Sex-Specific Association of Serum Anti-Oxidative Capacity and Leukocyte Telomere Length
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Laboratory Analyses: Lipid Parameters and Total Antioxidative Capacity
2.3. Laboratory Measurements: LTL
2.4. Statistics
3. Results
3.1. Subjects
3.2. Pearson Correlations
3.3. Multiple Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blackburn, E.H.; Szostak, J.W. The Molecular Structure of And Telomeres. Annu. Rev. Biochem. 1984, 53, 163–194. [Google Scholar] [CrossRef] [PubMed]
- Fyhrquist, F.; Saijonmaa, O. Telomere length and cardiovascular aging. Ann. Med. 2012, 44, S138–S142. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, E.H. Switching and Signaling at the Telomere. Cell 2001, 106, 661–673. [Google Scholar] [CrossRef] [Green Version]
- Blasco, M.A. Telomeres and human disease: Ageing, cancer and beyond. Nat. Rev. Genet. 2005, 6, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, E.H.; Greider, C.W.; Szostak, J.W. Telomeres and telomerase: The path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. 2006, 12, 1133–1138. [Google Scholar] [CrossRef]
- García-Calzón, S.; Moleres, A.; Martínez-González, M.A.; Martínez, J.A.; Zalba, G.; Marti, A. Dietary total antioxidant capacity is associated with leukocyte telomere length in a children and adolescent population. Clin. Nutr. 2015, 34, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Kepinska, M.; Szyller, J.; Milnerowicz, H. The influence of oxidative stress induced by iron on telomere length. Environ. Toxicol. Pharmacol. 2015, 40, 931–935. [Google Scholar] [CrossRef]
- Greider, C.W.; Blackburn, E.H. Telomeres, telomerase and cancer. Sci. Am. 1996, 274, 92–97. [Google Scholar] [CrossRef]
- Briasoulis, A.; Tousoulis, D.; Antoniades, C.; Stefanadis, C. The oxidative stress menace to coronary vasculature: Any place for antioxidants? Curr. Pharm. Des. 2009, 15, 3078–3090. [Google Scholar] [CrossRef] [PubMed]
- De Vos-Houben, J.M.; Ottenheim, N.R.; Kafatos, A.; Buijsse, B.; Hageman, G.J.; Kromhout, D.; Giltay, E.J. Telomere length, oxidative stress, and antioxidant status in elderly men in Zutphen and Crete. Mech. Ageing Dev. 2012, 133, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Aviv, A. Leukocyte telomere length: The telomere tale continues. Am. J. Clin. Nutr. 2009, 89, 1721–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brás, A.; Rueff, J. Telomerase and reactive oxygen species: Comments on Saretzki, G., 2009. Telomerase, mitochondria and oxidative stress. Exp. Gerontol. 44, 485-492. Exp. Gerontol. 2010, 45, 171–172. [Google Scholar] [CrossRef]
- Ornish, D.; Lin, J.; Daubenmier, J.; Weidner, G.; Epel, E.; Kemp, C.; Magbanua, M.J.; Marlin, R.; Yglecias, L.; Carroll, P.R.; et al. Increased telomerase activity and comprehensive lifestyle changes: A pilot study. Lancet Oncol. 2008, 9, 1048–1057. [Google Scholar] [CrossRef]
- Mundstock, E.; Zatti, H.; Louzada, F.M.; Oliveira, S.G.; Guma, F.T.; Paris, M.M.; Rueda, A.B.; Machado, D.G.; Stein, R.T.; Jones, M.H.; et al. Effects of physical activity in telomere length: Systematic review and meta-analysis. Ageing Res. Rev. 2015, 22, 72–80. [Google Scholar] [CrossRef]
- Brouilette, S.W.; Moore, J.S.; McMahon, A.D.; Thompson, J.R.; Ford, I.; Shepherd, J.; Packard, C.J.; Samani, N.J. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: A nested case-control study. Lancet 2007, 369, 107–114. [Google Scholar] [CrossRef]
- Mori, Y.; Meltzer, S.J. Honey, I shrunk the telomere: UC speeds aging. Inflamm Bowel. Dis. 2009, 15, 1432–1433. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elela, D.H.; El-Edel, R.H.; Shalaby, A.S.; Fouaad, M.A.; Sonbol, A.A. Telomere length and 8-hydroxy-2-deoxyguanosine as markers for early prediction of Alzheimer disease. Indian J. Psychiatry 2020, 62, 678–683. [Google Scholar] [CrossRef]
- García-Calzón, S.; Moleres, A.; Marcos, A.; Campoy, C.; Moreno, L.A.; Azcona-Sanjulián, M.C.; Martínez-González, M.A.; Martínez, J.A.; Zalba, G.; Marti, A.; et al. Telomere Length as a Biomarker for Adiposity Changes after a Multidisciplinary Intervention in Overweight/Obese Adolescents: The EVASYON Study. PLoS ONE 2014, 9, e89828. [Google Scholar] [CrossRef] [Green Version]
- Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxid. 2019, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radic Biol. Med. 2000, 29, 1106–1114. [Google Scholar] [CrossRef]
- Aguiar, S.S.; Sousa, C.V.; Santos, P.A.; Barbosa, L.P.; Maciel, L.A.; Coelho-Júnior, H.J.; Motta-Santos, D.; Rosa, T.S.; Degens, H.; Simões, H.G. Master athletes have longer telomeres than age-matched non-athletes. A systematic review, meta-analysis and discussion of possible mechanisms. Exp. Gerontol. 2021, 146, 111212. [Google Scholar] [CrossRef] [PubMed]
- Sellami, M.; Al-Muraikhy, S.; Al-Jaber, H.; Al-Amri, H.; Al-Mansoori, L.; Mazloum, N.A.; Donati, F.; Botre, F.; Elrayess, M.A. Age and Sport Intensity-Dependent Changes in Cytokines and Telomere Length in Elite Athletes. Antioxid 2021, 10, 1035. [Google Scholar] [CrossRef]
- Hassler, E.M.; Deutschmann, H.; Almer, G.; Renner, W.; Mangge, H.; Herrmann, M.; Reishofer, G. Distribution of subcutaneous and intermuscular fatty tissue of the mid-thigh measured by MRI—A gender independent predictor of serum adiponectin levels and metabolic risk profile/ECR 2021 Book of Abstracts. Insights Imaging 2021, 12, 75. [Google Scholar] [CrossRef]
- Voortman, M.M.; Damulina, A.; Pirpamer, L.; Pinter, D.; Pichler, A.; Enzinger, C.; Ropele, S.; Bachmaier, G.; Archelos, J.-J.; Marsche, G.; et al. Decreased Cerebrospinal Fluid Antioxidative Capacity Is Related to Disease Severity and Progression in Early Multiple Sclerosis. Biomolecules 2021, 11, 1264. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic. Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef]
- Gardner, M.; Bann, D.; Wiley, L.; Cooper, R.; Hardy, R.; Nitsch, D.; Martin-Ruiz, C.; Shiels, P.; Sayer, A.A.; Barbieri, M.; et al. Gender and telomere length: Systematic review and meta-analysis. Exp. Gerontol. 2014, 51, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.L.; Bird, E.J.; Underwood, S.; Wilbourn, R.V.; Fairlie, J.; Watt, K.; Salvo-Chirnside, E.; Pilkington, J.G.; Pemberton, J.M.; McNeilly, T.N.; et al. Sex differences in leucocyte telomere length in a free-living mammal. Mol. Ecol. 2017, 26, 3230–3240. [Google Scholar] [CrossRef] [PubMed]
- Hermsdorff, H.H.; Barbosa, K.B.; Volp, A.C.; Puchau, B.; Bressan, J.; Zulet, M.; Martínez, J.A. Gender-specific relationships between plasma oxidized low-density lipoprotein cholesterol, total antioxidant capacity, and central adiposity indicators. Eur. J. Prev. Cardiol. 2014, 21, 884–891. [Google Scholar] [CrossRef]
- Bredella, M.A. Sex Differences in Body Composition. Adv. Exp. Med. Biol. 2017, 1043, 9–27. [Google Scholar] [CrossRef]
- Lejawa, M.; Osadnik, K.; Osadnik, T.; Pawlas, N. Association of Metabolically Healthy and Unhealthy Obesity Phenotypes with Oxidative Stress Parameters and Telomere Length in Healthy Young Adult Men. Analysis of the MAGNETIC Study. Antioxidants 2021, 10, 93. [Google Scholar] [CrossRef]
- Moghadasian, M.H. Statins and menopause. Drugs 2002, 62, 2421–2431. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Magkos, F.; Mittendorfer, B. Sex differences in lipid and lipoprotein metabolism: It’s not just about sex hormones. J. Clin. Endocrinol. Metab 2011, 96, 885–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Ruan, X.; Li, Y.; Cheng, J.; Mueck, A.O. Oxidative stress indicators in Chinese women with PCOS and correlation with features of metabolic syndrome and dependency on lipid patterns. Arch. Gynecol. Obs. 2019, 300, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Tower, J.; Pomatto, L.C.D.; Davies, K.J.A. Sex differences in the response to oxidative and proteolytic stress. Redox Biol. 2020, 31, 101488. [Google Scholar] [CrossRef] [PubMed]
- Ortega, R. Importance of functional foods in the Mediterranean diet. Public Health Nutr. 2006, 9, 1136–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, A.; Marsche, G.; Freudenberger, P.; Schallert, M.; Toeglhofer, A.M.; Nagl, C.; Schmidt, R.; Launer, L.J.; Schmidt, H. Association between higher plasma lutein, zeaxanthin, and vitamin C concentrations and longer telomere length: Results of the Austrian Stroke Prevention Study. J. Am. Geriatr. Soc. 2014, 62, 222–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackburn, E.H. Telomere states and cell fates. Nature 2000, 408, 53–56. [Google Scholar] [CrossRef]
- Aubert, G.; Lansdorp, P.M. Telomeres and Aging. Physiol. Rev. 2008, 88, 557–579. [Google Scholar] [CrossRef] [PubMed]
- Werner, C.M.; Hecksteden, A.; Morsch, A.; Zundler, J.; Wegmann, M.; Kratzsch, J.; Thiery, J.; Hohl, M.; Bittenbring, J.T.; Neumann, F.; et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur. Heart J. 2019, 40, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Shenassa, E.D.; Rossen, L.M. Telomere length and age-at-menopause in the US. Maturitas 2015, 82, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, J.R.; Raghuraman, M.K.; Cech, T.R. Monovalent cation-induced structure of telomeric DNA: The G-quartet model. Cell 1989, 59, 871–880. [Google Scholar] [CrossRef]
- Merta, T.J.; Geacintov, N.E.; Shafirovich, V. Generation of 8-oxo-7,8-dihydroguanine in G-Quadruplexes Models of Human Telomere Sequences by One-electron Oxidation. Photochem. Photobiol. 2019, 95, 244–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolesnikova, S.; Curtis, E.A. Structure and Function of Multimeric G-Quadruplexes. Molecules 2019, 24, 3074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassler, E. Dataset_Telomere_Tac.xlsx. Figshare. 2021. Available online: https://figshare.com/articles/dataset/Dataset_Telomere_Tac_xlsx/16817455/1 (accessed on 2 November 2021).
Anthropometric Measurements | Females (n = 90) | Males (n = 90) | p Value |
---|---|---|---|
Age | 44.71 ± 10.96 | 40.77 ± 11.62 | 0.020 * |
Weight (kg) | 63.38 ± 9.13 | 80.42 ± 9.97 | 0.000 *** |
Height (cm) | 167.11 ± 5.65 | 180.82 ± 5.93 | 0.000 *** |
Waist/height ratio | 0.46 ± 0.05 | 0.49 ± 0.05 | 0.000 *** |
Waist/hip ratio | 0.78 ± 0.06 | 0.86 ± 0.07 | 0.000 *** |
BMI | 22.7 ± 3.17 | 24.58 ± 2.63 | 0.000 *** |
Telomeres | |||
Relative telomere length | 0.69 ± 0.31 | 0.70 ± 0.28 | 0.747 |
Total antioxidative capacity | |||
Mean inhibition of oxidation | 60.34 ± 8.02 | 61.66 ± 7.08 | 0.242 |
Lipid parameters | |||
Total cholesterol (mg/dL) | 198.06 ± 33.16 | 189.60 ± 33.89 | 0.092 * |
LDL cholesterol (mg/dL) | 101.64 ± 31.40 | 104.74 ± 32.29 | 0.516 |
HDL cholesterol (mg/dL) | 75.76 ± 18.04 | 60.20 ± 13.86 | 0.000 *** |
Triglycerides (mg/dL) | 103.66 ± 93.44 | 123.57 ± 76.41 | 0.119 |
Total cholesterol/HDL-C ratio | 2.74 ± 0.98 | 3.35 ± 1.09 | 0.000 *** |
Adiponectin (µg/mL) | 13.60 ± 5.36 | 18 ± 3.71 | 0.000 *** |
Sports | |||
Endurance training (min/week) | 183.83 ± 383.42 | 231.83 ± 317.81 | 0.363 |
Strength training (min/week) | 71.48 ± 84.14 | 101.47 ± 115.58 | 0.048 * |
Variables | Sex | r-Value | p-Value |
---|---|---|---|
Age | Female | −0.02 | 0.864 |
Male | 0.05 | 0.624 | |
Total antioxidative capacity | Female | 0.09 | 0.420 |
Male | 0.34 | 0.001 ** | |
Weight (kg) | Female | 0.12 | 0.268 |
Male | 0.16 | 0.130 | |
Height (cm) | Female | 0.06 | 0.591 |
Male | 0.06 | 0.578 | |
Waist/height ratio | Female | 0.13 | 0.220 |
Male | 0.03 | 0.747 | |
Waist/hip ratio | Female | 0.07 | 0.483 |
Male | −0.05 | 0.641 | |
BMI | Female | 0.11 | 0.305 |
Male | 0.14 | 0.204 | |
Total cholesterol (mg/dL) | Female | −0.03 | 0.775 |
Male | −0.11 | 0.294 | |
LDL-C (mg/dL) | Female | 0.06 | 0.558 |
Male | −0.08 | 0.443 | |
HDL-C (mg/dL) | Female | −0.14 | 0.194 |
Male | 0.01 | 0.926 | |
Triglycerides (mg/dL) | Female | −0.04 | 0.683 |
Male | −0.08 | 0.432 | |
Total cholesterol/HDL-C ratio | Female | 0.16 | 0.146 |
Male | −0.07 | 0.510 | |
Adiponectin (µg/mL) | Female | −0.19 | 0.067 |
Male | 0.16 | 0.135 | |
Endurance training (min) | Female | −0.12 | 0.268 |
Male | 0.03 | 0.754 | |
Strength training (min) | Female | −0.09 | 0.398 |
Male | 0.01 | 0.925 |
a. Effect of age and sport on the correlation between total antioxidative capacity and relative telomere length in men | ||||||
Multiple linear regression coefficients (t-values) and associated p-values are shown. Constant: total antioxidative capacity | ||||||
Model: y = | ||||||
adj. R2 | F-Stat (p-Value) | |||||
Predictor | Estimate | Std. Error | t Value | Pr (>|t|) | 0.08 | 3.06 (0.02 *) |
Constant | 0 | 0.1 | 0 | 1 | ||
Relative telomere length | 0.34 | 0.1 | 3.34 | 0.001 ** | ||
Age | −0.02 | 0.11 | −0.16 | 0.87 | ||
Endurance training | 0.06 | 0.1 | 0.6 | 0.55 | ||
Strength training | 0.07 | 0.11 | 0.71 | 0.48 | ||
b. Effect of anthropometric measurements on the correlation between the total antioxidatve capacity and relative telomere length in men | ||||||
Multiple linear regression coefficients (t-values) and associated p-values are shown. Constant: total antioxidative capacity | ||||||
Model: y = | ||||||
adj. R2 | F-Stat | |||||
(p-Value) | ||||||
Predictor | Estimate | Std. Error | t Value | Pr (>|t|) | 0.17 | 2.79 (0.016 *) |
Constant | −0.02 | 0.11 | −0.16 | 0.88 | ||
Relative telomere length | 0.09 | 0.11 | 0.79 | 0.43 | ||
Height (cm) | −0.4 | 1.38 | −0.29 | 0.77 | ||
Waist/height ratio | 0.2 | 0.62 | 0.33 | 0.75 | ||
Waist/hip ratio | 0.09 | 0.33 | 0.28 | 0.78 | ||
BMI | 0.03 | 0.17 | 0.18 | 0.86 | ||
c. Effect of lipid profile on the correlation between total antioxidatve capacity and relative telomere length in men | ||||||
Multiple linear regression coefficients (t-values) and associated p-values are shown. Constant: total antioxidative capacity | ||||||
Model: y = | ||||||
adj. R2 | F-Stat | |||||
(p-Value) | ||||||
Predictor | Estimate | Std. Error | t Value | Pr (>|t|) | 0.22 | 3.27 (0.004 **) |
Constant | 0 | 0.1 | −0.01 | 0.99 | ||
Relative telomere length | 0.36 | 0.1 | 3.6 | 0.0005 *** | ||
Adiponectin (µg/mL) | −0.15 | 0.1 | −1.5 | 0.14 | ||
Total cholesterol (mg/dL) | −8.28 | 4.55 | −1.82 | 0.07 | ||
LDL (mg/dL) | 7.7 | 4.32 | 1.78 | 0.08 | ||
HDL (mg/dL) | 3.63 | 1.88 | 1.93 | 0.06 | ||
Triglycerides (mg/dL) | 3.76 | 2.05 | 1.84 | 0.07 | ||
Cholesterol/HDL ratio | 0.15 | 0.37 | 0.4 | 0.69 |
a.: Effect of age and sport on the correlation between total antioxidatve capacity and relative telomere length in women | ||||||
Multiple linear regression coefficients (t-values) and associated p-values are shown. Constant: total antioxidative capacity | ||||||
Model: y = | ||||||
adj. R2 | F-Stat (p-Value) | |||||
Predictor | Estimate | Std. Error | t Value | Pr (>|t|) | 0.034 | 0.55(0.696) |
Constant | 0.01 | 0.11 | 0.012 | 0.906 | ||
Relative telomere length | 0.09 | 0.11 | 0.81 | 0.421 | ||
Age | −0.12 | 0.11 | −1.13 | 0.262 | ||
Endurance training | 0.03 | 0.11 | 0.26 | 0.795 | ||
Strength training | 0.03 | 0.12 | 0.256 | 0.8 | ||
b.: Effect of anthropometric measurements on the correlation between total antioxidative capacity and relative telomere length in women | ||||||
Multiple linear regression coefficients (t-values) and associated p-values are shown.Constant: total antioxidative capacity | ||||||
Model: y = | ||||||
adj. R2 | F-Stat | |||||
(p-Value) | ||||||
Predictor | Estimate | Std. Error | t Value | Pr (>|t|) | 0.13 | 2.79 (0.821) |
Constant | 0 | 0.11 | 0 | 1 | ||
Relative telomere length | 0.07 | 0.11 | 0.6 | 0.553 | ||
Height (cm) | 0.03 | 0.6 | 0.05 | 960 | ||
Waist/height ratio | 0.04 | 0.33 | 0.13 | 0.894 | ||
Waist/hip ratio | 0.07 | 0.17 | 0.41 | 0.683 | ||
BMI | 0.1 | 1.34 | 0.08 | 0.938 | ||
4c.: Effect of lipid profile on the correlation between total antioxidative capacity and relative telomere length in women | ||||||
Multiple linear regression coefficients (t-values) and associated p-values are shown. Constant: total antioxidative capacity | ||||||
Model: y = | ||||||
adj. R2 | F-Stat (p-Value) | |||||
Predictor | Estimate | Std. Error | t Value | Pr (>|t|) | 0.1 | 1.26 (0.299) |
Constant | 0.03 | 0.11 | 0.24 | 0.811 | ||
Relative telomere length | 0.07 | 0.10 | 0.61 | 0.546 | ||
Adiponectin (µg/mL) | −0.22 | 0.11 | −1.95 | 0.055 | ||
Total cholesterol (mg/dL) | −2.59 | 2.12 | −1.22 | 0.226 | ||
LDL (mg/dL) | 2.10 | 1.86 | 1.13 | 0.26 | ||
HDL (mg/dL) | 1.46 | 1.27 | 1.15 | 0.254 | ||
Triglycerides (mg/dL) | 1.59 | 1.28 | 0.205 | |||
Cholesterol/HDL ratio | 0.24 | 0.43 | 0.57 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassler, E.; Almer, G.; Reishofer, G.; Marsche, G.; Mangge, H.; Deutschmann, H.; Herrmann, M.; Leber, S.; Gunzer, F.; Renner, W. Sex-Specific Association of Serum Anti-Oxidative Capacity and Leukocyte Telomere Length. Antioxidants 2021, 10, 1908. https://doi.org/10.3390/antiox10121908
Hassler E, Almer G, Reishofer G, Marsche G, Mangge H, Deutschmann H, Herrmann M, Leber S, Gunzer F, Renner W. Sex-Specific Association of Serum Anti-Oxidative Capacity and Leukocyte Telomere Length. Antioxidants. 2021; 10(12):1908. https://doi.org/10.3390/antiox10121908
Chicago/Turabian StyleHassler, Eva, Gunter Almer, Gernot Reishofer, Gunther Marsche, Harald Mangge, Hannes Deutschmann, Markus Herrmann, Stefan Leber, Felix Gunzer, and Wilfried Renner. 2021. "Sex-Specific Association of Serum Anti-Oxidative Capacity and Leukocyte Telomere Length" Antioxidants 10, no. 12: 1908. https://doi.org/10.3390/antiox10121908
APA StyleHassler, E., Almer, G., Reishofer, G., Marsche, G., Mangge, H., Deutschmann, H., Herrmann, M., Leber, S., Gunzer, F., & Renner, W. (2021). Sex-Specific Association of Serum Anti-Oxidative Capacity and Leukocyte Telomere Length. Antioxidants, 10(12), 1908. https://doi.org/10.3390/antiox10121908