How Deep Brain Stimulation of the Nucleus Accumbens Affects the Cingulate Gyrus and Vice Versa
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Stimulation of the Nucleus Accumbens
3.2. Stimulation of the Cingulate Gyrus
3.3. Other Data
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Mavridis, I.N. Stereotactic Neurosurgical Anatomy of the Nucleus Accumbens. Ph.D. Thesis, National and Kapodistrian University of Athens, Athens, Greece, 2012. [Google Scholar] [CrossRef]
- Mavridis, I.; Anagnostopoulou, S. The human nucleus accumbens as a target for deep brain stimulation: Anatomic study of electrode’s target point and stereotactic coordinates. Minim. Invasive Neurosurg. 2009, 52, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Mavridis, I.; Boviatsis, E.; Anagnostopoulou, S. Anatomy of the human nucleus accumbens: A combined morphometric study. Surg. Radiol. Anat. 2011, 33, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Voorn, P.; Brady, L.S.; Schotte, A.; Berendse, H.W.; Richfield, E.K. Evidence for two neurochemical divisions in the human nucleus accumbens. Eur. J. Neurosci. 1994, 6, 1913–1916. [Google Scholar] [CrossRef] [PubMed]
- Mavridis, I.N.; Anagnostopoulou, S. Cortical connections of the human nucleus accumbens: Measurements and correlations. OA Anat. 2013, 1, 7. [Google Scholar]
- Gutman, D.A.; Holtzheimer, P.E.; Behrens, T.E.; Johansen-Berg, H.; Mayberg, H.S. A tractography analysis of two deep brain stimulation white matter targets for depression. Biol. Psychiatry 2009, 65, 276–282. [Google Scholar] [CrossRef]
- Haegelen, C.; Rouaud, T.; Darnault, P.; Morandi, X. The subthalamic nucleus is a key-structure of limbic basal ganglia functions. Med. Hypotheses 2009, 72, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Vergani, F.; Martino, J.; Morris, C.; Attems, J.; Ashkan, K.; Dell’Acqua, F. Anatomic Connections of the Subgenual Cingulate Region. Neurosurgery 2016, 79, 465–472. [Google Scholar] [CrossRef]
- Johansen-Berg, H.; Gutman, D.A.; Behrens, T.E.; Matthews, P.M.; Rushworth, M.F.; Katz, E.; Lozano, A.M.; Mayberg, H.S. Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb. Cortex 2008, 18, 1374–1383. [Google Scholar] [CrossRef]
- Taghva, A.S.; Malone, D.A.; Rezai, A.R. Deep brain stimulation for treatment-resistant depression. World Neurosurg. 2013, 80, e17–e24. [Google Scholar] [CrossRef]
- Williams, N.R.; Taylor, J.J.; Lamb, K.; Hanlon, C.A.; Short, E.B.; George, M.S. Role of functional imaging in the development and refinement of invasive neuromodulation for psychiatric disorders. World J. Radiol. 2014, 6, 756–778. [Google Scholar] [CrossRef]
- Morishita, T.; Fayad, S.M.; Higuchi, M.A.; Nestor, K.A.; Foote, K.D. Deep brain stimulation for treatment-resistant depression: Systematic review of clinical outcomes. Neurotherapeutics 2014, 11, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Hauptman, J.S.; DeSalles, A.A.; Espinoza, R.; Sedrak, M.; Ishida, W. Potential surgical targets for deep brain stimulation in treatment-resistant depression. Neurosurg. Focus 2008, 25, E3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, L.W.; Prickaerts, J.; Huguet, G.; Kadar, E.; Hartung, H.; Sharp, T.; Temel, Y. Electrical stimulation alleviates depressive-like behaviors of rats: Investigation of brain targets and potential mechanisms. Transl. Psychiatry 2015, 5, e535. [Google Scholar] [CrossRef] [PubMed]
- Hamani, C.; Amorim, B.O.; Wheeler, A.L.; Diwan, M.; Driesslein, K.; Covolan, L.; Butson, C.R.; Nobrega, J.N. Deep brain stimulation in rats: Different targets induce similar antidepressant-like effects but influence different circuits. Neurobiol. Dis. 2014, 71, 205–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasques, B.; Diniz, C.; Teixeira, S.; Cartier, C.; Peressutti, C.; Silva, F.; de Carvalho, M.; Novaes, A.; Bittencourt, J.; Nardi, A.E.; et al. Deep brain stimulation: A new treatment in mood and anxiety disorders. CNS Neurol. Disord. Drug Targets 2014, 13, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.J.; Min, H.K.; Hwang, S.C.; Marsh, M.P.; Paek, S.; Kim, I.; Felmlee, J.P.; Abulseoud, O.A.; Bennet, K.E.; Frye, M.A.; et al. Nucleus accumbens deep brain stimulation results in insula and prefrontal activation: A large animal FMRI study. PLoS ONE 2013, 8, e56640. [Google Scholar] [CrossRef] [PubMed]
- Riva-Posse, P.; Holtzheimer, P.E.; Garlow, S.J.; Mayberg, H.S. Practical considerations in the development and refinement of subcallosal cingulate white matter deep brain stimulation for treatment-resistant depression. World Neurosurg. 2013, 80, e25–e34. [Google Scholar] [CrossRef] [PubMed]
- Oudijn, M.S.; Storosum, J.G.; Nelis, E.; Denys, D. Is deep brain stimulation a treatment option for anorexia nervosa? BMC Psychiatry 2013, 13, 277. [Google Scholar] [CrossRef] [PubMed]
- Bourne, S.K.; Eckhardt, C.A.; Sheth, S.A.; Eskandar, E.N. Mechanisms of deep brain stimulation for obsessive compulsive disorder: Effects upon cells and circuits. Front. Integr. Neurosci. 2012, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Lipsman, N.; Woodside, B.; Lozano, A.M. Evaluating the potential of deep brain stimulation for treatment-resistant anorexia nervosa. Handb. Clin. Neurol. 2013, 116, 271–276. [Google Scholar]
- Luigjes, J.; Breteler, R.; Vanneste, S.; de Ridder, D. Neuromodulation as an intervention for addiction: Overview and future prospects. Tijdschr. Psychiatr. 2013, 55, 841–852. [Google Scholar] [PubMed]
- Gibson, W.S.; Cho, S.; Abulseoud, O.A.; Gorny, K.R.; Felmlee, J.P.; Welker, K.M.; Klassen, B.T.; Min, H.K.; Lee, K.H. The Impact of Mirth-Inducing Ventral Striatal Deep Brain Stimulation on Functional and Effective Connectivity. Cereb. Cortex 2017, 27, 2183–2194. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.; Gründler, T.O.; Bauer, R.; Huff, W.; Fischer, A.G.; Lenartz, D.; Maarouf, M.; Bührle, C.; Klosterkötter, J.; Ullsperger, M.; et al. Successful deep brain stimulation of the nucleus accumbens in severe alcohol dependence is associated with changed performance monitoring. Addict. Biol. 2011, 16, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Bewernick, B.H.; Hurlemann, R.; Matusch, A.; Kayser, S.; Grubert, C.; Hadrysiewicz, B.; Axmacher, N.; Lemke, M.; Cooper-Mahkorn, D.; Cohen, M.X.; et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol. Psychiatry 2010, 67, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Casquero-Veiga, M.; García-García, D.; Pascau, J.; Desco, M.; Soto-Montenegro, M.L. Stimulating the nucleus accumbens in obesity: A positron emission tomography study after deep brain stimulation in a rodent model. PLoS ONE 2018, 13, e0204740. [Google Scholar] [CrossRef] [PubMed]
- Pinhal, C.M.; van den Boom, B.J.G.; Santana-Kragelund, F.; Fellinger, L.; Bech, P.; Hamelink, R.; Feng, G.; Willuhn, I.; Feenstra, M.G.P.; Denys, D. Differential Effects of Deep Brain Stimulation of the Internal Capsule and the Striatum on Excessive Grooming in Sapap3 Mutant Mice. Biol. Psychiatry 2018. [Google Scholar] [CrossRef] [PubMed]
- Figee, M.; Luigjes, J.; Smolders, R.; Valencia-Alfonso, C.E.; van Wingen, G.; de Kwaasteniet, B.; Mantione, M.; Ooms, P.; de Koning, P.; Vulink, N.; et al. Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat. Neurosci. 2013, 16, 386–387. [Google Scholar] [CrossRef]
- Dougherty, D.D.; Rezai, A.R.; Carpenter, L.L.; Howland, R.H.; Bhati, M.T.; O’Reardon, J.P.; Eskandar, E.N.; Baltuch, G.H.; Machado, A.D.; Kondziolka, D.; et al. A Randomized Sham-Controlled Trial of Deep Brain Stimulation of the Ventral Capsule/Ventral Striatum for Chronic Treatment-Resistant Depression. Biol. Psychiatry 2015, 78, 240–248. [Google Scholar] [CrossRef]
- Vassoler, F.M.; White, S.L.; Hopkins, T.J.; Guercio, L.A.; Espallergues, J.; Berton, O.; Schmidt, H.D.; Pierce, R.C. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation. J. Neurosci. 2013, 33, 14446–14454. [Google Scholar] [CrossRef]
- Raos, V.C.; Dermon, C.R.; Savaki, H.E. Functional anatomy of the thalamic centrolateral nucleus as revealed with the [14 C] deoxyglucose method following electrical stimulation and electrolytic lesion. Neuroscience 1995, 68, 299–313. [Google Scholar] [CrossRef]
- Montorsi, F.; Perani, D.; Anchisi, D.; Salonia, A.; Scifo, P.; Rigiroli, P.; Deho, F.; De Vito, M.L.; Heaton, J.; Rigatti, P.; et al. Brain activation patterns during video sexual stimulation following the administration of apomorphine: Results of a placebo-controlled study. Eur. Urol. 2003, 43, 405–411. [Google Scholar] [CrossRef]
- Hui, K.K.; Liu, J.; Makris, N.; Gollub, R.L.; Chen, A.J.; Moore, C.I.; Kennedy, D.N.; Rosen, B.R.; Kwong, K.K. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: Evidence from fMRI studies in normal subjects. Hum. Brain Mapp. 2000, 9, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Baleydier, C.; Mauguiere, F. The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. Brain 1980, 103, 525–554. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, J.A.; Willoughby, P.J.; Robbins, T.W.; Everitt, B.J. Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: Further evidence for limbic cortical-ventral striatopallidal systems. Behav. Neurosci. 2000, 114, 42–63. [Google Scholar] [CrossRef]
- Cardinal, R.N.; Parkinson, J.A.; Lachenal, G.; Halkerston, K.M.; Rudarakanchana, N.; Hall, J.; Morrison, C.H.; Howes, S.R.; Robbins, T.W.; Everitt, B.J. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav. Neurosci. 2002, 116, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Walton, M.E.; Groves, J.; Jennings, K.A.; Croxson, P.L.; Sharp, T.; Rushworth, M.F.; Bannerman, D.M. Comparing the role of the anterior cingulate cortex and 6-hydroxydopamine nucleus accumbens lesions on operant effort-based decision making. Eur. J. Neurosci. 2009, 29, 1678–1691. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, R.N.; Pennicott, D.R.; Sugathapala, C.L.; Robbins, T.W.; Everitt, B.J. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 2001, 292, 2499–2501. [Google Scholar] [CrossRef] [PubMed]
- Wacker, J.; Dillon, D.G.; Pizzagalli, D.A. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG, fMRI, and volumetric techniques. Neuroimage 2009, 46, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavridis, I.N. How Deep Brain Stimulation of the Nucleus Accumbens Affects the Cingulate Gyrus and Vice Versa. Brain Sci. 2019, 9, 5. https://doi.org/10.3390/brainsci9010005
Mavridis IN. How Deep Brain Stimulation of the Nucleus Accumbens Affects the Cingulate Gyrus and Vice Versa. Brain Sciences. 2019; 9(1):5. https://doi.org/10.3390/brainsci9010005
Chicago/Turabian StyleMavridis, Ioannis N. 2019. "How Deep Brain Stimulation of the Nucleus Accumbens Affects the Cingulate Gyrus and Vice Versa" Brain Sciences 9, no. 1: 5. https://doi.org/10.3390/brainsci9010005
APA StyleMavridis, I. N. (2019). How Deep Brain Stimulation of the Nucleus Accumbens Affects the Cingulate Gyrus and Vice Versa. Brain Sciences, 9(1), 5. https://doi.org/10.3390/brainsci9010005