Shared Neural Correlates Underlying Addictive Disorders and Negative Urgency
Abstract
:1. Shared Neural Correlates Underlying Addictive Disorders and Negative Urgency
2. Neural Correlates of Negative Urgency
2.1. Insula
2.2. Striatum
2.3. Prefrontal Cortex (PFC)
2.4. Anterior Cingulate Cortex (ACC)
2.5. Amygdala
2.6. Temporal Pole
2.7. Frontal Pole
2.8. Circuit or Network-Level Correlates of Negative Urgency
2.9. In Relation to Real-World Behaviors
2.10. Notes on Positive Urgency
2.11. Converging Evidence for Neural Correlates of Negative Urgency
3. Convergence between Brain Correlates of Negative Urgency and Related Addictive Disorders
3.1. Substance Use Disorders
3.2. Gambling Disorder
3.3. Disordered Eating
3.4. Summary of Convergence and Divergence in Brain Patterns
4. Applications to Treatment and Intervention and Suggestions for Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Cyders, M.A.; Smith, G.T. Emotion-based dispositions to rash action: Positive and negative urgency. Psychol. Bull. 2008, 134, 807–828. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, S.P.; Lynam, D.R. The five factor model and impulsivity: Using a structural model of personality to understand impulsivity. Personal. Individ. Differ. 2001, 30, 669–689. [Google Scholar] [CrossRef]
- Lynam, D.R.; Smith, G.T.; Whiteside, S.P.; Cyders, M.A. The UPPS-P: Asessing Five Personality Pathways to Impulsive Behavior; Technical Report of Purdue University: West Lafayette, IN, USA, 2006. [Google Scholar]
- Billieux, J.; Van der Linden, M.; Ceschi, G. Which dimensions of impulsivity are related to cigarette craving? Addict. Behav. 2007, 32, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Doran, N.; Cook, J.; McChargue, D.; Myers, M.; Spring, B. Cue-elicited negative affect in impulsive smokers. Psychol. Addict. Behav. 2008, 22, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Doran, N.; Cook, J.; McChargue, D.; Spring, B. Impulsivity and cigarette craving: Differences across subtypes. Psychopharmacology 2009, 207, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.C.; Peters, J.R.; Adams, Z.W.; Milich, R.; Lynam, D.R. Specific dimensions of impulsivity are differentially associated with daily and non-daily cigarette smoking in young adults. Addict. Behav. 2015, 46, 82–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, J.M.; Latzman, R.D.; Bliwise, N.G.; Lilienfeld, S.O. Parsing the Heterogeneity of Impulsivity: A Meta-Analytic Review of the Behavioral Implications of the UPPS for Psychopathology. Psychol. Assess. 2015, 27, 1129–1146. [Google Scholar] [CrossRef]
- Coskunpinar, A.; Dir, A.L.; Cyders, M.A. Multidimensionality in impulsivity and alcohol use: A meta-analysis using the UPPS model of impulsivity. Alcohol. Clin. Exp. Res. 2013, 37, 1441–1450. [Google Scholar] [CrossRef]
- Settles, R.E.; Fischer, S.; Cyders, M.A.; Combs, J.L.; Gunn, R.L.; Smith, G.T. Negative urgency: A personality predictor of externalizing behavior characterized by neuroticism, low conscientiousness, and disagreeableness. J. Abnorm. Psychol. 2012, 121, 160–172. [Google Scholar] [CrossRef]
- MacLaren, V.V.; Fugelsang, J.A.; Harrigan, K.A.; Dixon, M.J. The personality of pathological gamblers: A meta-analysis. Clin. Psychology Rev. 2011, 31, 1057–1067. [Google Scholar] [CrossRef]
- Fischer, S.; Smith, G.T.; Cyders, M.A. Another look at impulsivity: A meta-analytic review comparing specific dispositions to rash action in their relationship to bulimic symptoms. Clin. Psychol. Rev. 2008, 28, 1413–1425. [Google Scholar] [CrossRef] [PubMed]
- Cyders, M.A.; Coskunpinar, A.; VanderVeen, J.D. Urgency—a common transdiagnostic endophenotype for maldaptive risk-taking. In The Dark Side of Personality: Science and practice in social, personality, and clinical psychology, Zeigler-Hill, V., Marcus, D.k., Eds.; Americal Psycholgoical Association: Washington, DC, USA, 2016; pp. 157–188. [Google Scholar]
- Singer, T.; Critchley, H.D.; Preuschoff, K. A common role of insula in feelings, empathy and uncertainty. Trends Cogn. Sci. 2009, 13, 334–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqvi, N.H.; Bechara, A. The insula and drug addiction: An interoceptive view of pleasure, urges, and decision-making. Brain Structure and Function 2010, 214, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Uddin, L.Q. Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct. 2010, 214, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Seeley, W.W.; Menon, V.; Schatzberg, A.F.; Keller, J.; Glover, G.H.; Kenna, H.; Reiss, A.L.; Greicius, M.D. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007, 27, 2349–2356. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D. Significance of the insula for the evolution of human awareness of feelings from the body. Ann. N. Y. Acad Sci. 2011, 1225, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Wilbertz, T.; Deserno, L.; Horstmann, A.; Neumann, J.; Villringer, A.; Heinze, H.J.; Boehler, C.N.; Schlagenhauf, F. Response inhibition and its relation to multidimensional impulsivity. NeuroImage 2014, 103, 241–248. [Google Scholar] [CrossRef]
- Chester, D.S.; Lynam, D.R.; Milich, R.; Powell, D.K.; Andersen, A.H.; DeWall, C.N. How do negative emotions impair self-control? A neural model of negative urgency. NeuroImage 2016, 132, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Barkley-Levenson, E.; Xue, F.; Droutman, V.; Miller, L.C.; Smith, B.J.; Jeong, D.; Lu, Z.L.; Bechara, A.; Read, S.J. Prefrontal Cortical Activity during the Stroop Task: New Insights into the Why and the Who of Real-World Risky Sexual Behavior. Ann. Behav. Med. 2018, 52, 367–379. [Google Scholar] [CrossRef]
- Smith, B.J.; Xue, F.; Droutman, V.; Barkley-Levenson, E.; Melrose, A.J.; Miller, L.C.; Monterosso, J.R.; Bechara, A.; Appleby, P.R.; Christensen, J.L.; et al. Virtually “in the heat of the moment”: Insula activation in safe sex negotiation among risky men. Soc. Cogn. Affect. Neurosci. 2018, 13, 80–91. [Google Scholar] [CrossRef]
- Xiao, L.; Bechara, A.; Gong, Q.; Huang, X.; Li, X.; Xue, G.; Wong, S.; Lu, Z.L.; Palmer, P.; Wei, Y.; et al. Abnormal affective decision making revealed in adolescent binge drinkers using a functional magnetic resonance imaging study. Psychol. Addict. Behav. 2013, 27, 443–454. [Google Scholar] [CrossRef]
- Xue, G.; Lu, Z.; Levin, I.P.; Bechara, A. The impact of prior risk experiences on subsequent risky decision-making: The role of the insula. NeuroImage 2010, 50, 709–716. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wen, B.; Cheng, J.; Li, H. Brain Structural Differences between Normal and Obese Adults and their Links with Lack of Perseverance, Negative Urgency, and Sensation Seeking. Sci. Rep. 2017, 7, 40595. [Google Scholar] [CrossRef] [PubMed]
- Everitt, B.J.; Robbins, T.W. Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat. Neurosci. 2005, 8, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Everitt, B.J.; Robbins, T.W. From the ventral to the dorsal striatum: Devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 2013, 37, 1946–1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhlert, N.; Lawrence, A.D. Brain structure correlates of emotion-based rash impulsivity. NeuroImage 2015, 115, 138–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mick, I.; Ramos, A.C.; Myers, J.; Stokes, P.R.; Chandrasekera, S.; Erritzoe, D.; Mendez, M.A.; Gunn, R.N.; Rabiner, E.A.; Searle, G.E.; et al. Evidence for GABA-A receptor dysregulation in gambling disorder: Correlation with impulsivity. Addict. Biol. 2017, 22, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.; Stokes, P.R.; Wu, K.; Michalczuk, R.; Benecke, A.; Watson, B.J.; Egerton, A.; Piccini, P.; Nutt, D.J.; Bowden-Jones, H.; et al. Striatal dopamine D2/D3 receptor binding in pathological gambling is correlated with mood-related impulsivity. NeuroImage 2012, 63, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Chester, D.S.; Lynam, D.R.; Milich, R.; DeWall, C.N. Craving versus control: Negative urgency and neural correlates of alcohol cue reactivity. Drug Alcohol Depend. 2016, 163, S25–S28. [Google Scholar] [CrossRef] [Green Version]
- Miller, E.K.; Cohen, J.D. An Integrative Theory of Prefrontal Cortex Function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef]
- Albein-Urios, N.; Verdejo-Román, J.; Asensio, S.; Soriano-Mas, C.; Martínez-González, J.M.; Verdejo-García, A. Re-appraisal of negative emotions in cocaine dependence: Dysfunctional corticolimbic activation and connectivity. Addict. Biol. 2012, 19, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Boy, F.; Evans, C.J.; Edden, R.A.E.; Lawrence, A.D.; Singh, K.D.; Husain, M.; Sumner, P. Dorso-lateral prefrontal γ-amino butyric acid in men predicts individual differences in rash impulsivity. Biol. Psychiatry 2011, 70, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de Lara, C.M.; Navas, J.F.; Soriano-Mas, C.; Sescousse, G.; Perales, J.C. Regional grey matter volume correlates of gambling disorder, gambling-related cognitive distortions, and emotion-driven impulsivity. Int. Gambl. Stud. 2018, 18, 195–216. [Google Scholar] [CrossRef]
- Rolls, E.T. Brain mechanisms of emotion and decision-making. Int. Congr. Ser. 2006, 1291, 3–13. [Google Scholar] [CrossRef]
- Schoenbaum, G.; Roesch, M.R.; Stalnaker, T.A. Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci. 2006, 29, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kringelbach, M.L.; Rolls, E.T. The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 2004, 72, 341–372. [Google Scholar] [CrossRef] [PubMed]
- Hoptman, M.J.; Antonius, D.; Mauro, C.J.; Parker, E.M.; Javitt, D.C. Cortical thinning, functional connectivity, and mood-related impulsivity in schizophrenia: Relationship to Aggressive attitudes and behavior. Am. J. Psychiatry 2014, 171, 939–948. [Google Scholar] [CrossRef]
- Cyders, M.A.; Dzemidzic, M.; Eiler, W.J.; Coskunpinar, A.; Karyadi, K.; Kareken, D.A. Negative urgency and ventromedial prefrontal cortex responses to alcohol cues: FMRI evidence of emotion-based impulsivity. Alcohol. Clin. Exp. Res. 2014, 38, 409–417. [Google Scholar] [CrossRef]
- Joseph, J.E.; Liu, X.; Jiang, Y.; Lynam, D.; Kelly, T.H. Neural correlates of emotional reactivity in sensation seeking. Psychol. Sci. 2009, 20, 215–223. [Google Scholar] [CrossRef]
- Cyders, M.A.; Dzemidzic, M.; Eiler, W.J.; Coskunpinar, A.; Karyadi, K.A.; Kareken, D.A. Negative Urgency Mediates the Relationship between Amygdala and Orbitofrontal Cortex Activation to Negative Emotional Stimuli and General Risk-Taking. Cereb. Cortex 2015, 25, 4094–4102. [Google Scholar] [CrossRef]
- Eiler, W.J.A.; Dzemidzic, M.; Case, K.R.; Armstrong, C.L.H.; Mattes, R.D.; Cyders, M.A.; Considine, R.V.; Kareken, D.A. Ventral frontal satiation-mediated responses to food aromas in obese and normal-weight women. Am. J. Clin. Nutr. 2014, 99, 1309–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, G.; Luu, P.; Posner, M.I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 2000, 4, 215–222. [Google Scholar] [CrossRef]
- Collins, H.R.; Corbly, C.R.; Liu, X.; Kelly, T.H.; Lynam, D.; Joseph, J.E. Too little, too late or too much, too early? Differential hemodynamics of response inhibition in high and low sensation seekers. Brain Research 2012, 1481, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, K.L.; Wager, T.; Taylor, S.F.; Liberzon, I. Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 2002, 16, 331–348. [Google Scholar] [CrossRef]
- Bechara, A. Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nat. Neurosci. 2005, 8, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Olson, I.R.; Plotzker, A.; Ezzyat, Y. The Enigmatic temporal pole: A review of findings on social and emotional processing. Brain 2007, 130, 1718–1731. [Google Scholar] [CrossRef] [PubMed]
- Albein-Urios, N.; Verdejo-Román, J.; Soriano-Mas, C.; Asensio, S.; Martínez-González, J.M.; Verdejo-García, A. Cocaine users with comorbid Cluster B personality disorders show dysfunctional brain activation and connectivity in the emotional regulation networks during negative emotion maintenance and reappraisal. Eur. Neuropsychopharmacol. 2013, 23, 1698–1707. [Google Scholar] [CrossRef]
- Tsujimoto, S.; Genovesio, A.; Wise, S.P. Frontal pole cortex: Encoding ends at the end of the endbrain. Trends Cogn. Sci. 2011, 15, 169–176. [Google Scholar] [CrossRef]
- Contreras-Rodríguez, O.; Albein-Urios, N.; Vilar-López, R.; Perales, J.C.; Martínez-Gonzalez, J.M.; Fernández-Serrano, M.J.; Lozano-Rojas, O.; Clark, L.; Verdejo-García, A. Increased corticolimbic connectivity in cocaine dependence versus pathological gambling is associated with drug severity and emotion-related impulsivity. Addict. Biol. 2016, 21, 1–10. [Google Scholar] [CrossRef]
- Zhu, X.; Cortes, C.R.; Mathur, K.; Tomasi, D.; Momenan, R. Model-free functional connectivity and impulsivity correlates of alcohol dependence: A resting-state study. Addict. Biol. 2017, 22, 206–217. [Google Scholar] [CrossRef]
- Tashjian, S.M.; Goldenberg, D.; Galván, A. Neural connectivity moderates the association between sleep and impulsivity in adolescents. Dev. Cogn. Neurosci. 2017, 27, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Um, M.; Hummer, T.A.; Cyders, M.A. Relationship of negative urgency to cingulo-insular and cortico-striatal resting state functional connectivity in tobacco use. Brain Imaging Behav. 2018. under review. [Google Scholar]
- Albein-Urios, N.; Martinez-Gonzalez, J.M.; Lozano, Ó.; Moreno-López, L.; Soriano-Mas, C.; Verdejo-Garcia, A. Negative urgency, disinhibition and reduced temporal pole gray matter characterize the comorbidity of cocaine dependence and personality disorders. Drug Alcohol Depend. 2013, 132, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Moreno-López, L.; Catena, A.; Fernández-Serrano, M.J.; Delgado-Rico, E.; Stamatakis, E.A.; Pérez-García, M.; Verdejo-García, A. Trait impulsivity and prefrontal gray matter reductions in cocaine dependent individuals. Drug Alcohol Depend. 2012, 125, 208–214. [Google Scholar] [CrossRef]
- Golchert, J.; Smallwood, J.; Jefferies, E.; Liem, F.; Huntenburg, J.M.; Falkiewicz, M.; Lauckner, M.E.; Oligschläger, S.; Villringer, A.; Margulies, D.S. In need of constraint: Understanding the role of the cingulate cortex in the impulsive mind. NeuroImage 2017, 146, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Moreno-López, L.; Soriano-Mas, C.; Delgado-Rico, E.; Rio-Valle, J.S.; Verdejo-García, A. Brain Structural Correlates of Reward Sensitivity and Impulsivity in Adolescents with Normal and Excess Weight. PLoS ONE 2012, 7, 1–8. [Google Scholar] [CrossRef]
- Tervo-Clemmens, B.; Quach, A.; Luna, B.; Foran, W.; Chung, T.; De Bellis, M.D.; Clark, D.B. Neural Correlates of Rewarded Response Inhibition in Youth at Risk for Problematic Alcohol Use. Front. Behav. Neurosci. 2017, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Neal, L.B.; Gable, P.A. Neurophysiological markers of multiple facets of impulsivity. Biol. Psychology 2016, 115, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Gable, P.A.; Mechin, N.C.; Hicks, J.A.; Adams, D.L. Supervisory control system and frontal asymmetry: Neurophysiological traits of emotion-based impulsivity. Soc. Cogn. Affect. Neurosci. 2015, 10, 1310–1315. [Google Scholar] [CrossRef]
- Zhao, J.; Tomasi, D.; Wiers, C.E.; Shokri-Kojori, E.; Demiral, Ş.B.; Zhang, Y.; Volkow, N.D.; Wang, G.J. Correlation between Traits of Emotion-Based Impulsivity and Intrinsic Default-Mode Network Activity. Neural Plast. 2017, 2017, 9297621. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Koob, G.F.; McLellan, A.T. Neurobiologic Advances from the Brain Disease Model of Addiction. New Engl. J. Med. 2016, 374, 363–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D. Addiction Circuitry in the Human Brain. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2012, 12, 652–669. [Google Scholar] [CrossRef] [PubMed]
- Gould, T.; Davis, J. Associative Learning, the Hippocampus, and Nicotine Addiction. Curr. Drug Abuse Rev. 2008, 1, 9–19. [Google Scholar] [CrossRef]
- Koob, G.F. Brain stress systems in the amygdala and addiction. Brain Res. 2009, 1293, 61–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqvi, N.H.; Rudrauf, D.; Damasio, H.; Bechara, A. Damage to the insula disrupts addiction to cigarette smoking. Science 2007, 315, 531–534. [Google Scholar] [CrossRef]
- Guller, L.; Zapolski, T.C.B.; Smith, G.T. Personality Measured in Elementary School Predicts Middle School Addictive Behavior Involvement. J. Psychopathol. Behav. Assess. 2015, 27, 523–532. [Google Scholar] [CrossRef]
- Gunn, R.L.; Smith, G.T. Risk factors for elementary school drinking: Pubertal status, personality, and alcohol expectancies concurrently predict fifth grade alcohol consumption. Psychol. Addict. Behav. 2010, 24, 617–627. [Google Scholar] [CrossRef]
- Hershberger, A.R.; Um, M.; Cyders, M.A. The relationship between the UPPS-P impulsive personality traits and substance use psychotherapy outcomes: A meta-analysis. Drug Alcohol Depend. 2017, 178, 408–416. [Google Scholar] [CrossRef]
- Yip, S.W.; Worhunsky, P.D.; Xu, J.; Morie, K.P.; Constable, R.T.; Malison, R.T.; Carroll, K.M.; Potenza, M.N. Gray-matter relationships to diagnostic and transdiagnostic features of drug and behavioral addictions. Addict. Biol. 2018, 23, 394–402. [Google Scholar] [CrossRef]
- Koehler, S.; Hasselmann, E.; Wüstenberg, T.; Heinz, A.; Romanczuk-Seiferth, N. Higher volume of ventral striatum and right prefrontal cortex in pathological gambling. Brain Struct. Funct. 2013, 220, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Tsurumi, K.; Murao, T.; Takemura, A.; Kawada, R.; Urayama, S.I.; Aso, T.; Sugihara, G.I.; Miyata, J.; Murai, T.; et al. Common and differential brain abnormalities in gambling disorder subtypes based on risk attitude. Addictive Behaviors 2017, 69, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Zois, E.; Kiefer, F.; Lemenager, T.; Vollstädt-Klein, S.; Mann, K.; Fauth-Bühler, M. Frontal cortex gray matter volume alterations in pathological gambling occur independently from substance use disorder. Addict. Biol. 2017, 22, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.E.; Odlaug, B.L.; Chamberlain, S.R. Reduced cortical thickness in gambling disorder: A morphometric MRI study. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.J.; Deng, W.; Wang, H.Y.; Guo, W.J.; Li, T.; Lam, C.; Lin, X. Reward pathway dysfunction in gambling disorder: A meta-analysis of functional magnetic resonance imaging studies. Behav. Brain Res. 2014, 275, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Balodis, I.M.; Kober, H.; Worhunsky, P.D.; Stevens, M.C.; Pearlson, G.D.; Potenza, M.N. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol. Psychiatry 2012, 71, 749–757. [Google Scholar] [CrossRef]
- Linnet, J.; Møller, A.; Peterson, E.; Gjedde, A.; Doudet, D. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling. Addiction 2010, 106, 383–390. [Google Scholar] [CrossRef]
- Joutsa, J.; Johansson, J.; Niemelä, S.; Ollikainen, A.; Hirvonen, M.M.; Piepponen, P.; Arponen, E.; Alho, H.; Voon, V.; Rinne, J.O.; et al. Mesolimbic dopamine release is linked to symptom severity in pathological gambling. NeuroImage 2012, 60, 1992–1999. [Google Scholar] [CrossRef]
- Yan, W.S.; Zhang, R.R.; Lan, Y.; Li, Y.H.; Sui, N. Comparison of impulsivity in non-problem, at-risk and problem gamblers. Sci Rep. 2016, 6. [Google Scholar] [CrossRef]
- Leeman, R.F.; Potenza, M.N. Similarities and differences between pathological gambling and substance use disorders: A focus on impulsivity and compulsivity. Psychopharmacology. 2012, 219, 469–490. [Google Scholar] [CrossRef]
- Ledgerwood, D.M.; Alessi, S.M.; Phoenix, N.; Petry, N.M. Behavioral assessment of impulsivity in pathological gamblers with and without substance use disorder histories versus healthy controls. Drug Alcohol Depend. 2009, 105, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tom, S.M.; Fox, C.R.; Trepel, C.; Poldrack, R.A. The neural basis of loss aversion in decision-making under risk. Science 2007, 315, 515–518. [Google Scholar] [CrossRef] [PubMed]
- De Martino, B.; Camerer, C.F.; Adolphs, R. Amygdala damage eliminates monetary loss aversion. Proc. Natl. Acad. Sci. USA 2010, 107, 3788–3792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, N.S.; Jollant, F.; O’Daly, O.; Zelaya, F.; Phillips, M.L. Distinct role of prefrontal cortical subregions in the Iowa Gambling Task. Cereb Cortex. 2009, 19, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.T.; Cyders, M.A. Integrating affect and impulsivity: the role of positive and negative urgency in substance use risk. Drug Alcohol Depend. 2016, 163, S3–S12. [Google Scholar] [CrossRef] [PubMed]
- Mathar, D.; Wiehler, A.; Chakroun, K.; Goltz, D.; Peters, J. A potential link between gambling addiction severity and central dopamine levels: Evidence from spontaneous eye blink rates. Sci Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Amianto, F.; Caroppo, P.; D’Agata, F.; Spalatro, A.; Lavagnino, L.; Caglio, M.; Righi, D.; Bergui, M.; Abbate-Daga, G.; Rigardetto, R.; et al. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: A Voxel-based morphometry study. Psychiatry Res. 2013, 213, 210–216. [Google Scholar] [CrossRef]
- Brooks, S.J.; Barker, G.J.; O’Daly, O.G.; Brammer, M.; Williams, S.C.R.; Benedict, C.; Schiöth, H.B.; Treasure, J.; Campbell, I.C. Restraint of appetite and reduced regional brain volumes in anorexia nervosa: A voxel-based morphometric study. BMC Psychiatry 2011, 11, 179. [Google Scholar] [CrossRef]
- Frank, G.K.; Shott, M.E.; Hagman, J.O.; Mittal, V.A. Alterations in brain structures related to taste reward circuitry in ill and recovered anorexia nervosa and in bulimia nervosa. Am. J. Psychiatry 2013, 170, 1152–1160. [Google Scholar] [CrossRef]
- Holsen, L.M.; Lawson, E.A.; Blum, J.; Ko, E.; Makris, N.; Fazeli, P.K.; Klibanski, A.; Goldstein, J.M. Food motivation circuitry hypoactivation related to hedonic and nonhedonic aspects of hunger and satiety in women with active anorexia nervosa and weight-restored women with anorexia nervosa. J. Psychiatry Neurosci. 2012, 37, 322–332. [Google Scholar] [CrossRef] [Green Version]
- Oberndorfer, T.A.; Frank, G.K.W.; Simmons, A.N.; Wagner, A.; McCurdy, D.; Fudge, J.L.; Yang, T.T.; Paulus, M.P.; Kaye, W.H. Altered insula response to sweet taste processing after recovery from anorexia and bulimia nervosa. Am. J. Psychiatry 2013, 170, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.; Aizenstein, H.; Mazurkewicz, L.; Fudge, J.; Frank, G.K.; Putnam, K.; Bailer, U.F.; Fischer, L.; Kaye, W.H. Altered insula response to taste stimuli in individuals recovered from restricting-type anorexia nervosa. Neuropsychopharmacology 2008, 33, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Bohon, C.; Stice, E. Reward abnormalities among women with full and subthreshold bulimia nervosa: A functional magnetic resonance imaging study. Int. J. Eat. Disord. 2011, 44, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.J.; O’Daly, O.G.; Uher, R.; Friederich, H.-C.; Giampietro, V.; Brammer, M.; Williams, S.C.; Schiöth, H.B.; Treasure, J.; Campbell, I.C. Differential neural responses to food images in women with bulimia versus anorexia nervosa. PLoS ONE 2011, 6, e22259. [Google Scholar] [CrossRef] [PubMed]
- Frank, G.K.W.; Reynolds, J.R.; Shott, M.E.; O’Reilly, R.C. Altered temporal difference learning in bulimia nervosa. Biol. Psychiatry 2011, 70, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.; Sullivan, S.; Tchanturia, K.; Treasure, J. Emotion recognition and regulation in anorexia nervosa. Clin. Psychol. Psychother. 2009, 16, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Lavender, J.M.; Mitchell, J.E. Eating Disorders and Their Relationship to Impulsivity. Curr. Treat. Options Psychiatry. 2015, 2, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Svaldi, J.; Griepenstroh, J.; Tuschen-Caffier, B.; Ehring, T. Emotion regulation deficits in eating disorders: A marker of eating pathology or general psychopathology? Psychiatry Res. 2012, 197, 103–111. [Google Scholar] [CrossRef]
- Brockmeyer, T.; Skunde, M.; Wu, M.; Bresslein, E.; Rudofsky, G.; Herzog, W.; Friederich, H.C. Difficulties in emotion regulation across the spectrum of eating disorders. Compr. Psychiatry 2014, 55, 565–571. [Google Scholar] [CrossRef]
- Krämer, B.; Gruber, O. Dynamic Amygdala Influences on the Fronto-Striatal Brain Mechanisms Involved in Self-Control of Impulsive Desires. Neuropsychobiology 2015, 72, 37–45. [Google Scholar] [CrossRef]
- Chou, S.P.; Goldstein, R.B.; Smith, S.M.; Huang, B.; Ruan, W.J.; Zhang, H.; Jung, J.; Saha, T.D.; Pickering, R.P.; Grant, B.F. The epidemiology of DSM-5 nicotine use disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditons-III. J. Clin. Psychiatry 2016, 77, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.F.; Goldstein, R.B.; Saha, T.D.; Chou, S.; Jung, J.; Zhang, H.; Pickering, R.P.; Ruan, W.J.; Smith, S.M.; Huang, B.; et al. Epidemiology of DSM-5 alcohol use disorder results from the national epidemiologic survey on alcohol and related conditions III. JAMA Psychiatry 2015, 72, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.F.; Saha, T.D.; Ruan, W.J.; Goldstein, R.B.; Chou, S.P.; Jung, J.; Zhang, H.; Smith, S.M.; Pickering, R.P.; Huang, B; et al. Epidemiology of DSM-5 Drug Use Disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditons—III. JAMA Psychiatry 2016, 73, 39–47. [Google Scholar] [CrossRef]
- Hasin, D.S.; Kerridge, B.T.; Saha, T.D.; Huang, B.; Pickering, R.; Smith, S.M.; Jung, J.; Zhang, H.; Grant, B.F. Prevalence and correlates of DSM-5 cannabis use disorder, 2012-2013: Findings from the national epidemiologic survey on alcohol and related conditions-III. Am. J. Psychiatry 2016, 173, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.I.; Hiripi, E.; Pope, H.G.; Kessler, R.C. The Prevalence and Correlates of Eating Disorders in the National Comorbidity Survey Replication. Biological Psychiatry 2007, 61, 348–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorains, F.K.; Cowlishaw, S.; Thomas, S.A. Prevalence of comorbid disorders in problem and pathological gambling: Systematic review and meta-analysis of population surveys. Addiction 2011, 106, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Um, M.; Hershberger, A.R.; Whitt, Z.T.; Cyders, M.A. Recommendations for applying a multi- dimensional model of impulsive personality to diagnosis and treatment. Bord. Personal. Disord. Emot. Dysregulation 2018, 5, 1–17. [Google Scholar] [CrossRef]
- McLellan, A.T.; Lewis, D.C.; O’Brien, C.P.; Kleber, H.D. Drug Dependence, a Chronic Medical Illness: Implications for treatment, insurance and outcome evaluation. JAMA 2000, 284, 1689–1695. [Google Scholar] [CrossRef]
- Slotema, C.W.; Blom, J.D.; Hoek, H.W.; Sommer, I.E.C. Should we expand the toolbox of psychiatric treatment methods to include repetitive transcranial magnetic stimulation (rTMS)? A meta-analysis of the efficacy of rTMS in psychiatric disorders. J. Clin. Psychiatry 2010, 71, 873–884. [Google Scholar] [CrossRef]
- Doñamayor, N.; Baek, K.; Voon, V. Distal Functional Connectivity of Known and Emerging Cortical Targets for Therapeutic Noninvasive Stimulation. Cereb. Cortex 2018, 28, 791–804. [Google Scholar] [CrossRef]
- Opitz, A.; Fox, M.D.; Craddock, R.C.; Colcombe, S.; Milham, M.P. An integrated framework for targeting functional networks via transcranial magnetic stimulation. NeuroImage 2005, 127, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Halcomb, M.; Argyriou, E.; Cyers, M.A. Integrating preclinical and clinical models of negative urgency. Front. Psychiatry 2019. under review. [Google Scholar]
- Bardo, M.T.; Weiss, V.G.; Rebec, G.V. Using preclinical models to understand the neural basis of negative urgency. In Neurobiology of Abnormal Emotion and Motivated Behavior: Integrating Animal and Human Research, 1st ed.; Sangha, S., Foti, D., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 3–20. [Google Scholar]
- Gipson, C.D.; Beckmann, J.S.; Adams, Z.W.; Marusich, J.A.; Nesland, T.O.; Yates, J.R.; Kelly, T.H.; Bardo, M.T. A translational behavioral model of mood-based impulsivity: Implications for substance abuse. Drug Alcohol Depend. 2012, 122, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, J.R.; Darna, M.; Gipson, C.D.; Dwoskin, L.P.; Bardo, M.T. Dissociable roles of dopamine and serotonin transporter function in a rat model of negative urgency. Behav. Brain Res. 2015, 291, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argyriou, E.; Um, M.; Wu, W.; Cyders, M.A. Measurement invaraince of the UPPS-P Impulsive Behavior Scale across age and sex. Assessment 2019, in press. [Google Scholar]
- Um, M. Resting-state neural circuit correlates of negative urgency: A comparison between tobacco users and non-tobacco users. Master’s Thesis, Purdue University, Indianapolis, IN, USA, 2017. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Um, M.; Whitt, Z.T.; Revilla, R.; Hunton, T.; Cyders, M.A. Shared Neural Correlates Underlying Addictive Disorders and Negative Urgency. Brain Sci. 2019, 9, 36. https://doi.org/10.3390/brainsci9020036
Um M, Whitt ZT, Revilla R, Hunton T, Cyders MA. Shared Neural Correlates Underlying Addictive Disorders and Negative Urgency. Brain Sciences. 2019; 9(2):36. https://doi.org/10.3390/brainsci9020036
Chicago/Turabian StyleUm, Miji, Zachary T. Whitt, Rebecca Revilla, Taylor Hunton, and Melissa A. Cyders. 2019. "Shared Neural Correlates Underlying Addictive Disorders and Negative Urgency" Brain Sciences 9, no. 2: 36. https://doi.org/10.3390/brainsci9020036
APA StyleUm, M., Whitt, Z. T., Revilla, R., Hunton, T., & Cyders, M. A. (2019). Shared Neural Correlates Underlying Addictive Disorders and Negative Urgency. Brain Sciences, 9(2), 36. https://doi.org/10.3390/brainsci9020036