From Extinction Learning to Anxiety Treatment: Mind the Gap
Abstract
:1. Introduction
2. Successes of the Extinction Model
2.1. The Brain Circuitry of Fear Reduction
2.2. Mechanisms of Exposure and Return of Fear
2.3. Pharmacological Augmentation of Treatment
2.4. Targeting Reconsolidation of Fear Memories
3. Limitations of the Extinction Model
3.1. Development of Clinical vs. Laboratory Fears
3.2. Fear-Relevance of Conditioned Stimuli
3.3. Meaning of the CS–US Association
3.4. Complexity of Generalization
3.5. Neglect of Avoidance Behavior
3.6. A Note on Predictive Validity
4. Broadening the Scope of Extinction
4.1. Cognitive Reappraisal
4.2. Distress Tolerance
4.3. Self-Efficacy
4.4. Mental Imagery
4.5. Verbal Processing
5. Summary and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Baxter, A.J.; Scott, K.M.; Vos, T.; Whiteford, H.A. Global prevalence of anxiety disorders: A systematic review and meta-regression. Psychol. Med. 2013, 43, 897–910. [Google Scholar] [CrossRef]
- Carpenter, J.K.; Andrews, L.A.; Witcraft, S.F.; Powers, M.B.; Smits, J.A.J.; Hofmann, S.G. Cognitive behavioral therapy for anxiety and related disorders: A meta-analysis of randomized placebo-controlled trials. Depress. Anxiety 2018, 35, 502–514. [Google Scholar] [CrossRef]
- Hofmann, S.G.; Smits, J.A. Cognitive-behavioral therapy for adult anxiety disorders: A meta-analysis of randomized placebo-controlled trials. Clin. Psychiatry 2008, 69, 621–632. [Google Scholar] [CrossRef]
- Craske, M.G.; Hermans, D.; Vervliet, B. State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 1942. [Google Scholar]
- Milad, M.R.; Pitman, R.K.; Ellis, C.B.; Gold, A.L.; Shin, L.M.; Lasko, N.B.; Zeidan, M.A.; Handwerger, K.; Orr, S.P.; Rauch, S.L. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol. Psychiatry 2009, 66, 1075–1082. [Google Scholar] [CrossRef]
- Walker, D.L.; Ressler, K.J.; Lu, K.T.; Davis, M. Facilitation of conditioned fear extinction by systematic administration or intra-amygrala influsions of Dcycloserine as assessed with fear-potentiated startle in rats. J. Neurosci. 2002, 22, 2343–2351. [Google Scholar] [CrossRef]
- Duits, P.; Cath, D.C.; Lissek, S.; Hox, J.J.; Hamm, A.O.; Engelhard, I.M.; van den Hout, M.A.; Baas, J.M. Updated meta-analysis of classical fear conditioning in the anxiety disorders. Depress. Anxiety 2015, 32, 239–253. [Google Scholar] [CrossRef]
- VanElzakker, M.B.; Kathryn Dahlgren, M.; Caroline Davis, F.; Dubois, S.; Shin, L.M. From Pavlov to PTSD: The extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol. Learn. Mem. 2014, 113, 3–18. [Google Scholar] [CrossRef]
- Greco, J.A.; Liberzon, I. Neuroimaging of fear-associated learning. Neuropsychopharmacology 2015, 41, 320–334. [Google Scholar] [CrossRef]
- Milad, M.R.; Quirk, G.J. Fear extinction as a model for translational neuroscience: Ten years of progress. Annu. Rev. Psychol. 2012, 63, 129–151. [Google Scholar] [CrossRef]
- Pape, H.-C.; Pare, D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol. Rev. 2010, 90, 419–463. [Google Scholar] [CrossRef]
- Johansen, J.P.; Cain, C.K.; Ostroff, L.E.; LeDoux, J.E. Molecular mechanisms of fear learning and memory. Cell 2011, 147, 509–524. [Google Scholar] [CrossRef]
- Lang, P.J.; Davis, M. Emotion, motivation, and the brain: Reflex foundations in animal and human research. Prog. Brain Res. 2006, 156, 3–29. [Google Scholar]
- LeDoux, J.E.; Iwata, J.; Cicchetti, P.; Reis, D.J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 1988, 8, 2517–2529. [Google Scholar] [CrossRef] [Green Version]
- Fullana, M.A.; Harrison, B.J.; Soriano-Mas, C.; Vervliet, B.; Cardoner, N.; Àvila-Parcet, A.; Radua, J. Neural signatures of human fear conditioning: An updated and extended meta-analysis of fMRI studies. Mol. Psychiatry 2016, 21, 500–508. [Google Scholar] [CrossRef]
- Mechias, M.L.; Etkin, A.; Kalisch, R. A meta-analysis of instructed fear studies: Implications for conscious appraisal of threat. Neuroimage 2010, 49, 1760–1768. [Google Scholar] [CrossRef]
- Kalisch, R.; Gerlicher, A.M.V. Making a mountain out of a molehill: On the role of the rostral dorsal anterior cingulate and dorsomedial prefrontal cortex in conscious threat appraisal, catastrophizing, and worrying. Neurosci. Biobehav. Rev. 2014, 42, 1–8. [Google Scholar] [CrossRef]
- Paulus, M.P.; Stein, M.B. An insular view of anxiety. Biol. Psychiatry 2006, 60, 383–387. [Google Scholar] [CrossRef]
- Fullana, M.A.; Albajes-Eizagirre, A.; Soriano-Mas, C.; Vervliet, B.; Cardoner, N.; Benet, O.; Radua, J.; Harrison, B.J. Fear extinction in the human brain: A meta-analysis of fMRI studies in healthy participants. Neurosci. Biobehav. Rev. 2018, 88, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Delgado, M.R.; Nearing, K.I.; LeDoux, J.E.; Phelps, E.A. Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 2008, 59, 829–838. [Google Scholar] [CrossRef]
- Utz, A.; Thürling, M.; Ernst, T.M.; Hermann, A.; Stark, R.; Wolf, O.T.; Timmann, D.; Merz, C.J. Cerebellar vermis contributes to the extinction of conditioned fear. Neurosci. Lett. 2015, 604, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Giustino, T.F.; Maren, S. The role of the medial prefrontal cortex in the conditioning and extinction of fear. Front. Behav. Neurosci. 2015, 9, 298. [Google Scholar] [CrossRef] [PubMed]
- Milad, M.R.; Quirk, G.J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 2002, 420, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Quirk, G.J.; Russo, G.K.; Barron, J.L.; Lebron, K. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J. Neurosci. 2000, 20, 6225–6231. [Google Scholar] [CrossRef] [PubMed]
- Milad, M.R.; Wright, C.I.; Orr, S.P.; Pitman, R.K.; Quirk, G.J.; Rauch, S.L. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol. Psychiatry 2007, 62, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Dunsmoor, J.E.; Kroes, M.C.W.; Li, J.; Daw, N.D.; Simpson, H.B.; Phelps, E.A. Role of human ventromedial prefrontal cortex in learning and recall of enhanced extinction. J. Neurosci. 2019, 39, 3264–3276. [Google Scholar] [CrossRef] [PubMed]
- Milad, M.R.; Quinn, B.T.; Pitman, R.K.; Orr, S.P.; Fischl, B.; Rauch, S.L. Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. PNAS 2005, 102, 10706–10711. [Google Scholar] [CrossRef] [Green Version]
- Hartley, C.A.; Fischl, B.; Phelps, E.A. Brain structure correlates of individual differences in the acquisition and inhibition of conditioned. Cereb. Cortex 2011, 21, 1954–1962. [Google Scholar] [CrossRef]
- Maren, S.; Phan, K.L.; Liberzon, I. The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 2013, 14, 417–428. [Google Scholar] [CrossRef]
- Kalisch, R.; Korenfeld, E.; Stephan, K.E.; Weiskopf, N.; Seymour, B.; Dolan, R.J. Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J. Neurosci. 2006, 26, 9503–9511. [Google Scholar] [CrossRef]
- Orsini, C.A.; Kim, J.H.; Knapska, E.; Maren, S. Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. J. Neurosci. 2011, 31, 17269–17277. [Google Scholar] [CrossRef] [PubMed]
- Trenado, C.; Pedroarena-Leal, N.; Cif, L.; Nitsche, M.; Ruge, D. Neural oscillatory correlates for conditioning and extinction of fear. Biomedicines 2018, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Likhtik, E.; Stujenske, J.M.; Topiwala, M.A.; Harris, A.Z.; Gordon, J.A. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat. Neurosci. 2014, 17, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.J.; Whittle, N.; Flynn, S.M.; Graybeal, C.; Pinard, C.R.; Gunduz-Cinar, O.; Kravitz, A.V.; Singewald, N.; Holmes, A. Prefrontal single-unit firing associated with deficient extinction in mice. Neurobiol. Learn. Mem. 2014, 113, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Mueller, E.M.; Panitz, C.; Hermann, C.; Pizzagalli, D.A. Prefrontal oscillations during recall of conditioned and extinguished fear in humans. J. Neurosci. 2014, 34, 7059–7066. [Google Scholar] [CrossRef] [PubMed]
- Sperl, M.F.J.; Panitz, C.; Rosso, I.M.; Dillon, D.G.; Kumar, P.; Hermann, A.; Whitton, A.E.; Hermann, C.; Pizzagalli, D.A.; Mueller, E.M. Fear extinction recall modulates human frontomedial theta and amygdala activity. Cereb. Cortex 2019, 29, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Garfinkel, S.N.; Abelson, J.L.; King, A.P.; Sripada, R.K.; Wang, X.; Gaines, L.M.; Liberzon, I. Impaired contextual modulation of memories in PTSD: An fMRI and psychophysiological study of extinction retention and fear renewal. J. Neurosci. 2014, 34, 13435–13443. [Google Scholar] [CrossRef]
- Liberzon, I.; Abelson, J.L. Context processing and the neurobiology of post-traumatic stress. Neuron 2016, 92, 14–30. [Google Scholar] [CrossRef]
- Milad, M.R.; Rosenbaum, B.L.; Simon, N.M. Neuroscience of fear extinction: Implications for assessment and treatment of fear-based and anxiety related disorders. Behav. Res. 2014, 62, 17–23. [Google Scholar] [CrossRef]
- Hofmann, S.G. Can fMRI be used to predict the course of treatment for social anxiety disorder? Expert Rev. Neurother. 2014, 13, 123–125. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Ghosh, S.S.; Nieto-Castanon, A.; Saygin, Z.; Doehrmann, O.; Chai, X.J.; Reynolds, G.O.; Hofmann, S.G.; Pollack, M.H.; Gabrieli, J.D.E. Brain connectomics predict response to treatment in social anxiety disorder. Mol. Psychiatry 2016, 21, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Lueken, U.; Zierhut, K.C.; Hahn, T.; Straube, B.; Kircher, T.; Reif, A.; Richter, J.; Hamm, A.; Wittchen, H.-U.; Domschke, K. Neurobiological markers predicting treatment response in anxiety disorders: A systematic review and implications for clinical application. Neurosci. Biobehav. Rev. 2016, 66, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, F.V.; Gidyk, D.C.; Giacobbe, P.; Ng, E.; Meng, Y.; Davidson, B.; Abrahao, A.; Lipsman, N.; Hamani, C. Neuromodulation strategies in post-traumatic stress disorder: From preclinical models to clinical applications. Brain Sci. 2019, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Van’t Wout, M.; Longo, S.M.; Reddy, M.K.; Philip, N.S.; Bowker, M.T.; Greenberg, B.D. Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain Behav. 2017, 7, e00681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raij, T.; Nummenmaa, A.; Marin, M.-F.; Porter, D.; Furtak, S.; Setsompop, K.; Milad, M.R. Prefrontal cortex stimulation enhances fear extinction memory in humans. Biol. Psychiatry 2018, 84, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Isserles, M.; Shalev, A.Y.; Roth, Y.; Peri, T.; Kutz, I.; Zlotnick, E.; Zangen, A. Effectiveness of deep transcranial magnetic stimulation combined with a brief exposure procedure in post-traumatic stress disorder—A pilot study. Brain Stimul. 2013, 6, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Taschereau-Dumouchel, V.; Liu, K.-Y.; Lau, H. Unconscious psychological treatments for physiological survival circuits. Curr. Opin. Behav. Sci. 2018, 24, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Taschereau-Dumouchel, V.; Cortese, A.; Chiba, T.; Knotts, J.D.; Kawato, M.; Lau, H. Towards an unconscious neural reinforcement intervention for common fears. Proc. Natl. Acad. Sci. USA 2018, 115, 3470–3475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koizumi, A.; Amano, K.; Cortese, A.; Shibata, K.; Yoshida, W.; Seymour, B.; Kawato, M.; Lau, H. Fear reduction without fear through reinforcement of neural activity that bypasses conscious exposure. Nat. Hum. Behav. 2016, 1, 0006. [Google Scholar] [CrossRef]
- Lebois, L.A.M.; Seligowski, A.V.; Wolff, J.D.; Hill, S.B.; Ressler, K.J. Augmentation of extinction and inhibitory learning in anxiety and trauma-related disorders. Ann. Rev. Clin. Psychol. 2019, 15, 257–284. [Google Scholar] [CrossRef]
- Bouton, M.E. Context, ambiguity, and unlearning: Sources of relapse after behavioral extinction. Biol. Psychiatry 2002, 52, 976–986. [Google Scholar] [CrossRef]
- Bouton, M.E.; Swartzentruber, D. Analysis of the associative and occasion-setting properties of contexts participating in a Pavlovian discrimination. J. Exp. Psychol. Anim. Behav. Process. 1986, 12, 333–350. [Google Scholar] [CrossRef]
- Rachman, S. The return of fear: Review and prospect. Clin. Psychol. Rev. 1989, 9, 147–168. [Google Scholar] [CrossRef]
- Craske, M.G.; Kircanski, K.; Zelikowsky, M.; Mystkowski, J.; Chowdhury, N.; Baker, A. Optimizing inhibitory learning during exposure therapy. Behav. Res. Ther. 2008, 46, 5–27. [Google Scholar] [CrossRef] [PubMed]
- Vervliet, B.; Baeyens, F.; Van den Bergh, O.; Hermans, D. Extinction, generalization, and return of fear: A critical review of renewal research in humans. Biol. Psychol. 2013, 92, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Huff, N.C.; Hernandez, J.A.; Blanding, N.Q.; LaBar, K.S. Delayed extinction attenuates conditioned fear renewal and spontaneous recovery in humans. Behav. Neurosci. 2009, 123, 834–843. [Google Scholar] [CrossRef]
- Alvarez, R.P.; Johnson, L.; Grillon, C. Contextual-specificity of short-delay extinction in humans: Renewal of fear-potentiated startle in a virtual environment. Learn. Mem. 2007, 14, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Mystkowski, J.L.; Mineka, S.; Vernon, L.L.; Zinbarg, R.E. Changes in caffeine states enhance return of fear in spider phobia. J. Consult. Clin. Psychol. 2003, 71, 243–250. [Google Scholar] [CrossRef]
- Pavlov, I. Conditioned Reflexes; Oxford University Press: London, UK, 1927. [Google Scholar]
- Bouton, M.E. Context, ambiguity, and classical conditioning. Curr. Dir. Psychol. Sci. 1994, 3, 49–53. [Google Scholar] [CrossRef]
- Haaker, J.; Golkar, A.; Hermans, D.; Lonsdorf, T.B. A review on human reinstatement studies: An overview and methodological challenges. Learn. Mem. 2014, 21, 424–440. [Google Scholar] [CrossRef]
- Balooch, S.B.; Neumann, D.L.; Boschen, M.J. Extinction treatment in multiple contexts attenuates ABC renewal in human. Behav. Res. 2012, 50, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Dunsmoor, J.E.; Ahs, F.; Zielinski, D.J.; LaBar, K.S. Extinction in multiple virtual reality contexts diminishes fear reinstatement in humans. Neurobiol. Learn. Mem. 2014, 113, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiban, Y.; Pauli, P.; Mühlberger, A. Effect of multiple context exposure on renewal in spider phobia. Behav. Res. 2013, 51, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Bandarian-Balooch, S.; Neumann, D.L.; Boschen, M.J. Exposure treatment in multiple contexts attenuates return of fear via renewal in high spider fearful individuals. J. Behav. Exp. Psychiatry 2015, 47, 138–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olatunji, B.O.; Tomarken, A.; Wentworth, B.; Fritzsche, L. Effects of exposure in single and multiple contexts on fear renewal: The moderating role of threat-specific and nonspecific emotionality. J. Behav. Ther. Exp. Psychiatry 2017, 54, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Gunther, L.M.; Denniston, J.C.; Miller, R.R. Conducting exposure treatment in multiple contexts can prevent relapse. Behav. Res. 1998, 36, 75–91. [Google Scholar] [CrossRef]
- Dibbets, P.; Havermans, R.; Arntz, A. All we need is a cue to remember: The effect of an extinction cue on renewal. Behav. Res. 2008, 46, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Dibbets, P.; Maes, J.H. The effect of an extinction cue on ABA-renewal: Does valence matter? Learn. Motiv. 2011, 42, 133–144. [Google Scholar] [CrossRef]
- Luck, C.C.; Bramwell, S.; Kerin, J.; Green, L.J.S.; Craig, M.B.; Lipp, O.V. Temporal context cues in human fear conditioning: Unreinforced conditional stimuli can segment learning into distinct temporal contexts and drive fear responding. Behav. Res. 2018, 108, 10–17. [Google Scholar] [CrossRef]
- Culver, N.C.; Stoyanova, M.; Craske, M.G. Clinical relevance of retrieval cues for attenuating context renewal of fear. J. Anxiety Disord. 2011, 25, 284–292. [Google Scholar] [CrossRef]
- Shin, K.E.; Newman, M.G. Using retrieval cues to attenuate return of fear in individuals with public speaking anxiety. Behav. Ther 2018, 49, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.D.; Azorlosa, J.L. The NMDA antagonist MK-801 blocks the extinction of Pavlovian fear conditioning. Behav. Neurosci. 1996, 110, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Santini, E.; Muller, R.U.; Quirk, G.J. Consolidation of extinction learning involves transfer from NMDA-independent to NMDA-dependent memory. J. Neurosci. 2001, 21, 9009–9017. [Google Scholar] [CrossRef] [PubMed]
- Sotres-Bayon, F.; Diaz-Mataix, L.; Bush, D.E.; LeDoux, J.E. Dissociable roles for the ventromedial prefrontal cortex and amygdala in fear extinction: NR2B contribution. Cereb. Cortex 2009, 19, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Dalton, G.L.; Wang, Y.T.; Floresco, S.B.; Phillips, A.G. Disruption of AMPA reception endocytosis impairs the extinction, but not acquisition of learned fear. Neuropsychopharmacology 2008, 33, 2416–2426. [Google Scholar] [CrossRef] [PubMed]
- Falls, W.A.; Miserendino, M.J.D.; Davis, M. Extinction of fear-potentiated startle: Blockade by infusion of an NMDA antagonist into the amygdala. J. Neurosci. 1992, 12, 8543. [Google Scholar] [CrossRef]
- Bouton, M.E.; Vurbic, D.; Woods, A.M. D-cycloserine facilitates context-specific fear extinction learning. Neurobiol. Learn. Mem. 2008, 90, 504–510. [Google Scholar] [CrossRef]
- Ledgerwood, L.; Richardson, R.; Cranney, J. Effects of D-cycloserine on extinction of conditioned freezing. Behav. Neurosci. 2003, 117, 341–349. [Google Scholar] [CrossRef]
- Ressler, K.J.; Rothbaum, B.O.; Tannenbaum, L.; Anderson, P.; Graap, K.; Zimand, E.; Hodges, L.; Davis, M. Cognitive enhancers as adjuncts to psychotherapy: Use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch. Gen. Psychiatry 2004, 61, 1136–1144. [Google Scholar] [CrossRef]
- Hofmann, S.G.; Meuret, A.E.; Smits, J.A.J.; Simon, N.M.; Pollack, M.H.; Eisenmenger, K.; Shiekh, M.; Otto, M.W. Augmentation of exposure therapy with D-cycloserine for social anxiety disorder. Arch. Gen. Psychiatry 2006, 63, 298–304. [Google Scholar] [CrossRef]
- Otto, M.W.; Tolin, D.F.; Simon, N.M.; Pearlson, G.D.; Basden, S.; Meunier, S.A.; Hofmann, S.G.; Eisenmenger, K.; Krystal, J.H.; Pollack, M.H. Efficacy of D-cycloserine for enhancing response to cognitive-behavior therapy for panic disorder. Biol. Psychiatry 2010, 67, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Mataix-Cols, D.; Fernándex de la Cruz, L.; Monzani, B.; Rosenfield, D.; Andersson, E.; Pérez-Vigil, A.; Frumento, P.; da Kleine, R.A.; Difede, J.; Dunlop, B.W.; et al. D-Cycloserine Augmentation of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders: A systematic review and meta-analysis of individual participant data. Jama Psychiatry 2017, 74, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.G. D-cycloserine for treating anxiety disorders: Making good exposures better and bad exposures worse. Depress. Anxiety 2014, 31, 175. [Google Scholar] [CrossRef] [PubMed]
- Smits, J.A.; Rosenfield, D.; Otto, M.W.; Marques, L.; Davis, M.L.; Meuret, A.E.; Simon, N.M.; Pollack, M.H.; Hofmann, S.G. D-cycloserine enhancement of exposure therapy for social anxiety disorder depends on the success of exposure sessions. J. Psychiatr. Res. 2013, 47, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Smits, J.A.; Rosenfield, D.; Otto, M.W.; Powers, M.B.; Hofmann, S.G.; Telch, M.J.; Tart, C.D. D-cycloserine enhancement of fear extinction is specific to successful exposure sessions: Evidence from the treatment of height phobia. Biol. Psychiatry 2013, 73, 1054–1058. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.G.; Carpenter, J.K.; Otto, M.W.; Rosenfield, D.; Smits, J.A.; Pollack, M.H. Dose timing of d-cycloserine to augment cognitive behavioral therapy for social anxiety: Study design and rationale. Contemp. Clin. Trials 2015, 43, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Phelps, L.; Hofmann, S.G. Memory editing: From science fiction to clinical practice. Nature 2019, in press. [Google Scholar]
- Nader, K.; Schafe, G.E.; Le Doux, J.E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 2000, 406, 722. [Google Scholar] [CrossRef]
- Monfils, M.H.; Cowansage, K.K.; Klann, E.; LeDoux, J.E. Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories. Science 2009, 324, 951–955. [Google Scholar] [CrossRef]
- Kredlow, M.A.; Unger, L.D.; Otto, M.W. Harnessing reconsolidation to weaken fear and appetitive memories: A meta-analysis of post-retrieval extinction effects. Psychol Bull. 2016, 142, 314. [Google Scholar] [CrossRef]
- Monfils, M.H.; Holmes, E.A. Memory boundaries: Opening a window inspired by reconsolidation to treat anxiety, trauma-related, and addiction disorders. Lancet Psychiatry 2018, 5, 1032–1042. [Google Scholar] [CrossRef]
- Soeter, M.; Kindt, M. An abrupt transformation of phobic behavior after a post-retrieval amnesic agent. Biol. Psychiatry 2015, 78, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Telch, M.J.; York, J.; Lancaster, C.L.; Monfils, M.H. Use of a brief fear memory reactivation procesdure for enhancing exposure therapy. Clin. Psychol. Sci. 2017, 5, 367–378. [Google Scholar] [CrossRef]
- Scheeveneels, S.; Boddez, Y.; Vervliet, B.; Hermans, D. The validity of laboratory-based treatment research: Bridging the gap between fear extinction and exposure treatment. Behav. Res. 2016, 86, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, A.; Hofman, S.G.; Herda, C.A.; Roth, W.T. Clinical characteristics of driving phobia. J. Anxiety Disord. 1994, 8, 323–339. [Google Scholar] [CrossRef]
- Hofmann, S.G.; Ehlers, A.; Roth, W.T. Conditioning theory: A model for the etiology of public speaking anxiety? Behav. Res. 1995, 33, 567–571. [Google Scholar] [CrossRef]
- Mineka, S.; Zinbarg, R. A contemporary learning theory perspective on the etiology of anxiety disorders: It’s not what you thought it was. Am. Psychol. 2006, 61, 10. [Google Scholar] [CrossRef]
- Laborda, M.A.; Miller, R.R. SR associations, their extinction, and recovery in an animal model of anxiety: A new associative account of phobias without recall of original trauma. Behav. Ther. 2011, 42, 153–169. [Google Scholar] [CrossRef]
- Askew, C.; Field, A.P. The vicarious learning pathway to fear 40 years on. Clin. Psychol. Rev. 2008, 28, 1249–1265. [Google Scholar] [CrossRef]
- Gewirtz, J.C.; Davis, M. Using Pavlovian higher-order conditioning paradigms to investigate the neural substrates of emotional learning and memory. Learn. Mem. 2000, 7, 257–266. [Google Scholar] [CrossRef]
- Field, A.P. Is conditioning a useful framework for understanding the development and treatment of phobias? Clin. Psychol. Rev. 2006, 26, 857–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsson, A.; Phelps, E.A. Social learning of fear. Nat. Neurosci. 2007, 10, 1095. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.G.; Lehman, C.L.; Barlow, D.H. How specific are specific phobias? J. Behav. Exp. Psychiatry 1997, 28, 233–240. [Google Scholar] [CrossRef]
- Lissek, S. Toward an account of clinical anxiety predicated on basic, neurally mapped mechanisms of Pavlovian fearlearning: The case for conditioned overgeneralization. Depress. Anxiety 2012, 29, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Mertens, G.; Boddez, Y.; Sevenster, D.; Engelhard, I.M.; De Houwer, J. A review on the effects of verbal instructions in human fear conditioning: Empirical findings, theoretical considerations, and future directions. Biol. Psychol. 2018, 137, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Wessa, M.; Flor, H. Failure of extinction of fear responses in posttraumatic stress disorder: Evidence from second-order conditioning. Am. J. Psychiatry 2007, 164, 1684–1692. [Google Scholar] [CrossRef] [PubMed]
- Wiemer, J.; Pauli, P. Fear-relevant illusory correlations in different fears and anxiety disorders: A review of the literature. J. Anxiety Disord. 2016, 42, 113–128. [Google Scholar] [CrossRef]
- Ho, Y.; Lipp, O.V. Faster acquisition of conditioned fear to fear-relevant than to nonfear-relevant conditioned stimuli. Psychophysiology 2014, 51, 810–813. [Google Scholar] [CrossRef]
- Mineka, S.; Öhman, A. Phobias and preparedness: The selective, automatic, and encapsulated nature of fear. Bio Psychol. 2002, 52, 927–937. [Google Scholar] [CrossRef]
- Åhs, F.; Rosén, J.; Kastrati, G.; Fredrikson, M.; Agren, T.; Lundström, J.N. Biological preparedness and resistance to extinction of skin conductance responses conditioned to fear relevant animal pictures: A systematic review. Neurosci. Biobehav. Rev. 2018, 95, 430–437. [Google Scholar] [CrossRef]
- Hugdahl, K.; Öhman, A. Effects of instruction on acquisition and extinction of electrodermal responses to fear-relevant stimuli. J. Exp. Psychol. Hum. Learn. Mem. 1977, 3, 608. [Google Scholar] [CrossRef]
- Seligman, M.E. Phobias and preparedness. Behav. Ther. 1971, 2, 307–320. [Google Scholar] [CrossRef]
- Mallan, K.M.; Lipp, O.V.; Cochrane, B. Slithering snakes, angry men and out-group members: What and whom are we evolved to fear? Cogn. Emot. 2013, 27, 1168–1180. [Google Scholar] [CrossRef] [PubMed]
- Mason, E.C.; Richardson, R. Treating disgust in anxiety disorders. Clin. Psychol. 2012, 19, 180–194. [Google Scholar] [CrossRef]
- Barry, T.J.; Griffith, J.W.; De Rossi, S.; Hermans, D. Meet the Fribbles: Novel stimuli for use within behavioural research. Front. Psychol. 2014, 5, 203. [Google Scholar] [CrossRef] [PubMed]
- Kroes, M.C.; Dunsmoor, J.E.; Mackey, W.E.; McClay, M.; Phelps, E.A. Context conditioning in humans using commercially available immersive Virtual Reality. Sci. Rep. 2017, 7, 8640. [Google Scholar] [CrossRef]
- Reichenberger, J.; Porsch, S.; Wittmann, J.; Zimmermann, V.; Shiban, Y. Social fear conditioning paradigm in virtual reality: Social vs. electrical aversive conditioning. Front. Psychol. 2017, 8, 1979. [Google Scholar] [CrossRef] [PubMed]
- Foa, E.B.; Kozak, M.J. Emotional processing of fear: Exposure to corrective information. Psychol. Bull. 1986, 99, 20–35. [Google Scholar] [CrossRef]
- Hamm, A.O.; Vaitl, D.; Lang, P.J. Fear conditioning, meaning, and belongingness: A selective association analysis. J. Abnorm. Psychol. 1989, 98, 395. [Google Scholar] [CrossRef]
- Dibbets, P.; Poort, H.; Arntz, A. Adding imagery rescripting during extinction leads to less ABA renewal. J. Behav. Exp. Psychiatry 2012, 43, 614–624. [Google Scholar] [CrossRef]
- Kunze, A.E.; Arntz, A.; Kindt, M. Fear conditioning with film clips: A complex associative learning paradigm. J. Behav. Exp. Psychiatry 2015, 47, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Blechert, J.; Wilhelm, F.H.; Williams, H.; Braams, B.R.; Jou, J.; Gross, J.J. Reappraisal facilitates extinction in healthy and socially anxious individuals. J. Behav. Exp. Psychiatry 2015, 46, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Lissek, S.; Levenson, J.; Biggs, A.L.; Johnson, L.L.; Ameli, R.; Pine, D.S.; Grillon, C. Elevated fear conditioning to socially relevant unconditioned stimuli in social anxiety disorder. Am. J. Psychiatry 2008, 165, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Vervliet, B.; Vansteenwegen, D.; Baeyens, F.; Hermans, D.; Eelen, P. Return of fear in a human differential conditioning paradigm caused by a stimulus change after extinction. Behav. Res. Ther. 2005, 43, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Vervliet, B.; Vansteenwegen, D.; Eelen, P. Generalization gradients for acquisition and extinction in human contingency learning. J. Exp. Psychol. 2006, 53, 132–142. [Google Scholar] [CrossRef]
- Struyf, D.; Zaman, J.; Vervliet, B.; Van Diest, I. Perceptual discrimination in fear generalization: Mechanistic and clinical implications. Neurosci. Biobehav. Rev. 2015, 59, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Dunsmoor, J.E.; Murphy, G.L. Categories, concepts, and conditioning: How humans generalize fear. Trends Cogn. Sci. 2015, 19, 73–77. [Google Scholar] [CrossRef]
- Dymond, S.; Dunsmoor, J.E.; Vervliet, B.; Roche, B.; Hermans, D. Fear generalization in humans: Systematic review and implications for anxiety disorder research. Behav. Ther. 2015, 46, 561–582. [Google Scholar] [CrossRef]
- Dunsmoor, J.E.; Martin, A.; LaBar, K.S. Role of conceptual knowledge in learning and retention of conditioned fear. Biol. Psychol. 2012, 89, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Kroes, M.C.; Dunsmoor, J.E.; Lin, Q.; Evans, M.; Phelps, E.A. A reminder before extinction strengthens episodic memory via reconsolidation but fails to disrupt generalized threat responses. Sci. Rep. 2017, 7, 10858. [Google Scholar] [CrossRef]
- Zbozinek, T.D.; Craske, M.G. Pavlovian extinction of fear with the original conditional stimulus, a generalization stimulus, or multiple generalization stimuli. Behav. Res. 2018, 107, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Vervoort, E.; Vervliet, B.; Bennett, M.; Baeyens, F. Generalization of human fear acquisition and extinction within a novel arbitrary stimulus category. PLoS ONE 2014, 9, e96569. [Google Scholar] [CrossRef]
- Boyle, S.; Roche, B.; Dymond, S.; Hermans, D. Generalisation of fear and avoidance along a semantic continuum. Cogn. Emot. 2016, 30, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Grégoire, L.; Greening, S.G. Fear of the known: Semantic generalisation of fear conditioning across languages in bilinguals. Cogn. Emot. 2019, 0, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Agren, T.; Engman, J.; Frick, A.; Björkstrand, J.; Larsson, E.M.; Furmark, T.; Fredrikson, M. Disruption of reconsolidation erases a fear memory trace in the human amygdala. Science 2012, 337, 1550–1552. [Google Scholar] [CrossRef] [PubMed]
- Agren, T.; Furmark, T.; Eriksson, E.; Fredrikson, M. Human fear reconsolidation and allelic differences in serotonergic and dopaminergic genes. Transl. Psychiatry 2012, 2, e76. [Google Scholar] [CrossRef] [PubMed]
- Oyarzún, J.P.; Lopez-Barroso, D.; Fuentemilla, L.; Cucurell, D.; Pedraza, C.; Rodriguez-Fornells, A.; de Diego-Balaguer, R. Updating fearful memories with extinction training during reconsolidation: A human study using auditory aversive stimuli. PLoS ONE 2012, 7, e38849. [Google Scholar] [CrossRef]
- Lissek, S.; Pine, D.S.; Grillon, C. The strong situation: A potential impediment to studying the psychobiology and pharmacology of anxiety disorders. Biol. Psychol. 2006, 72, 265–270. [Google Scholar] [CrossRef]
- Bennett, M.; Vervoort, E.; Boddez, Y.; Hermans, D.; Baeyens, F. Perceptual and conceptual similarities facilitate the generalization of instructed fear. J. Behav. Exp. Psychiatry 2015, 48, 149–155. [Google Scholar] [CrossRef]
- Beckers, T.; Krypotos, A.-M.; Boddez, Y.; Effting, M.; Kindt, M. What’s wrong with fear conditioning? Biol. Psychol. 2013, 92, 90–96. [Google Scholar] [CrossRef]
- Dymond, S. Overcoming avoidance in anxiety disorders: The contributions of Pavlovian and operant avoidance extinction methods. Neurosci. Biobehav. Rev. 2019, 98, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Van Meurs, B.; Wiggert, N.; Wicker, I.; Lissek, S. Maladaptive behavioral consequences of conditioned fear-generalization: A pronounced, yet sparsely studied, feature of anxiety pathology. Behav. Res. 2014, 57, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeDoux, J.E.; Moscarello, J.; Sears, R.; Campese, V. The birth, death and resurrection of avoidance: A reconceptualization of a troubled paradigm. Mol. Psychiatry 2017, 22, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Pittig, A.; Treanor, M.; LeBeau, R.T.; Craske, M.G. The role of associative fear and avoidance learning in anxiety disorders: Gaps and directions for future research. Neurosci. Biobehav. Rev. 2018, 88, 117–140. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.G.; Hay, A.C. Rethinking avoidance: Toward a balanced approach to avoidance in treating anxiety disorders. J. Anxiety Disord. 2018, 55, 14–21. [Google Scholar] [CrossRef]
- Riccardi, C.J.; Korte, K.J.; Schmidt, N.B. False Safety Behavior Elimination Therapy: A randomized study of a brief individual transdiagnostic treatment for anxiety disorders. J. Anxiety Disord. 2017, 46, 35–45. [Google Scholar] [CrossRef]
- Morriss, J.; Chapman, C.; Tomlinson, S.; van Reekum, C.M. Escape the bear and fall to the lion: The impact of avoidance availability on threat acquisition and extinction. Biol. Psychol. 2018, 138, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Rattel, J.A.; Miedl, S.F.; Blechert, J.; Wilhelm, F.H. Higher threat avoidance costs reduce avoidance behaviour which in turn promotes fear extinction in humans. Behav. Res. 2017, 96, 37–46. [Google Scholar] [CrossRef]
- Vervliet, B.; Lange, I.; Milad, M.R. Temporal dynamics of relief in avoidance conditioning and fear extinction: Experimental validation and clinical relevance. Behav. Res. 2017, 96, 66–78. [Google Scholar] [CrossRef]
- Olsson, A.; Phelps, E.A. Learned Fear of “Unseen” Faces after Pavlovian, Observational, and Instructed Fear. Psychol. Sci. 2004, 15, 822–828. [Google Scholar] [CrossRef]
- Kelly, M.M.; Forsyth, J.P. Observational fear conditioning in the acquisition and extinction of attentional bias for threat: An experimental evaluation. Emotion 2007, 7, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Pejic, T.; Hermann, A.; Vaitl, D.; Stark, R. Social anxiety modulates amygdala activation during social conditioning. Soc. Cogn. Affect. Neurosci. 2013, 8, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.; Lipp, O.V. Extinction during reconsolidation eliminates recovery of fear conditioned to fear-irrelevant and fear-relevant stimuli. Behav. Res. 2017, 92, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Waters, A.M.; Pine, D.S. Evaluating differences in Pavlovian fear acquisition and extinction as predictors of outcome from cognitive behavioural therapy for anxious children. J. Child. Psychol. Psychiatr. 2016, 57, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Ball, T.M.; Knapp, S.E.; Paulus, M.P.; Stein, M.B. Brain activation during fear extinction predicts exposure success. Depress. Anxiety 2017, 34, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Wannemueller, A.; Moser, D.; Kumsta, R.; Jöhren, H.-P.; Adolph, D.; Margraf, J. Mechanisms, genes and treatment: Experimental fear conditioning, the serotonin transporter gene, and the outcome of a highly standardized exposure-based fear treatment. Behav. Res. 2018, 107, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Geller, D.A.; McGuire, J.F.; Orr, S.P.; Small, B.J.; Murphy, T.K.; Trainor, K.; Porth, R.; Wilhelm, S.; Storch, E.A. Fear extinction learning as a predictor of response to cognitive behavioral therapy for pediatric obsessive compulsive disorder. J. Anxiety Disord. 2019, 64, 1–8. [Google Scholar] [CrossRef]
- Forcadell, E.; Torrents-Rodas, D.; Vervliet, B.; Leiva, D.; Tortella-Feliu, M.; Fullana, M.A. Does fear extinction in the laboratory predict outcomes of exposure therapy? A treatment analog study. Int. J. Psychophysiol. 2017, 121, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Barry, T.J.; Lau, J.Y.F. Predicting outcomes of treatment for anxiety disorders—Using data from fear learning paradigms. A commentary on Waters and Pine. J. Child. Psychol Psychiatry 2016, 57, 877–879. [Google Scholar] [CrossRef]
- LeDoux, J.E.; Pine, D.S. Using neuroscience to help understand fear and anxiety: A two-system framework. Am. J. Psychiatry 2016, 173, 1083–1093. [Google Scholar] [CrossRef]
- Kozak, M.J.; Miller, G.A. Hypothetical constructs versus intervening variables: A re-appraisal of the three-systems model of anxiety assessment. Behav. Assess. 1982, 4, 347–358. [Google Scholar]
- Rachman, S.; Hodgson, R.I. Synchrony and desynchrony in fear and avoidance. Behav. Res. 1974, 12, 311–318. [Google Scholar] [CrossRef]
- Weike, A.I.; Schupp, H.T.; Hamm, A.O. Fear acquisition requires awareness in trace but not delay conditioning. Psychophysiology 2007, 44, 170–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, A.K.; Phelps, E.A. Is the human amygdala critical for the subjective experience of emotion? Evidence of intact dispositional affect in patients with amygdala lesions. J. Cogn. Neurosci. 2002, 14, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Feinstein, J.S.; Buzza, C.; Hurlemann, R.; Follmer, R.L.; Dahdaleh, N.S.; Coryell, W.H.; Welsh, M.J.; Tranel, D.; Wemmie, J.A. Fear and panic in humans with bilateral amygdala damage. Nat. Neurosci. 2013, 16, 270–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feinstein, J.S.; Khalsa, S.S.; Salomons, T.V.; Prkachin, K.M.; Frey-Law, L.A.; Lee, J.E.; Tranel, D.; Rudrauf, D. Preserved emotional awareness of pain in a patient with extensive bilateral damage to the insula, anterior cingulate, and amygdala. Brain Struct. Funct. 2016, 221, 1499–1511. [Google Scholar] [CrossRef]
- LeDoux, J.E.; Hofmann, S.G. The subjective experience of emotion: A fearful view. Curr. Opin. Behav. Sci. 2018, 19, 67–72. [Google Scholar] [CrossRef]
- LeDoux, J. Rethinking the Emotional Brain. Neuron 2012, 73, 653–676. [Google Scholar] [CrossRef] [Green Version]
- LeDoux, J.E. Coming to terms with fear. PNAS 2014, 111, 2871–2878. [Google Scholar] [CrossRef] [Green Version]
- Bouton, M.E. Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol. Bull. 1993, 114, 80–99. [Google Scholar] [CrossRef]
- LeDoux, J.E. Emotion Circuits in the Brain. Annu. Rev. Neurosci. 2000, 23, 155–184. [Google Scholar] [CrossRef] [PubMed]
- Shurick, A.A.; Hamilton, J.R.; Harris, L.T.; Roy, A.K.; Gross, J.J.; Phelps, E.A. Durable effects of cognitive restructuring on conditioned fear. Emotion 2012, 12, 1393–1397. [Google Scholar] [CrossRef] [PubMed]
- Dibbets, P.; Lemmens, A.; Voncken, M. Turning negative memories around: Contingency versus devaluation techniques. J. Behav. Exp. Psychiatry 2018, 60, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Zlomuzica, A.; Preusser, F.; Schneider, S.; Margraf, J. Increased perceived self-efficacy facilitates the extinction of fear in healthy participants. Front. Behav. Neurosci. 2015, 9, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddan, M.C.; Wager, T.D.; Schiller, D. Attenuating neural threat expression with imagination. Neuron 2018, 100, 994–1005. [Google Scholar] [CrossRef] [PubMed]
- Niles, A.N.; Craske, M.G.; Lieberman, M.D.; Hur, C. Affect labeling enhances exposure effectiveness for public speaking anxiety. Behav. Res. 2015, 68, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, A.T.; Emery, G.; Greenberg, R.L. Anxiety disorders and Phobias: A Cognitive Perspective; Basic Books: New York, NY, USA, 2005. [Google Scholar]
- Hofmann, S.G.; Heering, S.; Sawyer, A.T.; Asnaani, A. How to handle anxiety: The effects of reappraisal, acceptance, and suppression strategies on anxious arousal. Behav. Res. 2009, 47, 389–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resick, P.A.; Monson, C.M.; Chard, K.M. Cognitive Processing Therapy for PTSD: A Comprehensive Manual; Guilford Press: New York, NY, USA, 2016. [Google Scholar]
- Raio, C.M.; Orederu, T.A.; Palazzolo, L.; Shurick, A.A.; Phelps, E.A. Cognitive emotion regulation fails the stress test. PNAS 2013, 110, 15139–15144. [Google Scholar] [CrossRef] [Green Version]
- Kroes, M.C.W.; Dunsmoor, J.E.; Hakimi, M.; Oosterwaal, S.; Meager, M.R.; Phelps, E.A. Patients with dorsolateral prefrontal cortex lesions are capable of discriminatory threat learning but appear impaired in cognitive regulation of subjective fear. Soc. Cogn. Affect. Neurosci. 2019, nsz039. [Google Scholar] [CrossRef]
- Shiban, Y.; Schelhorn, I.; Pauli, P.; Mühlberger, A. Effect of combined multiple contexts and multiple stimuli exposure in spider phobia: A randomized clinical trial in virtual reality. Behav. Res. 2015, 71, 45–53. [Google Scholar] [CrossRef]
- Barry, T.J.; Vervliet, B.; Hermans, D. Feature specific attention and return of fear after extinction. J. Exp. Psychopathol. 2017, 8, 76–87. [Google Scholar] [CrossRef]
- Scheveneels, S.; Boddez, Y.; Bennett, M.P.; Hermans, D. One for all: The effect of extinction stimulus typicality on return of fear. J. Behav. Exp. Psychiatry 2017, 57, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.H.K.; Lovibond, P.F. Excessive generalisation of conditioned fear in trait anxious individuals under ambiguity. Behav. Res. 2018, 107, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Leyro, T.M.; Zvolensky, M.J.; Bernstein, A. Distress tolerance and psychopathological symptoms and disorders: A review of the empirical literature among adults. Psychol. Bull. 2010, 136, 576–600. [Google Scholar] [CrossRef] [PubMed]
- Barlow, D.H.; Farchione, T.J.; Sauer-Zavala, S.; Latin, H.M.; Ellard, K.K.; Bullis, J.R.; Bentley, K.H.; Boettcher, H.T.; Cassiello-Robbins, C. Unified Protocol for Transdiagnostic Treatment of Emotional Disorders: Therapist Guide; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Deacon, B.; Kemp, J.J.; Dixon, L.J.; Sy, J.T.; Farrell, N.R.; Zhang, A.R. Maximizing the efficacy of interoceptive exposure by optimizing inhibitory learning: A randomized controlled trial. Behav. Res. 2013, 51, 588–596. [Google Scholar] [CrossRef]
- Davey, G.C.L. A conditioning model of phobias. In Phobias: A Handbook of Theory, Research and Treatment; Davey, G.C.L., Ed.; Wiley: Chichester, UK, 1997; pp. 301–322. [Google Scholar]
- Leer, A.; Engelhard, I.M.; Altink, A.; van den Hout, M.A. Eye movements during recall of aversive memory decreases conditioned fear. Behav. Res. 2013, 51, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Leer, A.; Engelhard, I.M. Countering fear renewal: Changes in the UCS representation generalize across contexts. Behav. Ther. 2015, 46, 272–282. [Google Scholar] [CrossRef]
- Dour, H.J.; Brown, L.A.; Craske, M.G. Positive valence reduces susceptibility to return of fear and enhances approach behavior. J. Behav. Exp. Psychiatry 2016, 50, 277–282. [Google Scholar] [CrossRef]
- Zbozinek, T.D.; Holmes, E.A.; Craske, M.G. The effect of positive mood induction on reducing reinstatement fear: Relevance for long term outcomes of exposure therapy. Behav. Res. 2015, 71, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Culver, N.C.; Stevens, S.; Fanselow, M.S.; Craske, M.G. Building physiological toughness: Some aversive events during extinction may attenuate return of fear. J. Behav. Exp. Psychiatry 2018, 58, 18–28. [Google Scholar] [CrossRef]
- Carpenter, J.K.; Sanford, J.; Hofmann, S.G. The effect of a brief mindfulness training on distress tolerance and stress reactivity. Behav. Ther. 2019, 50, 630–645. [Google Scholar] [CrossRef] [PubMed]
- Macatee, R.J.; Cougle, J.R. Development and evaluation of a computerized intervention for low distress tolerance and its effect on performance on a neutralization task. J. Behav. Exp. Psychiatry 2015, 48, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.L.; Watson, N. Perceived danger and perceived self-efficacy as cognitive determinants of acrophobic behavior. Behav. Ther. 1985, 16, 136–146. [Google Scholar] [CrossRef]
- Raeder, F.; Woud, M.L.; Schneider, S.; Totzeck, C.; Adolph, D.; Margraf, J.; Zlomuzica, A. Reactivation and evaluation of mastery experiences promotes exposure benefit in height phobia. Cogn. Res. 2019. [Google Scholar] [CrossRef]
- Goldin, P.R.; Ziv, M.; Jazaieri, H.; Werner, K.; Kraemer, H.; Heimberg, R.G.; Gross, J.J. Cognitive reappraisal self-efficacy mediates the effects of individual cognitive-behavioral therapy for social anxiety disorder. J. Consult. Clin. Psychol. 2012, 80, 1034–1040. [Google Scholar] [CrossRef]
- Fentz, H.N.; Hoffart, A.; Jensen, M.B.; Arendt, M.; O’Toole, M.S.; Rosenberg, N.K.; Hougaard, E. Mechanisms of change in cognitive behaviour therapy for panic disorder: The role of panic self-efficacy and catastrophic misinterpretations. Behav. Res. 2013, 51, 579–587. [Google Scholar] [CrossRef]
- Gallagher, M.W.; Payne, L.A.; White, K.S.; Shear, K.M.; Woods, S.W.; Gorman, J.M.; Barlow, D.H. Mechanisms of change in cognitive behavioral therapy for panic disorder: The unique effects of self-efficacy and anxiety sensitivity. Behav. Res. 2013, 51, 767–777. [Google Scholar] [CrossRef] [Green Version]
- Price, M.; Anderson, P.L. Outcome expectancy as a predictor of treatment response in cognitive behavioral therapy for public speaking fears within social anxiety disorder. Psychother. 2012, 49, 173–179. [Google Scholar] [CrossRef]
- Powers, M.B.; Smits, J.A.J.; Whitley, D.; Bystritsky, A.; Telch, M.J. The effect of attributional processes concerning medication taking on return of fear. J. Consult. Clin. Psychol. 2008, 76, 478–490. [Google Scholar] [CrossRef]
- Holmes, E.A.; Mathews, A. Mental imagery in emotion and emotional disorders. Clin. Psych. Rev. 2010, 30, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Foa, E.B.; Hembree, E.; Rothbaum, B.O. Prolonged Exposure Therapy for PTSD: Emotional Processing of Traumatic Experiences; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Hoyer, J.; Beesdo-Baum, K. Prolonged imaginal exposure based on worry scenarios. Exposure Therapy: Rethinking the Model—Refining the Method; Neudeck, P., Wittchen, H., Neudeck, P., Wittchen, H., Eds.; Springer Science + Business Media: New York, NY, USA, 2012; pp. 245–260. [Google Scholar]
- Arntz, A. Imagery rescripting as a therapeutic technique: Review of clinical trials, basic studies, and research agenda. J. Exp. Psychopathol. 2012, 3, 189–208. [Google Scholar] [CrossRef]
- Joos, E.; Vansteenwegen, D.; Hermans, D. Post-acquisition repetitive thought in fear conditioning: An experimental investigation of the effect of CS-US-rehearsal. J. Behav. Exp. Psychiatry 2012, 43, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Dadds, M.R.; Bovbjerg, D.H.; Redd, W.H.; Cutmore, T.R.H. Imagery in human classical conditioning. Psychol. Bull. 1997, 122, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Elsesser, K.; Wannemüller, A.; Lohrmann, T.; Jöhren, P.; Sartory, G. Mental retrieval of treatment context in dental phobia. Behav. Cog. Psychother. 2013, 41, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Mystkowski, J.L.; Craske, M.G.; Echiverri, A.M.; Labus, J.S. Mental reinstatement of context and return of fear in spider-fearful participants. Behav. Ther. 2006, 37, 49–60. [Google Scholar] [CrossRef]
- Pile, V.; Barnhofer, T.; Wild, J. Updating versus exposure to prevent consolidation of conditioned fear. PLoS ONE 2015, 10, e0122971. [Google Scholar] [CrossRef]
- Grégoire, L.; Greening, S.G. Opening the reconsolidation window using the mind’s eye: Extinction training during reconsolidation disrupts fear memory expression following mental imagery reactivation. Cognition 2019, 183, 277–281. [Google Scholar] [CrossRef]
- Wisco, B.E.; Sloan, D.M.; Marx, B.P. Cognitive Emotion Regulation and Written Exposure Therapy for Posttraumatic Stress Disorder. Clin. Psychol. Sci. 2013, 1, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Pennebaker, J.W. Putting stress into words: Health, linguistic, and therapeutic implications. Behav. Res. 1993, 31, 539–548. [Google Scholar] [CrossRef]
- Raber, J.; Arzy, S.; Bertolus, J.B.; Depue, B.; Haas, H.E.; Hofmann, S.G.; Kangas, M.; Kensinger, E.; Lowry, C.A.; Marusak, H.A.; et al. Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neurosci. Biobehav. Rev. 2019. [Google Scholar] [CrossRef] [PubMed]
- Sloan, D.M.; Marx, B.P.; Lee, D.J.; Resick, P.A. A brief exposure-based treatment vs cognitive processing therapy for posttraumatic stress disorder: A randomized noninferiority clinical trial. Jama Psychiatry 2018, 75, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Tabibnia, G.; Lieberman, M.D.; Craske, M.G. The lasting effect of words on feelings: Words may facilitate exposure effects to threatening images. Emotion 2008, 8, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Kircanski, K.; Lieberman, M.D.; Craske, M.G. Feelings into words: Contributions of language to exposure therapy. Psychol. Sci. 2012, 23, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, M.D.; Eisenberger, N.I.; Crockett, M.J.; Tom, S.M.; Pfeifer, J.H.; Way, B.M. Putting feelings into words: Affect labeling disrupts amygdala activity in response to affective stimuli. Psychol. Sci. 2007, 18, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Pedroarena-Leal, N.; Ruge, D. Toward a symptom-guided neurostimulation for gilles de la tourette syndrome. Front. Psychiatry 2017, 8, 29. [Google Scholar] [CrossRef] [PubMed]
Strategy | Exemplar(s) | Open Questions |
---|---|---|
Test extinction after indirect forms of conditioning (e.g., second-order, vicarious, instructed) | [151,152] | Is extinction with directly conditioned fears a more valid model for disorders with clear conditioning events (e.g., PTSD)? |
Use fear-relevant conditioned stimuli, tailored to clinical population if relevant | [153,154] | Do methods of enhancing extinction hold up with fear-relevant stimuli? |
Use virtual reality paradigms | [117,118] | Are conditioned fears in virtual reality paradigms more resistant to extinction? |
Use CS–US pairings that are conceptually related | [121,123] | How is the impact of conceptually related stimuli influenced by the use of a narrative connecting the CS and US? |
Test extinction and return of fear with perceptually, conceptually, and/or semantically related generalization stimuli | [131] | Do methods of enhancing generalization work differently across different type of generalization stimuli? |
Include the availability of CS and/or US avoidance in extinction paradigms | [148,149] | How does the availability of avoidance behaviors at different stages of learning of influence extinction outcomes? |
Examine prediction of clinical outcomes based on extinction of conditioned fears | [155] | What indices of learning from conditioning, extinction and return of fear tests are most predictive of clinical outcomes? |
Mechanism | Definition/Use | Exemplar(s) |
---|---|---|
Cognitive Reappraisal | Adopting an alternative perspective on a situation additional information in order to modulate emotional response. Can be applied to either the CS or US. | [123,173] |
Distress Tolerance | Willingness to tolerate unpleasant physical or mental states. May impact evaluation of CS, CR and/or US, as well as corresponding avoidance. | [150,174] |
Self-efficacy | Belief in one’s ability to cope with situational demands and perform well in the face of challenge. | [175] |
Mental Imagery | Creating a mental image of a different relationship between the CS and US. | [121,176] |
Verbal Processing | Using language to label emotions and create a coherent narrative may help to reduce emotional responding to threat | [177] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpenter, J.K.; Pinaire, M.; Hofmann, S.G. From Extinction Learning to Anxiety Treatment: Mind the Gap. Brain Sci. 2019, 9, 164. https://doi.org/10.3390/brainsci9070164
Carpenter JK, Pinaire M, Hofmann SG. From Extinction Learning to Anxiety Treatment: Mind the Gap. Brain Sciences. 2019; 9(7):164. https://doi.org/10.3390/brainsci9070164
Chicago/Turabian StyleCarpenter, Joseph K., Megan Pinaire, and Stefan G. Hofmann. 2019. "From Extinction Learning to Anxiety Treatment: Mind the Gap" Brain Sciences 9, no. 7: 164. https://doi.org/10.3390/brainsci9070164
APA StyleCarpenter, J. K., Pinaire, M., & Hofmann, S. G. (2019). From Extinction Learning to Anxiety Treatment: Mind the Gap. Brain Sciences, 9(7), 164. https://doi.org/10.3390/brainsci9070164