Antioxidant Activity and Inhibitory Effect on Nitric Oxide Production of Hydroponic Ginseng Fermented with Lactococcus lactis KC24
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Materials
2.2. Chemicals
2.3. Fermentation of HG and SG Extracts
2.4. Measurement of Total Flavonoid Content
2.5. Measurement of Total Phenol Content
2.6. Measurement of Antioxidant Activity
2.6.1. Diphenyl-1-picryl-hydrazyl Radical Scavenging Activity
2.6.2. Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) Radical Scavenging Activity
2.6.3. Reducing Power Assay
2.6.4. Ferric Reducing Antioxidant Power Assay
2.6.5. β-Carotene Bleaching Assay
2.7. Nitric Oxide (NO) Production and Cell Viability Assay Using MTT Assay
2.8. Statistical Analysis
3. Results
3.1. Changes in the Number of Bacteria and pH during Fermentation
3.2. Total Phenol and Flavonoid Contents
3.3. Antioxidant Activity of Fermented HG and SG Extracts
3.4. Cell Viability and Inhibitory Effect on NO Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Li, N.; Pu, Y.; Zhang, T.; Wang, B. Neuroprotective effects of ginseng phytochemicals, recent perspectives. Molecules 2019, 24, 2939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.C.; Pan, C.S.; Yan, L.; Li, L.; Hu, B.H.; Chang, X.; Liu, Y.Y.; Fan, J.Y.; Sun, K.; Li, Q.; et al. Ginsenoside Rb1 protects against ischemia/reperfusion-induced myocardial injury via energy metabolism regulation mediated by RhoA signaling pathway. Sci. Rep. 2017, 7, 44579. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.J.; Hwang, J.E.; Kim, H.S.; Kim, K.T.; Paik, H.-D. Anti-inflammatory and cytotoxic effects of ginseng extract bioconverted by Leuconostoc mesenteroides KCCM 12010P isolated from kimchi. J. Food Sci. Technol. 2018, 53, 1331–1337. [Google Scholar] [CrossRef]
- Chang, H.J.; Kim, Y.H.; Kang, Y.H.; Choi, M.H.; Lee, J.H. Antioxidant and antibacterial effects of medicinal plants and their stick-type medicinal concentrated beverages. J. Food Sci. Technol. 2020, 29, 1413–1423. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.M.; Lee, J.Y.; Lee, Y.G.; Baek, S.Y.; Kim, M.R. Enhanced production of Compound K in fermented ginseng extracts by Lactobacillus brevis. J. Food Sci. Technol. 2019, 28, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Cho, C.W.; Lee, Y.; Kim, S.S.; Lee, S.H.; Kim, K.T. Comparison of ginsenoside and phenolic ingredient contents in hydroponically-cultivated ginseng leaves, fruits, and roots. J. Ginseng Res. 2012, 36, 425–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.S.C. Hydroponic and organically grown American ginseng. J. Ginseng Res. 2005, 29, 182–184. [Google Scholar]
- Lee, J.Y.; Yang, H.; Lee, T.K.; Lee, C.H.; Seo, J.W.; Kim, J.E.; Kim, S.Y.; Park, Y.J.H.; Lee, K.W. A short-term, hydroponic-culture of ginseng results in a significant increase in the anti-oxidative activity and bioactive components. Food Sci. Biotechnol. 2020, 29, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.C.; Kim, J.U.; Lee, J.W.; Hong, C.E.; Bang, K.H.; Kim, D.H.; Hyun, D.Y.; Choi, J.K.; Seong, B.J.; An, Y.N.; et al. ‘Kowon’, a new Korean ginseng cultivars with high yield and alternaria blight resistance. Hortic. Sci. Technol. 2017, 35, 499–509. [Google Scholar]
- Kim, J.; Shin, J.; Park, C.G.; Lee, S.H. Pesticide residue monitoring and risk assessment in the herbal fruits Schisandra chinensis, Lycium chinense, and Cornus officinalis in Korea. Food Sci. Biotechnol. 2021, 30, 137–147. [Google Scholar] [CrossRef]
- Kang, O.J.; Kim, J.S. Comparison of ginsenoside contents in different parts of Korean ginseng (Panax ginseng C.A. Meyer). Prev. Nutr. Food Sci. 2016, 21, 389–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.E.; Lee, S.W.; Bang, J.K.; Yu, Y.J.; Sul, S.N. Antioxidant activities of leaf, stem, and root of Panax ginseng C.A. Meyer. KJMCS 2004, 12, 237–242. [Google Scholar]
- Song, Y.N.; Hong, H.G.; Son, J.S.; Kwon, Y.K.; Lee, H.H.; Kim, H.J.; Park, J.H.; Son, M.G.; OH, J.G.; Yoon, M.H. Investigation of ginsenosides and antioxidant activities in the roots, leaves, and stems of hydroponic-cultured ginseng (Panax ginseng Meyer). PNF 2019, 24, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.E.; Kim, K.T.; Paik, H.-D. Improved Antioxidant, Anti-inflammatory, and Anti-adipogenic properties of hydroponic ginseng fermented by Leuconostoc mesenteroides KCCM 12010P. Molecules 2019, 24, 3359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marco, L.M.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; Vuyst, L.D.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef]
- Son, S.H.; Jeon, H.-L.; Yang, S.-J.; Sim, M.-H.; Kim, Y.-J.; Lee, N.-K.; Paik, H.-D. Probiotic lactic acid bacteria isolated from traditional Korean fermented foods based on β-glucosidase activity. Food Sci. Biotechnol. 2018, 27, 123–129. [Google Scholar] [CrossRef]
- Ayyash, M.; Liu, S.Q.; Mheiri, A.A.; Aldhaheri, M.; Raeisi, B.; Anas, A.A.; Osaili, T.; Olaimat, A. In vitro investigation of health-promoting benefits of fermented camel sausage by novel probiotic Lactobacillus plantarum, a comparative study with beef sausages. J. Food Sci. Technol. 2019, 99, 346–354. [Google Scholar] [CrossRef]
- Setta, M.C.; Matemu, A.; Mbega, E.R. Potential of probiotics from fermented cereal-based beverages in improving health of poor people in Africa. J. Food Sci. Technol. 2020, 57, 3935–3946. [Google Scholar] [CrossRef]
- Gänzle, M.G. Food fermentations for improved digestibility of plant foods–an essential ex-situ digestion step in agricultural societies? Curr. Opin. 2020, 32, 124–132. [Google Scholar] [CrossRef]
- Lee, N.-K.; Han, K.J.; Son, S.-H.; Eon, S.J.; Lee, S.-K.; Paik, H.-D. Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT-Food Sci. Technol. 2015, 64, 1036–1041. [Google Scholar] [CrossRef]
- Lim, S.-M.; Lee, N.-K.; Paik, H.-D. Potential neuroprotective effects of heat-killed Lactococcus lactis KC24 using SH-SY5Y cells against oxidative stress induced by hydrogen peroxide. Food Sci. Biotechnol. 2020, 29, 1735–1740. [Google Scholar] [CrossRef]
- Ji, M.; Gong, X.; Li, X.; Wang, C.; Li, M. Advanced Research on the Antioxidant Activity and Mechanism of Polyphenols from Hippophae Species—A Review. Molecules 2020, 25, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Fu, Y.; Yang, P.; Liu, X.; Li, Y.; Gu, Z. ROS scavenging biopolymers for anti-inflammatory diseases: Classification and formulation. Adv. Mater. Interfaces 2020, 7, 2000632. [Google Scholar] [CrossRef]
- Jang, S.H.; Park, J.; Kim, S.H.; Choi, K.M.; Ko, E.S.; Cha, J.D.; Lee, Y.R.; Jang, H.; Jang, Y.S. Red ginseng powder fermented with probiotics exerts antidiabetic effects in the streptozotocin-induced mouse diabetes model. Pharm. Biol. 2017, 55, 317–323. [Google Scholar] [CrossRef]
- Jung, J.; Jang, H.J.; Eom, S.J.; Choi, N.S.; Lee, N.K.; Paik, H.-D. Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P, ginsenoside conversion and antioxidant effects. J. Ginseng Res. 2019, 43, 20–26. [Google Scholar] [CrossRef]
- Eom, S.J.; Hwang, J.E.; Kim, K.T.; Paik, H.-D. Increased antioxidative and nitric oxide scavenging activity of ginseng marc fermented by Pediococcus acidilactici KCCM11614P. Food Sci. Biotechnol. 2018, 27, 185–191. [Google Scholar] [CrossRef]
- Lee, H.S.; Song, M.W.; Kim, K.T.; Hong, W.S.; Paik, H.-D. Antioxidant effect and sensory evaluation of yogurt supplemented with hydroponic ginseng root extract. Foods 2021, 10, 639. [Google Scholar] [CrossRef]
- Hwang, J.E.; Suh, D.H.; Kim, K.T.; Paik, H.-D. Comparative study on anti-oxidative and anti-inflammatory properties of hydroponic ginseng and soil-cultured ginseng. Food Sci. Biotechnol. 2019, 28, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Bae, W.Y.; Yu, H.S.; Chang, K.H.; Hong, Y.H.; Lee, N.K.; Paik, H.-D. Inula Britannica fermented with probiotic Weissella cibaria D30 exhibited anti-inflammatory effect and increased viability in RAW 264.7 cells. Food Sci. Biotechnol. 2020, 29, 569–578. [Google Scholar] [CrossRef]
- Yang, S.J.; Lee, J.E.; Lim, S.M.; Kim, Y.J.; Lee, N.K.; Paik, H.-D. Antioxidant and immune-enhancing effects of probiotic Lactobacillus plantarum 200655 isolated from kimchi. Food Sci. Biotechnol. 2019, 28, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.T.; Yang, S.J.; Paik, H.-D. Probiotic properties of novel probiotic Levilactobacillus brevis KU15147 isolated from radish kimchi and its antioxidant and immune-enhancing activities. Food Sci. Biotechnol. 2021, 30, 257–265. [Google Scholar] [CrossRef]
- Jang, H.J.; Song, M.W.; Lee, N.-K.; Paik, H.-D. Antioxidant effects of live and heat-killed probiotic Lactobacillus plantarum Ln1 isolated from kimchi. J. Food Sci. Technol. 2018, 55, 3174–3180. [Google Scholar] [CrossRef] [PubMed]
- Kassim, N.K.; Lim, P.C.; Ismail, A.; Awang, K. Isolation of antioxidative compounds from Micromelum minutum guided by preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl(PTLC-DPPH) bioautography method. Food Chem. 2019, 272, 185–191. [Google Scholar] [CrossRef]
- Park, S.K.; Hyun, S.H.; In, G.; Park, C.-K.; Kwak, Y.-S.; Jang, Y.-J.; Kim, B.; Kim, J.-H.; Han, C.-K. The antioxidant activities of Korean Red Ginseng (Panax ginseng) and ginsenosides: A systemic review through in vivo and clinical trials. J. Ginseng Res. 2021, 45, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Saba, E.; Jeong, D.; Ifran, M.; Lee, Y.Y.; Park, S.-J.; Park, C.-K.; Rhee, M.H. Anti-inflammatory activity of Rg3-enriched Korean red ginseng extract in murine model of sepsis. eCAM 2018, 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Wang, X.; He, M.; Zheng, W.; Qi, D.; Zhang, Y.; Han, C.-C. Ginseng polysaccharides: A potential neuroprotective agent. J. Ginseng Res. 2021, 45, 211–217. [Google Scholar] [CrossRef]
- Seo, B.-Y.; Choi, M.-J.; Kim, J.-S.; Park, E. Comparative analysis of ginsenoside profiles: Antioxidant, antiproliferative, and antigenotoxic activities of ginseng extracts of fine and main roots. Prev. Nutr. Food Sci. 2019, 24, 128–135. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, L.; Zeng, X.; Liao, J.; Ouyang, D. Ginsenoside Compound K alleviates sodium valproate-induced hepatotoxicity in rats via antioxidant effect, regulation of peroxisome pathway and iron homeostasis. Toxicol. Appl. Pharmacol. 2020, 386, 114829. [Google Scholar] [CrossRef]
- Chen, W.; Balan, P.; Popovich, D.G. Comparison of ginsenoside components of various tissues of New Zealand forest-grown Asian ginseng (Panax Ginseng) and American ginseng (Panax Quinquefolium L.). Biomolecules 2020, 10, 372. [Google Scholar] [CrossRef] [Green Version]
- Khatua, S.; Acharya, K. Water Soluble Antioxidative crude polysaccharide from Russula senecis elicits TLR modulated NF-κB signaling pathway and pro-inflammatory response in murine macrophages. Front. Pharmacol. 2018, 9, 985. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, L.; Dao, D.Q.; Vu, T.A. Experimental and theoretical evaluation on the antioxidant activity of a copper (II) complex based on lidocaine and ibuprofen amide-phenanthroline agents. R. Soc. Chem. 2019, 9, 3320–3335. [Google Scholar] [CrossRef] [Green Version]
- Jeong, D.H.; Lee, D.Y.; Jang, I.B.; Yu, J.; Park, K.C.; Lee, E.H.; Kim, Y.J.; Park, H.W. Growth and ginsenoside content of one year old ginseng seedlings in hydroponic culture over a range of days after transplanting. KJMCS 2018, 26, 464–470. [Google Scholar] [CrossRef]
- Adebo, O.A.; Medina-Meza, I.G. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 2020, 25, 927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics of Lactic Acid Bacteria | |
---|---|
Lactococcus lactis
KC24 | Tolerance to artificial gastric juice and bile acid |
Production of enzyme (did not produce carcinogenic enzyme) | |
Inhibition against Listeria monocytogenes and Staphylococcus aureus | |
Anti-inflammatory effects through NO production | |
Antioxidant effects (through FRAP assay and β-carotene bleaching assay) | |
Neuroprotective effect |
Sample | Total Phenol and Flavonoid Content | |||
---|---|---|---|---|
Non-Fermentation | 12 h | 24 h | ||
Total phenol content (mg of GAE 1/100 g) | 2Y HG | 25.06 ± 1.08 b | 31.17 ± 1.08 a | 29.14 ± 0.36 a |
6Y SG | 13.88 ± 0.36 c | 25.32 ± 2.16 b | 29.65 ± 1.08 a | |
Total flavonoid content (mg of QE 2/100 g) | 2Y HG | 12.92 ± 1.01 b | 16.04 ± 1.01 a | 10.06 ± 0.73 c |
6Y SG | 2.28 ± 0.73 e | 5.13 ± 0.37 d | 5.65 ± 0.00 d |
Antioxidant Assay | Sample | Fermentation Time | |||
---|---|---|---|---|---|
Non-Fermentation | 12 h | 24 h | |||
DPPH radical scavenging activity (%) | 5 mg/mL | 2Y HG | 32.57 ± 0.03 b | 36.92 ± 0.06 b | 41.06 ± 0.01 a |
6Y SG | 22.54 ± 0.03 d | 21.18 ± 0.02 d | 26.55 ± 0.02 c | ||
ABTS radical scavenging activity (%) | 2 mg/mL | 2Y HG | 62.62 ± 0.00 d | 82.86 ± 0.01 a | 86.12 ± 0.06 b |
6Y SG | 54.00 ± 0.02 e | 59.96 ± 0.01 d | 72.46 ± 0.03 c | ||
Reducing power assay (L-Cysteine, µM) | 5 mg/mL | 2Y HG | 14.94 ± 0.00 c | 15.17 ± 0.00 b | 15.36 ± 0.00 a |
6Y SG | 14.76 ± 0.00 d | 14.79 ± 0.00 d | 15.11 ± 0.00 b | ||
FRAP assay (µM FeSO4 equivalents) | 5 mg/mL | 2Y HG | 35.41 ± 0.00 c | 36.12 ± 0.00 a | 35.86 ± 0.00 b |
6Y SG | 35.17 ± 0.00 d | 35.19 ± 0.00 d | 35.34 ± 0.00 c |
Antioxidant Assay | Sample | IC50 | ||
---|---|---|---|---|
Non-Fermentation | 12 h | 24 h | ||
DPPH radical scavenging activity | 2Y HG | 7.7 ± 0.03 c | 6.8 ± 0.06 d | 6.1 ± 0.01 d |
6Y SG | 11.1 ± 0.03 a | 11.8 ± 0.02 a | 9.4 ± 0.02 b | |
ABTS radical scavenging activity | 2Y HG | 1.6 ± 0.00 a | 1.2 ± 0.01 c | 1.2 ± 0.06 c |
6Y SG | 1.9 ± 0.02 a | 1.7 ± 0.01 a | 1.4 ± 0.03 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, Y.; Park, J.-Y.; Lee, J.-E.; Kim, K.-T.; Paik, H.-D. Antioxidant Activity and Inhibitory Effect on Nitric Oxide Production of Hydroponic Ginseng Fermented with Lactococcus lactis KC24. Antioxidants 2021, 10, 1614. https://doi.org/10.3390/antiox10101614
Chung Y, Park J-Y, Lee J-E, Kim K-T, Paik H-D. Antioxidant Activity and Inhibitory Effect on Nitric Oxide Production of Hydroponic Ginseng Fermented with Lactococcus lactis KC24. Antioxidants. 2021; 10(10):1614. https://doi.org/10.3390/antiox10101614
Chicago/Turabian StyleChung, Yerim, Ji-Young Park, Ji-Eun Lee, Kee-Tae Kim, and Hyun-Dong Paik. 2021. "Antioxidant Activity and Inhibitory Effect on Nitric Oxide Production of Hydroponic Ginseng Fermented with Lactococcus lactis KC24" Antioxidants 10, no. 10: 1614. https://doi.org/10.3390/antiox10101614
APA StyleChung, Y., Park, J. -Y., Lee, J. -E., Kim, K. -T., & Paik, H. -D. (2021). Antioxidant Activity and Inhibitory Effect on Nitric Oxide Production of Hydroponic Ginseng Fermented with Lactococcus lactis KC24. Antioxidants, 10(10), 1614. https://doi.org/10.3390/antiox10101614