Brewing By-Product Upcycling Potential: Nutritionally Valuable Compounds and Antioxidant Activity Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. Sample Processing
2.4. Analytical Determination
2.4.1. Moisture, Nitrogen, Ash and Fat Content
2.4.2. Total Dietary Fiber
2.4.3. Carbohydrates
2.4.4. Water Activity
2.4.5. β-glucans and Arabinoxylans Content
2.4.6. Determination of Sugar Profiles
2.4.7. Extraction of Free and Bound-Forms of Phenolic Compounds
2.4.8. Determination of Total Polyphenol Content
2.4.9. Antioxidant Activity
2.4.10. Determination of Phenolic Acids
2.5. HPLC Method Validation
- The system suitability was calculated by replicated injections (n = 10) of the same standard solution containing PAs and tyrosol [27]. The parameters used in the system suitability test were the relative standard deviations (%RSD) of retention time and peak area for each PA, the number of theoretical plates (N), and the tailing factor (T).
- Linearity of the method was tested in the PA concentration range of 0.5–5 µg mL−1. The solutions were chromatographed ten times, in accordance with the Eurachem Guide [28]. External calibration curves were constructed for each PA at six calibration levels, and the correlation coefficient for each plot was calculated.
- The homoscedasticity of the calibration plots was verified using Cochran’s test. In Cochran’s test, the test statistic calculated is the ratio of the largest variance to the sum of all variances (Cc, C calculated) [29].
- The trueness (how close the mean of ten replications is to a reference value) was calculated, together with the precision (how close results are to one another) in order to investigate the accuracy of the results obtained with the developed method. The trueness was calculated to compare the difference between mean spiked BSG samples and the mean value with the added concentration of each analyte, and was expressed as the relative spike recovery, R’% [31]. The precision was evaluated by analyzing ten times the BSG fortified samples. Precision is expressed by statistical parameters (such as relative standard deviation, RSD) that describe the spread of results and is a measure of how close results are to one another. The relative standard deviations of repeatability (%RSDr) were calculated.
- The uncertainty of the developed method was tested by calculating the Horwitz ratio value (HorRat). The HorRat value is a variation of the Horwitz equation to be used in a single-laboratory validation study [30].
2.6. Statistical Analysis
3. Results and Discussion
3.1. Brewing By-Product Characterization
3.2. Total Polyphenols and Phenolic Acid Composition
3.3. Antioxidant Activity
3.4. Validation of HPLC Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belc, N.; Mustatea, G.; Apostol, L.; Iorga, S.; Vlǎduţ, V.N.; Mosoiu, C. Cereal supply chain waste in the context of circular economy. E3S Web Conf. 2019, 112, 3031. [Google Scholar] [CrossRef]
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Bamforth, C.W. Beer: A Quality Perspective, 15th ed.; Academic Press: Burlington, MA, USA, 2009. [Google Scholar]
- Wunderlich, S.; Back, W. General Aspects of Beer and Constituents-Beer Making, Hops and Yeast. In Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Kerby, C.; Vriesekoop, F. An Overview of the Utilisation of Brewery By-Products as Generated by British Craft Breweries. Beverages 2017, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Priest, F.G.; Stewart, G.G. Handbook of Brewing, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cer. Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Panjičko, M.; Zupančič, G.D.; Fanedl, L.; Logar, R.L.; Tišma, M.; Zelić, B. Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. J. Clean. Prod. 2017, 166, 519–529. [Google Scholar] [CrossRef]
- Mussatto, S.I. Brewer’s spent grain: A valuable feedstock for industrial applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraiva, B.R.; Anjo, F.A.; Vital, A.C.P.; da Silva, L.H.M.; Ogawa, C.Y.L.; Sato, F.; Coimbra, L.B.; Matumoto-Pintro, P.T. Waste from brewing (trub) as a source of protein for the food industry. Int. J. Food Sci. Technol. 2019, 54, 1247–1255. [Google Scholar] [CrossRef]
- Shen, Y.; Abeynayake, R.; Sun, X.; Ran, T.; Li, J.; Chen, L.; Yang, W. Feed nutritional value of brewers’ spent grain residue resulting from protease aided protein removal. J. Anim. Sci. Biotechnol. 2019, 10, 78. [Google Scholar] [CrossRef]
- Karlovic, A.; Juric, A.; Coric, N.; Habschied, K.; Krstanovic, V.; Mastanjevic, K. By-Products in the Malting and Brewing Industries—Re-Usage Possibilities. Fermentation 2020, 6, 82. [Google Scholar] [CrossRef]
- Bolwig, S.; Mark, S.M.; Happle, M.K.; Brekke, A. Beyond animal feed? The valorisation of brewers’ spent grain. In From Waste to Value: Valorisation Pathways for Organic Waste Streams in Circular Bioeconomies; Taylor & Francis: Oxfordshire, UK, 2019. [Google Scholar]
- Donoghue, C.; Jackson, G.; Koop, J.H.; Heuven, A.J.M. The Environmental Performance of the European Brewing Sector; Report number 3101010DR02; European Commission: Brussels, Belgium, May 2012. [Google Scholar]
- European Union. Commission Regulation (EU) 2017/1017 of 15 June 2017. Off. J. Eur. Union 2017, 159, 48–119. [Google Scholar]
- Nigam, S.N.; Pandey, A. Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–466. [Google Scholar]
- Kanagachandran, K.; Jayaratne, R. Utilization potential of brewery waste water sludge as an organic fertilizer. J. Inst. Brew. 2006, 112, 92–96. [Google Scholar] [CrossRef]
- Fărcaş, A.C.; Socaci, S.A.; Mudura, E.; Dulf, F.V.; Vodnar, D.C.; Tofană, M.; Salanță, L.C. Exploitation of Brewing Industry Wastes to Produce Functional Ingredients. Brew. Technol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Bjerregaard, M.F.; Charalampidis, A.; Frøding, R.; Shetty, R.; Pastell, H.; Jacobsen, C.; Zhuang, S.; Pinelo, M.; Hansen, P.B.; Hobley, T.J. Processing of brewing by-products to give food ingredient streams. Eur. Food Res. Tech. 2019, 245, 545–558. [Google Scholar] [CrossRef] [Green Version]
- Marconi, O.; Tomasi, I.; Sileoni, V.; Bonciarelli, U.; Guiducci, M.; Maranghi, S.; Perretti, G. Effects of Growth Conditions and Cultivar on the Content and Physiochemical Properties of Arabinoxylan in Barley. J. Agric. Food Chem. 2020, 68, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Floridi, S.; Miniati, E.; Montanari, L.; Fantozzi, P. Carbohydrate determination in wort and beer by HPLC-ELSD. Mon. Brauwiss. 2001, 54, 209–215. [Google Scholar]
- Stagnari, F.; Galieni, A.; D’Egidio, S.; Falcinelli, B.; Pagnani, G.; Pace, R.; Pisante, M.; Benincasa, P. Effects of sprouting and salt stress on polyphenol composition and antiradical activity of einkorn, emmer and durum wheat. Ital. J. Agron. 2017, 12, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Ceccaroni, D.; Alfeo, V.; Bravi, E.; Sileoni, V.; Perretti, G.; Marconi, O. Effect of the time and temperature of germination on the phenolic compounds of Triticum aestivum, L. and Panicum miliaceum. LWT Food Sci. Technol. 2020, 127, 109396. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomo-lybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Benincasa, P.; Tosti, G.; Farneselli, M.; Maranghi, S.; Bravi, E.; Marconi, O.; Falcinelli, B.; Guiducci, M. Phenolic content and antioxidant activity of einkorn and emmer sprouts and wheatgrass obtained under different radiation wavelengths. Ann. Agric. Sci. 2020, 65, 68–76. [Google Scholar] [CrossRef]
- Widowati, W.; Fauziah, N.; Herdiman, H.; Afni, M.; Afifah, E.; Sari, H.; Kusuma, W.; Nufus, H.; Arumwardana, S.; Rihibiha, D.D. Antioxidant and Anti Aging Assays of Oryza Sativa Extracts, Vanillin and Coumaric Acid. J. Nat. Remedies 2016, 16, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Ravisankar, P.; Naga Navya, C.; Pravallika, D.; Navya Sri, D. A Review on Step-by-Step Analytical Method Validation. IOSR J. Pharm. 2015, 5, 7–19. [Google Scholar]
- Eurachem Working Group. Eurachem Guide. The Fitness for Purpose of Analytical Methods. A Laboratory Guide to Method Validation and Related Topics; Magnusson, B., Ornemark, U., Eds.; Eurachem: Middlesex, UK, 2014; ISBN 979187461590. Available online: www.eurachem.org (accessed on 1 September 2020).
- Bravi, E.; Marconi, O.; Sileoni, V.; Perretti, G. Determination of free fatty acids in beer. Food Chem. 2017, 215, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Definitions and Calculations of Horrat Values from Interlaboratory Data, AOAC International. 2013. Available online: www.aoac.org (accessed on 1 September 2020).
- Dos Santos Mathias, T.R.; Alexandre, V.M.F.; Cammarota, M.C.; de Mello, P.P.M.; Sérvulo, E.F.C. Characterization and determination of brewer’s solid wastes composition. J. Inst. Brew. 2015, 121, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (aw) on Microbial Stability as a Hurdle in Food Preservation. In Water Activity in Foods: Fundamentals and Applications, 2nd ed.; Barbosa-Cánovas, G.V., Fontana, A.J., Schmidt, S.J., Labuza, T.P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Neugrodda, C.; Gastl, M.; Becker, T. Protein profile characterization of hop (Humulus lupulus L.) varieties. J. Am. Soc. Brew. Chem. 2014, 72, 184–191. [Google Scholar]
- Kühbeck, F.; Schütz, M.; Thiele, F.; Krottenthaler, M.; Back, W. Influence of lauter turbidity and hot trub on wort composition, fermentation, and beer quality. J. Am. Soc. Brew. Chem. 2006, 64, 16–28. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC Int.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Birsen, B.S.; Nihat, A. Health Benefits of Whey Protein: A Review. J. Food Sci. Eng. 2012, 2, 129–137. [Google Scholar]
- Möller, N.P.; Scholz-Ahrens, K.E.; Roos, N.; Schrezenmeir, J. Bioactive peptides and proteins from foods: Indication for health effects. Eur. J. Nutr. 2008, 47, 171–182. [Google Scholar] [CrossRef]
- Forssell, P.; Kontkanen, H.; Schols, H.A.; Hinz, S.; Eijsink, V.G.H.; Treimo, J.; Robertson, J.A.; Waldron, K.W.; Faulds, C.B.; Buchert, J. Hydrolysis of brewers’ spent grain by carbohydrate degrading enzymes. J. Inst. Brew. 2008, 114, 306–314. [Google Scholar] [CrossRef]
- Del Río, J.C.; Prinsen, P.; Gutiérrez, A. Chemical composition of lipids in brewer’s spent grain: A promising source of valuable phytochemicals. J. Cereal. Sci. 2013, 58, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Kobus-Cisowska, J.; Szymanowska-Powałowska, D.; Szczepaniak, O.; Kmiecik, D.; Przeor, M.; Gramza-Michałowska, A.; Cielecka-Piontek, J.; Smuga-Kogut, M.; Szulc, P. Composition and in vitro effects of cultivars of humulus lupulus L. Hops on cholinesterase activity and microbial growth. Nutrients 2019, 11, 1377. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nut. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Izydorczyk, M.S.; Dexter, J.E. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products-a Review. Food Res. Int. 2008, 41, 850–868. [Google Scholar] [CrossRef]
- Zielke, C.; Teixeira, C.; Ding, H.; Cui, S.; Nyman, M.; Nilsson, L. Analysis of β-glucan molar mass from barley malt and brewer’s spent grain with asymmetric flow field-flow fractionation (AF4) and their association to proteins. Carbohydr. Polym. 2017, 157, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Langenaeken, N.A.; De Schepper, C.F.; De Schutter, D.P.; Courtin, C.M. Carbohydrate content and structure during malting and brewing: A mass balance study. J. Inst. Brew. 2020, 126, 253–262. [Google Scholar] [CrossRef]
- Fangel, J.U.; Eiken, J.; Sierksma, A.; Schols, H.A.; Willats, W.G.T.; Harholt, J. Tracking polysaccharides through the brewing process. Carbohydr. Polym. 2018, 196, 465–473. [Google Scholar] [CrossRef]
- da Almeida, A.R.; Geraldo, M.R.F.; Ribeiro, L.F.; Silva, M.V.; de Maciel, M.V.O.B.; Haminiuk, C.W.I. Compostos bioativos do bagaço de malte: Compostos fenólicos, ácidos graxos e capacidade antioxidante in vitro. Acta Sci. Technol. 2017, 39, 269–277. [Google Scholar]
- Birsan, R.I.; Wilde, P.; Waldron, K.W.; Rai, D.K. Recovery of polyphenols from brewer’s spent grains. Antioxidants 2019, 8, 380. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, A.L.; O’Callaghan, Y.C.; Piggott, C.O.; FitzGerald, R.J.; O’Brien, N.M. Brewers’ spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: A review. Proc. Nutr. Soc. 2013, 72, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Koren, D.; Kun, S.; Vecseri, B.H.; Kun-Farkas, G. Study of antioxidant activity during the malting and brewing process. J. Food Sci. Technol. 2019, 56, 3801–3809. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.O.; Gonçalves, L.M.; Guido, L.F. Overall antioxidant properties of malt and how they are influenced by the individual constituents of barley and the malting process. Compr. Rev. Food Sci. Food Saf. 2016, 15, 927–943. [Google Scholar] [CrossRef]
- Moreira, M.M.; Morais, S.; Carvalho, D.O.; Barros, A.A.; Delerue-Matos, C.; Guido, L.F. Brewer’s spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Res. Int. 2013, 54, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Fărcaş, A.; Tofană, M.; Socaci, S.; Scrob, S.; Salanţă, L.; Borşa, A. Preliminary Study on Antioxidant Activity and Polyphenols Content in Discharged Waste from Beer Production. J. Agroaliment. Processes Technol. 2013, 19, 319–324. [Google Scholar]
- AOAC. Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Methods, method verification and validation. In Ora Laboratory Procedure; Food and Drug Administration Document No.: Version No.: 1.1 ORALAB.5.4.5; Food and Drug Administration: Silver Spring, MD, USA, 2020; pp. 1–12.
- Phillips, S.M.; Fulgoni, V.L.; Heaney, R.P.; Nicklas, T.A.; Slavin, J.L.; Weaver, C.M. Commonly consumed protein foods contribute to nutrient intake, diet quality, and nutrient adequacy. Am. J. Clin. Nutr. 2015, 101, 1346S–1352S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westendorf, M.L.; Wohlt, J.E. Brewing by-products: Their use as animal feeds. Vet. Clin. Food Anim. 2002, 18, 233–252. [Google Scholar] [CrossRef]
- Castrica, M.; Rebucci, R.; Giromini, C.; Tretola, M.; Cattaneo, D.; Baldi, A. Total phenolic content and antioxidant capacity of agri-food waste and by-products. Ital. J. Anim. Sci. 2019, 18, 336–341. [Google Scholar] [CrossRef]
Phenolic Compounds | Cc | R | Linear Equation | tR (min) | A | N | T | LOD | LOQ | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | RSD% | Mean | RSD% | Mean | RSD% | Mean | RSD% | ||||||
3,4,5-trihydroxybenzoic | 0.480 | 0.9997 | 0.658 | 0.964 | 1724 | 0.616 | 2078 | 0.825 | 1.766 | 0.204 | 0.025 | 0.083 | |
3,5-dihydroxybenzoic | 0.401 | 0.9987 | 1.199 | 0.772 | 999 | 0.325 | 3592 | 1.544 | 1.284 | 0.339 | 0.051 | 0.171 | |
2,5-dihydroxybenzoic | 0.401 | 0.9989 | 1.774 | 1.392 | 876 | 0.786 | 5072 | 1.608 | 1.417 | 1.153 | 0.039 | 0.129 | |
4-hydroxybenzoic | 0.327 | 0.9977 | 2.326 | 1.250 | 3845 | 0.680 | 8664 | 1.521 | 1.289 | 0.198 | 0.049 | 0.165 | |
tyrosol | 0.446 | 0.9979 | 2.577 | 0.989 | 317 | 0.855 | 4773 | 1.469 | 1.110 | 0.749 | 0.041 | 0.136 | |
2,6-dihydroxybenzoic | 0.578 | 0.9988 | 2.973 | 0.804 | 700 | 0.876 | 4380 | 1.310 | 1.401 | 0.442 | 0.036 | 0.122 | |
3-hydroxybenzoic | 0.502 | 0.9989 | 3.426 | 0.518 | 243 | 1.336 | 11,089 | 0.816 | 0.901 | 0.273 | 0.071 | 0.236 | |
vanillic | 0.342 | 0.9993 | 4.137 | 0.471 | 1805 | 0.681 | 16,231 | 0.751 | 1.019 | 1.078 | 0.038 | 0.126 | |
caffeic | 0.571 | 0.9988 | 4.713 | 0.577 | 2356 | 1.135 | 21,041 | 1.202 | 0.769 | 0.691 | 0.066 | 0.218 | |
chlorogenic | 0.475 | 0.9975 | 5.061 | 0.519 | 1852 | 1.390 | 24,311 | 0.644 | 1.329 | 0.125 | 0.050 | 0.167 | |
homovanillic | 0.398 | 0.9965 | 5.749 | 0.583 | 249 | 0.945 | 88,626 | 0.619 | 1.020 | 0.412 | 0.017 | 0.058 | |
syringic | 0.400 | 0.9987 | 5.941 | 0.771 | 1592 | 0.647 | 53,020 | 0.854 | 0.695 | 0.271 | 0.027 | 0.089 | |
p-coumaric | 0.504 | 0.9977 | 6.983 | 0.433 | 3170 | 0.836 | 122,209 | 0.262 | 1.465 | 0.146 | 0.051 | 0.167 | |
salicylic | 0.457 | 0.9971 | 7.471 | 0.594 | 206 | 6.554 | 62,152 | 1.043 | 0.570 | 0.797 | 0.047 | 0.156 | |
ferulic | 0.462 | 0.9971 | 7.799 | 0.499 | 3207 | 0.299 | 152,478 | 0.482 | 1.569 | 0.095 | 0.037 | 0.124 | |
m-coumaric | 0.467 | 0.9978 | 8.026 | 0.431 | 2817 | 0.366 | 102,787 | 0.256 | 1.243 | 0.141 | 0.060 | 0.199 | |
sinapic | 0.504 | 0.9997 | 8.211 | 0.300 | 1119 | 0.727 | 168,685 | 0.571 | 1.323 | 0.853 | 0.046 | 0.153 | |
o-coumaric | 0.434 | 0.9990 | 9.161 | 1.007 | 2601 | 0.203 | 211,161 | 0.197 | 1.359 | 0.117 | 0.026 | 0.086 |
Brewing Spent Grains | Brewing Spent Hop | ||||
---|---|---|---|---|---|
IRA | BSA | IRA | BSA | ||
Moisture% (fresh product) | 78.69 ± 0.92 a | 80.49 ± 0.36 b | 83.83 ± 0.37 A | 79.18 ± 0.86 B | |
Moisture% (dried product) | 8.61 ± 0.70 a | 7.07 ± 0.07 b | 5.30 ± 0.15 A | 5.41 ± 0.02 A | |
Water activity (aw) | 0.41 ± 0.01 a | 0.43 ± 0.01 b | 0.35 ± 0.01 A | 0.42 ± 0.01 B | |
Total nitrogen (% dm) | 2.97 ± 0.01 a | 2.55 ± 0.01 b | 8.33 ± 0.16 A | 6.35 ± 0.02 B | |
Proteins (% dm) | 18.58 ± 0.02 a | 15.91 ± 0.05 b | 52.02 ± 1.03 A | 39.67 ± 0.03 B | |
Ash (% dm) | 2.96 ± 0.10 a | 2.63 ± 0.0.05 b | 2.33 ± 0.07 A | 2.11 ± 0.08 B | |
Fat (% dm) | 6.75 ± 0.16 a | 6.40 ± 0.09 b | 1.23 ± 0.02 A | 1.06 ± 0.01 A | |
Total dietary fiber (% dm) | 38.52 ± 0.12 a | 33.01 ± 2.76 b | 12.38 ± 1.13 A | 12.19 ± 0.73 A | |
Carbohydrates (% dm) | 24.58 ± 0.71 a | 34.97 ± 1.94 b | 26.78 ± 1.75 A | 39.94 ± 0.91 B | |
Sugars (g 100−1 g dm) | Fructose | 0.30 ± 0.01 a | 0.37 ± 0.01 b | 0.49 ± 0.00 A | 0.89 ± 0.00 B |
Glucose | 1.33 ± 0.02 a | 1.81 ± 0.01 b | 1.67 ± 0.00 A | 2.79 ± 0.04 B | |
Sucrose | 0.14 ± 0.01 a | 0.29 ± 0.00 b | 7.62 ± 0.05 A | 11.78 ± 0.00 B | |
Maltose | 3.19 ± 0.02 a | 5.94 ± 0.03 b | 9.06 ± 0.05 A | 13.59 ± 0.14 B | |
D3 (maltotriose) | 1.13 ± 0.01 a | 1.98 ± 0.01 b | 2.41 ± 0.10 A | 3.99 ± 0.01 B | |
D4 (maltotetraose) | 0.77 ± 0.04 a | 1.83 ± 0.06 b | 0.81 ± 0.06 A | 1.11 ± 0.05 B | |
D5 (maltopentaose) | 0.18 ± 0.01 a | 0.24 ± 0.03 b | 0.48 ± 0.01 A | 0.42 ± 0.03 B | |
D6 (maltohexaose) | 0.22 ± 0.01 a | 0.53 ± 0.05 b | 0.53 ± 0.05 A | 0.59 ± 0.16 A | |
D7 (maltoeptaose) | 0.15 ± 0.00 a | 0.19 ± 0.00 b | 0.41 ± 0.07 A | 0.25 ± 0.01 B | |
D8 | 0.02 ± 0.00 a | 0.04 ± 0.01 b | 0.10 ± 0.01 A | 0.14 ± 0.01 B | |
D9 | 0.02 ± 0.00 a | 0.04 ± 0.00 b | 0.06 ± 0.00 A | 0.08 ± 0.01 B | |
D10 | 0.02 ± 0.00 a | 0.03 ± 0.00 b | 0.03 ± 0.00 A | 0.04 ± 0.00 B | |
D11 | 0.01 ± 0.00 a | 0.02 ± 0.00 b | 0.02 ± 0.00 A | 0.04 ± 0.00 B | |
D12 | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.02 ± 0.00 A | 0.04 ± 0.01 B | |
D13 | 0.01 ± 0.00 a | 0.01 ± 0.00 b | 0.03 ± 0.00 A | 0.02 ± 0.00 B | |
D14 | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.02 ± 0.00 A | 0.03 ± 0.00 B | |
D15 | - | - | 0.01 ± 0.00 | - | |
Total sugars | 7.51 ± 0.05 a | 13.33 ± 0.00 b | 23.76 ± 0.27 A | 35.78 ± 0.11 B |
Brewing Spent Grains | Brewing Spent Hop | |||
---|---|---|---|---|
IRA | BSA | IRA | BSA | |
FP (mg GAE g−1 dm) | 2.49 ± 0.12 a | 2.44 ± 0.12 a | 9.51 ± 0.11 A | 15.73 ± 1.30 B |
BP | 4.80 ± 0.11 a | 7.11 ± 0.10 b | 1.38 ± 0.12 A | 1.84 ± 0.02 B |
TP | 7.30 ± 0.23 a | 9.55 ± 0.22 b | 10.90 ± 0.23 A | 17.58 ± 1.32 B |
FPA (µg g−1 dm) | ||||
4-hydroxybenzoic | 3.89 ± 0.05 a | 6.89 ± 0.06 b | 0.77 ± 0.05 | - |
2,6-dihydroxybenzoic | - | - | 3.09 ± 0.01 | - |
Vanillic | 14.63 ± 0.06 a | 5.40 ± 0.02 b | 1.41 ± 0.01 | - |
3-hydroxybenzoic | 19.74 ± 0.75 | - | 9.59 ± 0.34 | - |
Caffeic | 1.87 ± 0.09 | - | 6.19 ± 0.03 | - |
Chlorogenic | - | 1.31 ± 0.03 | 0.77 ± 0.01 | - |
Syringic | 34.33 ± 0.16 a | 67.51 ± 0.31 b | 3.02 ± 0.16 | - |
Homovanillic | 19.99 ± 0.84 a | 39.32 ± 1.66 b | 9.16 ± 0.14 | - |
p-coumaric | - | 4.44 ± 0.06 | 0.76 ± 0.02 A | 2.20 ± 0.22 B |
Salicylic | - | 8.48 ± 0.31 | 6.12 ± 0.44 A | 16.49 ± 0.92 B |
Ferulic | 3.96 ± 0.27 a | 15.53 ± 0.60 b | 0.38 ± 0.02 A | 14.97 ± 1.40 B |
m-coumaric | - | 1.64 ± 0.06 | - | - |
Sinapic | 10.96 ± 0.85 a | 3.79 ± 0.12 b | 1.01 ± 0.05 A | 6.77 ± 0.19 B |
Total FPA | 109.36 ± 3.08 a | 158.86 ± 3.20 b | 36.96 ± 1.25 A | 40.43 ± 2.73 B |
BPA (µg g−1 dm) | ||||
3,5-dihydroxybenzoic acid | - | - | - | 6.73 ± 0.03 |
2,5-dihydroxybenzoic acid | - | - | - | 4.70 ± 0.26 |
4-hydroxybenzoic | 4.11 ± 0.26 a | 12.73 ± 0.10 b | 0.55 ± 0.03 | - |
Vanillic | 11.46 ± 0.40 a | 1.28 ± 0.01 b | 38.75 ± 1.27 | - |
Caffeic | 39.78 ± 0.70 a | 89.68 ± 2.65 b | - | 1.31 ± 0.07 |
Chlorogenic | - | - | 1.07 ± 0.01 A | 0.89 ± 0.010 B |
Syringic | 27.36 ± 3.00 a | 19.52 ± 0.16 b | 8.21 ± 0.74 | - |
Homovanillic | 12.12 ± 0.96 a | 9.36 ± 0.20 b | 2.65 ± 0.08 | - |
p-coumaric | 256.38 ± 4.09 a | 584.84 ± 5.17 b | - | 18.68 ± 0.12 |
Salicylic | 491.56 ± 30.99 a | 102.36 ± 0.73 b | 1.80 ± 0.01 A | 28.24 ± 0.15 B |
Ferulic | 476.98 ± 11.82 a | 692.15 ± 6.81 b | 2.56 ± 03.05 A | 51.72 ± 0.19 B |
Sinapic | 116.25 ± 4.51 a | 322.97 ± 20.85 b | - | 10.72 ± 0.22 |
Total BPA | 1431.87 ± 56.47 a | 1859.60 ± 37.85 b | 17.94 ± 0.92 A | 123.17 ± 1.04 B |
TPA | 1541.24 ± 59.55 a | 2018.46 ± 41.05 b | 54.90 ± 2.17 A | 163.60 ± 3.78 B |
Phenolic Compounds | Concentration Level (µg/g) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 25 | 50 | 100 | |||||||||
R’% (Mean ± SD) | RSDr % | HorRat | R’% (Mean ± SD) | RSDr % | HorRat | R’% (Mean ± SD) | RSDr % | HorRat | R’% (Mean ± SD) | RSDr % | HorRat | |
3,4,5-trihydroxybenzoic | 100 ± 1 | 0.9 | 0.1 | 101 ± 1 | 0.2 | 0.1 | 98 ± 2 | 1.0 | 0.1 | 93 ± 2 | 1.6 | 0.2 |
3,5-dihydroxybenzoic | 85 ± 1 | 0.8 | 0.1 | 98 ± 1 | 0.7 | 0.1 | 96 ± 2 | 1.0 | 0.1 | 90 ± 1 | 0.5 | 0.1 |
2,5-dihydroxybenzoic | 87 ± 1 | 1.3 | 0.1 | 89 ± 1 | 1.1 | 0.1 | 81 ± 4 | 1.2 | 0.4 | 85 ± 2 | 1.2 | 0.1 |
4- hydroxybenzoic | 85 ± 1 | 1.1 | 0.1 | 92 ± 1 | 0.6 | 0.1 | 86 ± 2 | 1.2 | 0.1 | 82 ± 1 | 1.1 | 0.1 |
tyrosol | 93 ± 1 | 0.9 | 0.1 | 86 ± 2 | 2.3 | 0.2 | 89 ± 4 | 2.1 | 0.2 | 94 ± 1 | 0.9 | 0.1 |
2,6-dihydroxybenzoic | 92 ± 1 | 1.5 | 0.1 | 90 ± 1 | 0.9 | 0.1 | 97 ± 3 | 1.7 | 0.1 | 84 ± 1 | 0.8 | 0.1 |
3- hydroxybenzoic | 103 ± 1 | 1.0 | 0.1 | 101 ± 1 | 1.2 | 0.1 | 109 ± 4 | 1.9 | 0.2 | 102 ± 1 | 1.1 | 0.1 |
vanillic | 88 ± 1 | 0.8 | 0.1 | 92 ± 2 | 1.7 | 0.1 | 90 ± 4 | 2.2 | 0.1 | 80 ± 1 | 0.3 | 0.1 |
caffeic | 101 ± 1 | 1.1 | 0.1 | 100 ± 1 | 0.8 | 0.1 | 110 ± 3 | 1.2 | 0.1 | 104 ± 1 | 1.1 | 0.1 |
chlorogenic | 97 ± 1 | 1.2 | 0.1 | 85 ± 2 | 2.1 | 0.1 | 93 ± 2 | 2.4 | 0.1 | 81 ± 1 | 1.0 | 0.1 |
syringic | 88 ± 1 | 1.2 | 0.1 | 93 ± 2 | 1.6 | 0.1 | 89 ± 3 | 1.0 | 0.1 | 80 ± 1 | 0.6 | 0.1 |
homovanillic | 107 ± 1 | 0.6 | 0.1 | 87 ± 1 | 1.5 | 0.1 | 86 ± 2 | 1.2 | 0.1 | 80 ± 1 | 0.2 | 0.1 |
p-coumaric | 94 ± 1 | 1.4 | 0.1 | 86 ± 1 | 1.0 | 0.1 | 94 ± 3 | 1.6 | 0.1 | 81 ± 2 | 1.1 | 0.2 |
salicylic | 90 ± 1 | 1.1 | 0.1 | 82 ± 1 | 1.4 | 0.1 | 93 ± 1 | 0.6 | 0.1 | 86 ± 1 | 1.1 | 0.1 |
ferulic | 97 ± 1 | 2.0 | 0.1 | 92 ± 1 | 0.6 | 0.1 | 85 ± 3 | 1.9 | 0.2 | 80 ± 1 | 0.5 | 0,1 |
m-coumaric | 97 ± 1 | 1.0 | 0.1 | 83 ± 2 | 2.3 | 0.2 | 84 ± 3 | 1.6 | 0.1 | 85 ± 1 | 1.1 | 0.1 |
sinapic | 96 ± 1 | 1.5 | 0.1 | 80 ± 1 | 1.6 | 0.1 | 80 ± 1 | 0.4 | 0.1 | 84 ± 1 | 1.1 | 0.1 |
o-coumaric | 104 ± 1 | 1.7 | 0.1 | 103 ± 1 | 0.2 | 0.1 | 93 ± 2 | 0.9 | 0.1 | 81 ± 1 | 1.2 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravi, E.; Francesco, G.D.; Sileoni, V.; Perretti, G.; Galgano, F.; Marconi, O. Brewing By-Product Upcycling Potential: Nutritionally Valuable Compounds and Antioxidant Activity Evaluation. Antioxidants 2021, 10, 165. https://doi.org/10.3390/antiox10020165
Bravi E, Francesco GD, Sileoni V, Perretti G, Galgano F, Marconi O. Brewing By-Product Upcycling Potential: Nutritionally Valuable Compounds and Antioxidant Activity Evaluation. Antioxidants. 2021; 10(2):165. https://doi.org/10.3390/antiox10020165
Chicago/Turabian StyleBravi, Elisabetta, Giovanni De Francesco, Valeria Sileoni, Giuseppe Perretti, Fernanda Galgano, and Ombretta Marconi. 2021. "Brewing By-Product Upcycling Potential: Nutritionally Valuable Compounds and Antioxidant Activity Evaluation" Antioxidants 10, no. 2: 165. https://doi.org/10.3390/antiox10020165
APA StyleBravi, E., Francesco, G. D., Sileoni, V., Perretti, G., Galgano, F., & Marconi, O. (2021). Brewing By-Product Upcycling Potential: Nutritionally Valuable Compounds and Antioxidant Activity Evaluation. Antioxidants, 10(2), 165. https://doi.org/10.3390/antiox10020165