Improving the Antioxidant Properties of Calophyllum inophyllum Seed Oil from French Polynesia: Development and Biological Applications of Resinous Ethanol-Soluble Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction and Fractionation of Tamanu Oil and Resins
2.1.1. Chemicals and Instrumentation
2.1.2. Extraction of Ethanol-Soluble Resins from Tamanu Oil, Separation of Neutral and Acidic Fractions and Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
2.1.3. Preparation of TO and EtTO Methanol Soluble Extracts
2.1.4. LPLC Analysis of NTR and ATR Fractions
2.1.5. HPLC Separation of NTR and ATR Subfractions
2.1.6. UV, 1H-NMR and Optical Characteristics of Isolated TO Metabolites
2.2. Antioxidant Assays
2.2.1. Chemicals, Enzymes and Instrumentation
2.2.2. Xanthine-Oxidase Inhibition
2.2.3. Superoxide Radical Quenching
2.2.4. Metal Chelating Capacity (MCC)
2.2.5. Assay of Proteinase and Lipoxygenase Inhibitory Activities
2.2.6. DPPH Assay
2.2.7. Total Peroxyl Radical-Trapping Potential (TRAP) Assay
2.3. Biological Experiments
2.3.1. Cell Culture and Reagents
2.3.2. Antimicrobial and Anti-Mycobacterial Activity
2.3.3. Cytotoxicity Assays
2.3.4. Experiments on 3T3 Cells Exposed to tBuOOH
2.3.5. Experiments on UV Irradiated Rat Skin Slices
2.3.6. EPR Experiments
2.3.7. Statistical Analysis
3. Results and Discussion
3.1. Chemistry, HPLC, TPC and TFC Analyses
3.2. In Vitro Antioxidant and Anti-Inflammatory Activities
3.2.1. Xanthine Oxidase Inhibition, Superoxide Quenching and MCC
3.2.2. Anti-Inflammatory Properties of TO Extracts and Subfractions
3.2.3. DPPH and TRAP Assays
3.3. Antimicrobial and Anti-Mycobacterial Activity
3.4. Biological and EPR Evidence of the Protective Effects of Tamanu Oil Derivatives against Oxidative Stress
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Gupta, S.; Gupta, P. The Genus Calophyllum inophyllum: Review of Ethnomedicinal Uses, Phytochemistry and Pharmacology. In Bioactive Natural Products in Drug Discovery; Singh, J., Meshram, V., Gupta, M., Eds.; Springer Nature Singapore Private Limited: Singapore, 2020; Chapter 5; pp. 215–242. [Google Scholar] [CrossRef]
- Oo, W.M. Pharmacological properties of Calophyllum inophyllum—Updated review. J. Photochem. Photobiol. C Photochem. Rev. 2018, 2, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Said, T.; Dutot, M.; Martin, C.; Beaudeux, J.L.; Boucher, C.; Enee, E.; Baudouin, C.; Warnet, J.M.; Rat, P. Cytoprotective effect against UV-induced DNA damage and oxidative stress: Role of new biological UV filter. Eur. J. Pharm. Sci. 2007, 30, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Balogun, O.S.; Ogunniyi, D.R. Chemical and biological assessment of Callophyllum inophylum (Linn) seed oil. Pharmacol. Online 2012, 3, 58–62. [Google Scholar]
- Crane, S.; Aurore, G.; Joseph, H.; Mouloungui, Z.; Bourgeois, P. Composition of fatty acids triacylglycerols and unsaponifiable matter in Calophyllum calaba L. oil from Guadeloupe. Phytochemistry 2005, 66, 1825–1831. [Google Scholar] [CrossRef] [PubMed]
- Kashman, Y.; Gustafson, K.R.; Fuller, R.W.; Cardellina, J.H., II; McMahon, J.B.; Currens, M.J.; Buckheit, R.W., Jr.; Hughes, S.H.; Cragg, G.M.; Boyd, M.R. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Callophyllum lanigerum. J. Med. Chem. 1992, 35, 2735–2743. [Google Scholar] [CrossRef]
- Spino, C.; Dodier, M.; Sotheeswaran, S. Anti-HIV coumarins from Calophyllum seed oil. Bioorg. Med. Chem. Lett. 1998, 8, 3475–3478. [Google Scholar] [CrossRef]
- Lin, H.C.; Tsai, S.H.; Chen, C.S.; Chang, Y.C.; Lee, C.M.; Lai, Z.Y.; Lin, C.M. Structure-activity relationship of coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities. Biochem. Pharmacol. 2008, 75, 1416–1425. [Google Scholar] [CrossRef]
- Ishikawa, T. Anti-HIV-1 active Calophyllum coumarins: Distribution, chemistry, and activity. Heterocycles 2000, 53, 453–474. [Google Scholar] [CrossRef]
- Kawazu, K.; Ohigashi, H.; Takahashi, N.; Mitsui, T. Piscicidal constituents of Calophyllum inophyllum. Bull. Inst. Chem. Res. Kyoto Univ. 1992, 50, 160–167. [Google Scholar] [CrossRef]
- Yimdjo, M.C.; Azebaze, A.G.; Nkengfack, A.E.; Meyer, A.M.; Bodo, B.; Fomum, Z.T. Antimicrobial and cytotoxic agents from Calophyllum inophyllum. Phytochemistry 2004, 65, 2789–2795. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Barrow, W.W.; Suling, W.J.; Westbrook, L.; Barrow, E.; Lin, Y.M.; Flavin, M.T. Anti-HIV natural product (+)-calanolide A is active against both drug-susceptible and drug-resistant strains of Mycobacterium tuberculosis. Bioorg. Med. Chem. 2004, 12, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Itoigawa, M.; Ito, C.; Tan, H.T.W.; Kuchide, M.; Tokuda, H.; Nishino, H.; Furukawa, H. Cancer chemopreventive agents, 4-phenylcoumarins from Calophyllum inophyllum. Cancer Lett. 2001, 169, 15–19. [Google Scholar] [CrossRef]
- Prasad, J.; Shrivastava, A.; Khanna, A.K.; Bhatia, G.; Awasthi, S.K.; Narender, T. Antidyslipidemic and antioxidant activity of the constituents isolated from the leaves of Calophyllum Inophyllum. Phytomedicine 2012, 19, 1245–1249. [Google Scholar] [CrossRef] [PubMed]
- Léguillier, T.; Lecsö-Bornet, M.; Lémus, C.; Rousseau-Ralliard, D.; Lebouvier, N.; Hnawia, E.; Nour, M.; Aalbersberg, W.; Ghazi, K.; Raharivelomanana, P.; et al. The wound healing and antibacterial activity of five ethnomedical Calophyllum inophyllum oils: An alternative therapeutic strategy to treat infected wounds. PLoS ONE 2015, 10, e0138602. [Google Scholar] [CrossRef] [PubMed]
- Ansel, J.L.; Lupo, E.; Mijouin, L.; Guillot, S.; Butaud, J.F.; Ho, R.; Lecellier, G.; Raharivelomanana, P.; Pichon, C. Biological activity of Polynesian Calophyllum inophyllum oil extract on human skin cells. Planta Med. 2016, 82, 961–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Métoyer, B.; Lebouvier, N.; Hnawia, E.; Herbette, G.; Thouvenot, L.; Asakawa, Y.; Nour, M.; Raharivelomanana, P. Chemotypes and biomarkers of seven species of new Caledonian liverworts from the Bazzanioideae subfamily. Molecules 2018, 23, 1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leu, T.; Raharivelomanana, P.; Soulet, S.; Bianchini, J.P.; Herbette, G.; Faure, R. New tricyclic and tetracyclic pyranocoumarins with an unprecedented C-4 substituent. Structure elucidation of tamanolide, tamanolide D and tamanolide P from Calophyllum inophyllum of French Polynesia. Magn. Reson. Chem. 2009, 47, 989–993. [Google Scholar] [CrossRef]
- Ginigini, J.; Lecellier, G.J.; Nicolas, M.; Nour, M.; Hnawia, E.; Lebouvier, N.; Herbette, G.; Lockhart, P.; Raharivelomanana, P. Chemodiversity of Calophyllum inophyllum L. oil bioactive components related to their specific geographical distribution in the South Pacific region. Peer J. 2019, 7, e6896. [Google Scholar] [CrossRef] [Green Version]
- Perumal, S.S.; Ekambaram, S.P.; Dhanam, T. In vivo antiarthritic activitiy of the ethanol extracts of stem bark and seeds of Calophyllum inophyllum in Freund’s complete adjuvant induced arthritis. Pharm. Biol. 2016, 55, 1330–1336. [Google Scholar] [CrossRef] [Green Version]
- Alencar, J.; Gosset, G.; Rahmouni, H.; Culcasi, M.; Robin, M.; Reynier, J.-P.; Piccerelle, P.; Pietri, S. Development of spray- and freeze-dried high-concentration sesamol emulsions and antioxidant evaluation in fibroblasts and UV-exposed rat skin slices. Drug Dev. Res. 2008, 69, 251–266. [Google Scholar] [CrossRef]
- Alencar, J.; Gosset, G.; Robin, M.; Pique, V.; Culcasi, M.; Clement, J.L.; Mercier, A.; Pietri, S. Improving the stability and antioxidant properties of sesame oil: Water-soluble spray-dried emulsions from new transesterified phenolic derivatives. J. Agric. Food Chem. 2009, 57, 7311–7323. [Google Scholar] [CrossRef] [PubMed]
- Kandouli, C.; Cassien, M.; Mercier, A.; Delehedde, C.; Ricquebourg, E.; Stocker, P.; Mekaouche, M.; Leulmi, Z.; Mechakra, A.; Thétiot-Laurent, S.; et al. Antidiabetic, antioxidant and anti inflammatory properties of water and n-butanol soluble extracts from Saharian Anvillea radiata in high-fat-diet fed mice. J. Ethnopharmacol. 2017, 207, 251–267. [Google Scholar] [CrossRef] [PubMed]
- Leu, T. Contribution à la Connaissance de la Flore Polynésienne: Évaluation de l’intérêt Pharmacologique de Quelques Plantes Médicinales et Étude Phytochimique du Tamanu (Calophyllum inophyllum L.—Clusiaceae). Ph.D. Thesis, Molecular Chemistry, Université de la Polynésie Française, Papeete, Tahiti, 15 May 2009. [Google Scholar]
- Shen, Y.C.; Hung, M.C.; Wang, L.T.; Chen, C.Y. Inocalophyllins A, B and their methyl esters from the seeds of Calophyllum inophyllum. Chem. Pharm. Bull. 2003, 51, 802–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, C.J.; Josephs, J.L. Synthesis of the Calophyllum coumarins. Part 2. J. Chem. Soc. Perkin Trans. 1995, 3135–3152. [Google Scholar] [CrossRef]
- Galinis, D.L.; Fuller, R.W.; McKee, T.C.; Cardellina, J.H., II; Gulakowski, R.J.; McMahon, J.B.; Boyd, M.R. Structure-Activity Modifications of the HIV-1 Inhibitors (+)-Calanolide A and (-)-Calanolide B. J. Med. Chem. 1996, 39, 4507–4510. [Google Scholar] [CrossRef]
- Zembower, D.E.; Liao, S.; Flavin, M.T.; Xu, Z.Q.; Stup, T.L.; Buckheit, R.W.; Khilevich, A.; Mar, A.A.; Sheinkman, A.K. Structural analogues of the calanolide anti-HIV agents. Modification of the trans-10,11-dimethyldihydropyran-12-ol ring (ring C). J. Med. Chem. 1997, 40, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- McKee, T.C.; Cardellina, J.H., II; Dreyer, G.B.; Boyd, M.R. The pseudocalanolides: Structure revision of calanolides C and D. J. Nat. Prod. 1995, 58, 916–920. [Google Scholar] [CrossRef] [PubMed]
- Cassien, M.; Petrocchi, C.; Thétiot-Laurent, S.; Robin, M.; Ricquebourg, E.; Kandouli, C.; Asteian, A.; Rockenbauer, A.; Mercier, A.; Culcasi, M.; et al. On the vasoprotective mechanisms underlying novel β-phosphorylated nitrones: Focus on free radical characterization, scavenging and NO-donation in a biological model of oxidative stress. Eur. J. Med. Chem. 2016, 119, 197–217. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.; Desai, S. Phytochemical screening, in vitro anti-microbial and anti-inflammatory activity of methanolic extract of aster lanceolatus willd leaves. Int. J. Med. Res. 2016, 1, 26–30. [Google Scholar]
- Missiakas, D.M.; Schneewind, O. Growth and laboratory maintenance of Staphylococcus aureus. Curr. Protoc. Microbiol. 2013, 9, 1–12. [Google Scholar] [CrossRef]
- Culcasi, M.; Benameur, L.; Mercier, A.; Lucchesi, C.; Rahmouni, H.; Asteian, A.; Casano, G.; Botta, A.; Kovacic, H.; Pietri, S. EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: Evidence for NADPH oxidase and mitochondrial stimulation. Chem. Biol. Interact. 2012, 199, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, T.D.; Chalgren, S. Medium for use in antibiotic susceptibility testing of anaerobic bacteria. Antimicrob. Agents Chemother. 1976, 10, 926–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, D.; Ram, M.S.; Sawhney, R.C.; Ilavazhagan, G.; Banerjee, P.K. Mechanism of tert-butylhydroperoxide-induced cytotoxicity in U-937 macrophages by alteration of mitochondrial function and generation of ROS. Toxicol. In Vitro 2007, 21, 846–854. [Google Scholar] [CrossRef]
- Culcasi, M.; Rockenbauer, A.; Mercier, A.; Clément, J.L.; Pietri, S. The line asymmetry of electron spin resonance spectra as a tool to determine the cis:trans ratio for spin-trapping adducts of chiral pyrrolines N-oxides: The mechanism of formation of hydroxyl radical adducts of EMPO, DEPMPO, and DIPPMPO in the ischemic–reperfused rat liver. Free Radic. Biol. Med. 2006, 40, 1524–1538. [Google Scholar] [CrossRef]
- Duling, D.R. Simulation of multiple isotropic spin-trap EPR spectra. J. Magn. Reson. B 1994, 104, 105–110. [Google Scholar] [CrossRef]
- Patil, A.D.; Freyer, A.J.; Eggleston, D.S.; Haltiwanger, R.C.; Bean, M.F.; Taylor, P.B.; Caranfa, M.J.; Breen, A.L.; Bartus, H.R.; Johnson, R.K.; et al. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J. Med. Chem. 1993, 36, 4131–4138. [Google Scholar] [CrossRef]
- Laure, F.; Herbette, G.; Faure, R.; Bianchini, J.P.; Raharivelomanana, P.; Fogliani, B. Structures of new secofriedelane and friedelane acids from Calophyllum inophyllum of French Polynesia. Magn. Reson. Chem. 2005, 43, 65–68. [Google Scholar] [CrossRef]
- Huerta-Reyes, M.; Basualdo, M.C.; Abe, F.; Jimenez-Estrada, M.; Soler, C.; Reyes-Chilpa, R. HIV-1 inhibitory compounds from Calophyllum brasiliense leaves. Biol. Pharm. Bull. 2004, 27, 1471–1475. [Google Scholar] [CrossRef] [Green Version]
- Cavé, A.; Debrayn, M.; Henryn, G.; Kunesch, G.; Polonsky, J. Structure of a new 4-alkylcoumarin isolated from Calophyllum inophyllum. C. R. Séances Acad. Sci. C 1972, 275, 1105–1107. [Google Scholar]
- Ito, C.; Itoigawa, M.; Mishina, Y.; Cechinel-Filho, V.; Enjo, F.; Tokuda, H.; Nishino, H.; Furukawa, H. Chemical constituents of Calophyllum brasiliensis. 2. Structure of three new coumarins and cancer chemopreventive activity of 4-substituted coumarins. J. Nat. Prod. 2003, 66, 368–371. [Google Scholar] [CrossRef]
- Ma, T.; Gao, Q.; Chen, Z.; Wang, L.; Liu, G. Chemical resolution of (±)-calanolide A, (±)-cortalide A and their 11-demethyl analogues. Bioorg. Med. Chem. Lett. 2008, 18, 1079–1083. [Google Scholar] [CrossRef] [PubMed]
- Khilevich, A.; Mar, A.; Flavin, M.T.; Rizzo, J.D.; Lin, L.; Dzekhtser, S.; Brankovic, D.; Zhang, H.; Chen, W.; Liao, S.; et al. Synthesis of (+)-calanolide A, an anti-HIV agent, via enzyme catalysed resolution of the aldol products. Tetrahedron Asymmetry 1996, 7, 3315–3326. [Google Scholar] [CrossRef]
- Joshi, S.P.; Thengane, S.R. Calophyllum austroindicum: A new source of calanolide A. J. Med. Arom. Plant Sci. 2010, 32, 193–195. [Google Scholar]
- Seneviratne, K.N.; Kotuwegedara, R.T. Antioxidant activities of the phenolic extracts of seed oils and seed hulls of five plant species. Food Sci. Tech. Int. 2009, 15, 419–425. [Google Scholar] [CrossRef]
- Kartika, I.A.; Cerny, M.; Vandenbossche, V.; Rigal, L.; Sablayrolles, C.; Vialle, C.; Suparno, O.; Ariono, D.; Evon, P. Direct calophyllum oil extraction and resin separation with a binary solvent of n-hexane and methanol mixture. Fuel 2018, 221, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Cos, P.; Ying, L.; Calomme, M.; Hu, J.P.; Cimanga, K.; Van Poel, B.; Pieters, L.; Vlietinck, A.J.; Vanden Berghe, D. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod. 1998, 61, 71–76. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; de Camargo, A.C.; Shahidi, F. Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. J. Agric. Food Chem. 2016, 64, 6584–6604. [Google Scholar] [CrossRef]
- Ribeiro, D.; Freitas, M.; Tomé, S.M.; Silva, A.M.S.; Porto, G.; Cabrita, E.J.; Marques, M.M.B.; Fernandes, E. Inhibition of LOX by flavonoids: A structure-activity relationship study. Eur. J. Med. Chem. 2016, 72, 137–145. [Google Scholar] [CrossRef]
- Aminudin, N.I.; Ahmad, F.; Taher, M.; Zulkifli, R.M. α-Glucosidase and 15-Lipoxygenase inhibitory activities of phytochemicals from Calophyllum symingtonianum. Nat. Prod. Commun. 2015, 10, 1585–1587. [Google Scholar] [CrossRef] [Green Version]
- Traykova, M.; Kostova, I. Coumarin derivatives and oxidative stress. Int. J. Pharmacol. 2005, 1, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, R.J.; Miranda, C.L.; Stevens, J.F.; Deinzer, M.L.; Buhler, D.R. Influence of prenylated and non-prenylated flavonoids on liver microsomal lipid peroxidation and oxidative injury in rat hepatocytes. Food Chem. Toxicol. 2001, 39, 437–445. [Google Scholar] [CrossRef]
- Foti, J.J.; Devadoss, B.; Winkler, J.A.; Collins, J.J.; Walker, G.C. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 2012, 336, 315–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, S.M.; Delle Monache, F.; Smânia, A., Jr. Antibacterial activity of coumarins. Z. Naturforsch. 2005, 60, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Kayser, O.; Kolodziej, H. Antibacterial activity of simple coumarins: Structural requirements for biological activity. Z. Naturforsch. 1999, 54c, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Mora-Pale, M.; Bhan, N.; Masuko, S.; James, P.; Wood, J.; McCallum, S.; Linhardt, R.J.; Dordick, J.S.; Koffas, M.A. Antimicrobial mechanism of resveratrol-trans-dihydrodimer produced from peroxidase-catalyzed oxidation of resveratrol. Biotechnol. Bioeng. 2015, 112, 2417–2428. [Google Scholar] [CrossRef]
- Zengin, G.; Ceylan, R.; Katanić, J.; Mollica, A.; Aktumsek, A.; Boroja, T.; Matić, S.; Mihailović, V.; Stanić, S.; Aumeeruddy-Elalfi, Z.; et al. Combining in vitro, in vivo and in silico approaches to evaluate nutraceutical potentials and chemical fingerprints of Moltkia aurea and Moltkia coerulea. Food Chem. Toxicol. 2017, 107, 540–553. [Google Scholar] [CrossRef]
- De Freitas Araújo, M.G.; Hilário, F.; Vilegas, W.; dos Santos, L.C.; Brunetti, I.L.; Sotomayor, C.E.; Bauab, T.M. Correlation among antioxidant, antimicrobial, hemolytic, and antiproliferative properties of Leiothrix spiralis leaves extract. Int. J. Mol. Sci. 2012, 13, 9260–9277. [Google Scholar] [CrossRef]
- Wlaschek, M.; Scharffetter-Kochanek, K. Oxidative stress in chronic venous leg ulcers. Wound Repair Regen. 2005, 13, 452–461. [Google Scholar] [CrossRef]
- Schäfer, M.; Werner, S. Oxidative stress in normal and impaired wound repair. Pharmacol. Res. 2008, 58, 165–171. [Google Scholar] [CrossRef]
Compound | TPC a | TFC b | XO Inhibition | O2•− Quenching | MCC | PTA Inhibition d | 15-LOX Inhibition e |
---|---|---|---|---|---|---|---|
(mg GAE/g) | (mg RUE/g) | IC50 c (µg/mL) | IC50 (µg/mL) | (µmol EDTAE/g) | (%) | (%) | |
Oils and fractions | |||||||
Tamanu oil (TO) | 14 ± 2 | 3.8 ± 0.5 | 951 ± 6 | 565 ± 6 | 21 ± 1 | 10 ± 1 | 12 ± 1 |
Sesame oil | 12 ± 1 | 1.5 ± 0.4 | 831 ± 4 | 469 ± 5 | 20 ± 2 | 12 ± 1 | 13 ± 3 |
DTO | ~0 | ~0 | >1000 | >1000 | ~0 | ~0 | ~0 |
MeTO | 44 ± 3 * | 15.4 ± 0.7 *# | 152 ± 2 *# | 22.1 ± 0.5 *# | 31 ± 3.1 *# | 31 ± 2 *# | 25 ± 2 *# |
EtTO | 51 ± 2 * | 19.4 ± 0.2 * | 102 ± 1 * | 18.0 ± 0.1 * | 45 ± 2 * | 62 ± 4 * | 31 ± 2 * |
MeETR | 35 ± 2 * | 10.9 ± 0.8 * | 152 ± 2 *# | 25.1 ± 0.5 *# | 30 ± 3 *# | 29 ± 4 *# | 19 ± 1 *# |
NTR | 79 ± 2 *# | 22.3 ± 0.3 * | 93 ± 2 *# | 20.7 ± 1.1 * | 95 ± 4 *# | 72 ± 5 *# | 45 ± 2 *# |
ATR | 57 ± 2 *# | 34.9 ± 0.4 *# | 71 ± 6 *# | 17.7 ± 0.1 * | 83 ± 5 *# | 69 ± 3 *# | 60 ± 4 *# |
Fraction Pf | – | – | 120 ± 8 * | 14.1 ± 0.2 *# | 34 ± 2 *# | 65 ± 4 * | 56 ± 2 *# |
Standard phenolic and flavonoid compounds | |||||||
Caffeic acid | – | – | 39.5 ± 2.1 | 0.013 ± 0.06 | 125± 5 | – | 45 ± 1 |
Gallic acid | – | – | 41.1 ± 1.2 | 0.022 ± 0.01 | 90 ± 3 | – | 28 ± 2 |
Quercetin | – | – | 1.52 ± 0.12 | 0.083 ± 0.06 | 105 ± 3 | – | 83 ± 2 |
Allopurinol | – | – | 0.13 ± 0.01 | – | – | – | – |
Diclofenac | – | – | – | – | – | 64 ± 2 | – |
Compounds | DPPH | TRAP | % by Weight in TO a or EtTO b | % by Weight in Subfractions | AlogP c |
---|---|---|---|---|---|
Oils and fractions | IC50 (mg/mL) d | TE e | |||
TO | 432 ± 1.1 | 67 ± 11 | |||
Sesame oil | 668 ± 1.2 * | 28 ± 6 * | |||
DTO | >800 * | ~0 | ~60 | ||
MeTO | 40.2 ± 1.1 *# | 112 + 14 *# | 18.2 a | ||
EtTO | 26.1 ± 0.1 | 280 ± 12 * | 15.7 a | ||
NTR | 10.2 ± 1.1 *# | 172 + 14 *# | 50.0 b | ||
ATR | 5.1 ± 0.4 *# | 340 ± 11 *# | 48.3 b | ||
NTR metabolites | IC50 (µM) | TE | % by weight in NTR | AlogP | |
Inophyllum P | 26.2 ± 3.1 | 4.11 ± 0.10 | 0.05 | 0.121 | 4.56 |
Fraction Pf | 40.9 ± 1.1 | 3.57 ± 0.39 | 0.04 e | 0.102 | ND g |
Tamanolide D | 779 ± 7 | 1.36 ± 0.20 | 0.02 | 0.038 | 4.45 |
Inophyllum C | 701 ± 9 | 0.21 ± 0.04 | 0.042 | 0.078 | 4.55 |
Inophyllum E | 481 ± 7 | 0.91 ± 0.04 | 0.014 | 0.029 | 4.55 |
Calophyllolide | ~890 | 0.48 ± 0.08 | 0.019 | 0.038 | 5.3 |
Calanolide GUT 70 | ~900 | 0.30 ± 0.03 | 0.024 | 0.048 | 4.96 |
Calanolide A | ~950 | 0.40 ± 0.02 | <0.02 | 0.021 | 4.18 |
Calanolide D | >1000 | ND | 0.007 | 0.015 | 4.31 |
12-Oxocalanolide A | >1000 | ND | 0.005 | 0.011 | 4.31 |
ATR metabolites | IC50 (µM) | TE | % by weight in ATR | AlogP | |
Inocalophyllin B | 583 ± 17 | 1.07 ± 0.06 | 0.063 | 0.2 | 4.7 |
Standards | IC50 (µM) | TE | AlogP | ||
Trolox | 21.2 ± 0.8 | 1 | 2.75 | ||
Sesamol | 66.9 ± 3.1 | 1.34 ± 0.09 | 0.89 | ||
BHA | 94.9 ± 6.1 | 3.46 ± 0.20 | 4.14 | ||
Caffeic acid | 18.1 ± 0.21 | 2.98 ± 0.14 | 2.6 | ||
Quercetin | 14.1 ± 0.21 | 6.31 ± 0.24 | 1.81 |
Compounds | Microorganisms | |||
---|---|---|---|---|
S. aureus | M. tuberculosis | 3T3 Fibroblasts | A549 Cells | |
Diameter (mm) a | MIC (μg/mL) b | IC50 (μg/mL) c | IC50 (μg/mL) | |
TO | <5 | >150 | ~20 | ~10 |
MeTO | <5 | >150 | 120 ± 3 | 50.1 ± 2.6 |
EtTO | 13 ± 1 * | 17.3 ± 0.2 * | 108 ± 4 | 25.6 ± 0.9 * |
NTR | 23 ± 3 *# | 2.8 ± 0.3 *# | 80 ± 8 | 17.7 ± 2.1 *# |
ATR | 19 ± 2 *# | 10.2 ± 0.5 *# | 150 ± 6 | 94.7 ± 3.3 *# |
Fraction Pd | 19 ± 2 *# | 7.5 ± 0.2 *# | 89 ± 8 *# | 25.5 ±2.1 *# |
Inophyllum P | 17 ± 1 *# | 5.7 ± 0.3 *# | 92 ± 4 * | 11.3 ± 0.6 * |
Inophyllum E | 14 ± 2 * | >15 | 120 ± 9 * | 44.8 ± 2.2 *# |
Tamanolide D | 12 ± 2 * | 5.1 ± 0.3 *# | 46 ±5 *# | 9.3 ± 1.2 * |
Calophyllolide | 19 ± 3 *# | >15 | 49 ± 4 *# | 3.1 ± 0.9 *# |
12-oxo-Calanolide A | 18 ± 2 *# | >15 | 36 ± 8 *# | 1.9 ± 0.1 *# |
Calanolide A | 14 ± 1 * | 4.1 ± 0.3 *# | 52 ± 8 *# | 8.2 ± 1.7 *# |
Inocalophyllin B | 20 ± 2 * | > 15 | 41 ± 5 *# | 4.2 ± 1.3 *# |
Oxacillin | 30 ± 1 | NDe | ND | ND |
Streptomycin | ND | 0.4 ± 0.1 | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassien, M.; Mercier, A.; Thétiot-Laurent, S.; Culcasi, M.; Ricquebourg, E.; Asteian, A.; Herbette, G.; Bianchini, J.-P.; Raharivelomanana, P.; Pietri, S. Improving the Antioxidant Properties of Calophyllum inophyllum Seed Oil from French Polynesia: Development and Biological Applications of Resinous Ethanol-Soluble Extracts. Antioxidants 2021, 10, 199. https://doi.org/10.3390/antiox10020199
Cassien M, Mercier A, Thétiot-Laurent S, Culcasi M, Ricquebourg E, Asteian A, Herbette G, Bianchini J-P, Raharivelomanana P, Pietri S. Improving the Antioxidant Properties of Calophyllum inophyllum Seed Oil from French Polynesia: Development and Biological Applications of Resinous Ethanol-Soluble Extracts. Antioxidants. 2021; 10(2):199. https://doi.org/10.3390/antiox10020199
Chicago/Turabian StyleCassien, Mathieu, Anne Mercier, Sophie Thétiot-Laurent, Marcel Culcasi, Emilie Ricquebourg, Alice Asteian, Gaëtan Herbette, Jean-Pierre Bianchini, Phila Raharivelomanana, and Sylvia Pietri. 2021. "Improving the Antioxidant Properties of Calophyllum inophyllum Seed Oil from French Polynesia: Development and Biological Applications of Resinous Ethanol-Soluble Extracts" Antioxidants 10, no. 2: 199. https://doi.org/10.3390/antiox10020199
APA StyleCassien, M., Mercier, A., Thétiot-Laurent, S., Culcasi, M., Ricquebourg, E., Asteian, A., Herbette, G., Bianchini, J. -P., Raharivelomanana, P., & Pietri, S. (2021). Improving the Antioxidant Properties of Calophyllum inophyllum Seed Oil from French Polynesia: Development and Biological Applications of Resinous Ethanol-Soluble Extracts. Antioxidants, 10(2), 199. https://doi.org/10.3390/antiox10020199