/brainsci7070088
Osier N, Dixon CE. Mini Review of Controlled Cortical Impact: A Well-Suited Device for Concussion Research. Brain Sciences. 2017; 7(7):88. https://doi.org/10.3390/brainsci7070088
Chicago/Turabian StyleOsier, Nicole, and C. Edward Dixon. 2017. "Mini Review of Controlled Cortical Impact: A Well-Suited Device for Concussion Research" Brain Sciences 7, no. 7: 88. https://doi.org/10.3390/brainsci7070088
APA StyleOsier, N., & Dixon, C. E. (2017). Mini Review of Controlled Cortical Impact: A Well-Suited Device for Concussion Research. Brain Sciences, 7(7), 88. https://doi.org/10.3390/brainsci7070088