Impact of Mycotoxins on Animals’ Oxidative Status
Abstract
:1. Introduction
2. The Effect of Mycotoxins on the Antioxidant Status of Pigs and Poultry
3. The Effect of Mycotoxins on the Antioxidant Status of Ruminants
4. Prevention Strategies and Detoxification Technologies for the Mitigation of Mycotoxins in Animal Diets
4.1. Good Agricultural Practices
4.2. Physical Detoxification Techniques
4.3. Chemical Detoxification Techniques
4.4. Biological Detoxification Techniques
4.5. Feed Additives
5. The Biotransformation of Mycotoxins and Presence in Animal Products
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vila-Donat, P.; Marín, S.; Sanchis, V.; Ramos, A. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Ayofemi Olalekan Adeyeye, S. Aflatoxigenic fungi and mycotoxins in food: A review. Crit. Rev. Food Sci. Nutr. 2019, 60, 709–721. [Google Scholar] [CrossRef]
- Rushing, B.; Selim, M. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2014, 124, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Taniwaki, M.; Pitt, J.; Magan, N. Aspergillus species and mycotoxins: Occurrence and importance in major food commodities. Curr. Opin. Food Sci. 2018, 23, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Patriarca, A.; Fernández Pinto, V. Prevalence of mycotoxins in foods and decontamination. Curr. Opin. Food Sci. 2017, 14, 50–60. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the Risk for Public and Animal Health Related to the Presence of Sterigmatocystin in Food and Feed. EFSA J. 2013, 11, 3254. [Google Scholar] [CrossRef]
- Ráduly, Z.; Szabó, L.; Madar, A.; Pócsi, I.; Csernoch, L. Toxicological and Medical Aspects of Aspergillus-Derived Mycotoxins Entering the Feed and Food Chain. Front. Microbiol. 2020, 10, 2908. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Dou, X.W.; Zhang, C.; Logrieco, A.; Yang, M.H. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Caceres, I.; Al Khoury, A.; El Khoury, R.; Lorber, S.; Oswald, I.P.; El Khoury, A.; Atoui, A.; Puel, O.; Bailly, J.-D. Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins 2020, 12, 150. [Google Scholar] [CrossRef] [Green Version]
- Nieto, C.H.D.; Granero, A.M.; Zon, M.A.; Fernández, H. Sterigmatocystin: A Mycotoxin to Be Seriously Considered. Food Chem. Toxicol. 2018, 118, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.; Mengelers, M.; Yang, S.; De Saeger, S.; De Boevre, M. Mycotoxin Biomarkers of Exposure: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1127–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beuerle, T.; Benford, D.; Brimer, L.; Cottrill, B.; Doerge, D.; Dusemund, B.; Farmer, P.; Fürst, P.; Humpf, H.; Mulder, P.P.J. Scientific Opinion on Ergot Alkaloids in Food and Feed. EFSA J. 2012, 10, 2798. [Google Scholar]
- Hojnik, N.; Cvelbar, U.; Tavčar-Kalcher, G.; Walsh, J.L.; Križaj, I. Mycotoxin Decontamination of Food: Cold Atmospheric Pressure Plasma versus “Classic” Decontamination. Toxins 2017, 9, 151. [Google Scholar] [CrossRef]
- Berthiller, F.; Cramer, B.; Iha, M.H.; Krska, R.; Lattanzio, V.M.T.; MacDonald, S.; Malone, R.J.; Maragos, C.; Solfrizzo, M.; Stranska-Zachariasova, M.; et al. Developments in Mycotoxin Analysis: An Update for 2016–2017. World Mycotoxin J. 2018, 11, 5–32. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on the Risks for Animal and Public Health Related to the Presence of Phomopsins in Feed and Food. EFSA J. 2012, 10, 2567. [Google Scholar] [CrossRef]
- Książkiewicz, M.; Wójcik, K.; Irzykowski, W.; Bielski, W.; Rychel, S.; Kaczmarek, J.; Plewiński, P.; Rudy, E.; Jędryczka, M. Validation of Diaporthe toxica resistance markers in European Lupinus angustifolius germplasm and identification of novel resistance donors for marker-assisted selection. J. Appl. Genet. 2020, 61, 1–12. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the Risks for Public and Animal Health Related to the Presence of Citrinin in Food and Feed. EFSA J. 2012, 10, 2605. [Google Scholar]
- Li, P.; Su, R.; Yin, R.; Lai, D.; Wang, M.; Liu, Y.; Zhou, L. Detoxification of Mycotoxins through Biotransformation. Toxins 2020, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Ingenbleek, L.; Sulyok, M.; Adegboye, A.; Hossou, S.E.; Koné, A.Z.; Oyedele, A.D.; Kisito, C.S.K.J.; Koreissi Dembélé, Y.; Eyangoh, S.; Verger, P.; et al. Regional Sub-Saharan Africa Total Diet Study in Benin, Cameroon, Mali and Nigeria Reveals the Presence of 164 Mycotoxins and Other Secondary Metabolites in Foods. Toxins 2019, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on the Risks for Animal and Public Health Related to the Presence Of Alternariatoxins in Feed and Food. EFSA J. 2011, 10, 2407. [Google Scholar]
- Puntscher, H.; Kütt, M.L.; Skrinjar, P.; Mikula, H.; Podlech, J.; Fröhlich, J.; Marko, D.; Warth, B. Tracking emerging mycotoxins in food: Development of an LC-MS/MS method for free and modified Alternaria toxins. Anal. Bioanal. Chem. 2018, 410, 4481–4494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegulo, S. Factors Influencing Deoxynivalenol Accumulation in Small Grain Cereals. Toxins 2012, 4, 1157–1180. [Google Scholar] [CrossRef] [PubMed]
- Mannaa, M.; Kim, K.D. Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage. Mycobiology 2017, 45, 240–254. [Google Scholar] [CrossRef]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Bandyopadhyay, R.; Müller, J.; Vanlauwe, B. Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control 2017, 72, 110–122. [Google Scholar] [CrossRef]
- Fraeyman, S.; Croubels, S.; Devreese, M.; Antonissen, G. Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics. Toxins 2017, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, E.O.; Bracarense, A.P.F.L.; Oswald, I.P. Mycotoxins and oxidative stress: Where are we? World Mycotoxin J. 2018, 11, 113–134. [Google Scholar] [CrossRef]
- Collin, F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 95. [Google Scholar] [CrossRef] [Green Version]
- Dupré-Crochet, S.; Erard, M.; Nüβe, O. ROS production in phagocytes: Why, when, and where? J. Leukoc. Biol. 2013, 94, 657–670. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moussa, Z.; Judeh, Z.M.; Ahmed, S.A. Nonenzymatic Exogenous and Endogenous Antioxidants. In Free Radical Medicine and Biology; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Yang, L.; Yu, Z.; Hou, J.; Deng, Y.; Zhou, Z.; Zhao, Z.; Cui, J. Toxicity and oxidative stress induced by T-2 toxin and HT-2 toxin in broilers and broiler hepatocytes. Food Chem. Toxicol. 2015, 87, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Weatherly, M.E.; Pate, R.T.; Rottinghaus, G.E.; Roberti Filho, F.O.; Cardoso, F.C. Physiological responses to a yeast and clay-based adsorbent during an aflatoxin challenge in Holstein cows. Anim. Feed Sci. Technol. 2018, 235, 147–157. [Google Scholar] [CrossRef]
- Sulzberger, S.A.; Melnichenko, S.; Cardoso, F.C. Effects of clay after an aflatoxin challenge on aflatoxin clearance, milk production, and metabolism of Holstein cows. J. Dairy Sci. 2017, 100, 1856–1869. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.L.; Wang, Y.M.; Zhou, H.L.; Liu, J.X. Effects of dietary adsorbent on milk aflatoxin M1 content and the health of lactating dairy cows exposed to long-term aflatoxin B1 challenge. J. Dairy Sci. 2018, 101, 8944–8953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A 2014, 1362, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.H.; Wang, X.; Yang, W.; Nüssler, A.K.; Xiong, L.Y.; Kuca, K.; Dohnal, V.; Zhang, X.J.; Yuan, Z.H. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: An update. Arch. Toxicol. 2014, 88, 1309–1326. [Google Scholar] [CrossRef]
- Smith, J.E.; Anderson, R.A. Mycotoxins and Animal Foods; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Smith, J.E.; Lewis, C.W.; Anderson, J.G.; Solomons, G.L. Mycotoxins in Human Nutrition and Health; European Commission: Brussels, Belgium, 1994. [Google Scholar]
- Charoenpornsook, K.; Kavisarasai, P. Mycotoxins in animal feedstuff of Thailand. Curr. Appl. Sci. Technol. 2006, 6, 25–28. [Google Scholar]
- Adhikari, M.; Negi, B.; Kaushik, N.; Adhikari, A.; Al-Khedairy, A.A.; Kaushik, N.K.; Choi, E.H. T-2 mycotoxin: Toxicological effects and decontamination strategies. Oncotarget 2017, 8, 33933–33952. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, Q.; Wan, D.; Liu, Q.; Chen, D.; Liu, Z.; Matinez-Larranaga, M.R.; Martinez, M.A.; Anadon, A.; Yuan, Z. Fumonisins: Oxidative stress-mediated toxicity and metabolism in vivo and in vitro. Arch. Toxicol. 2016, 90, 81–101. [Google Scholar] [CrossRef] [PubMed]
- Assi, M. The differential role of reactive oxygen species in early and late stages of cancer. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 313, R646–R653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, I.S.; Woodside, J.V. Antioxidants and health and disease. J. Clin. Pathol. 2001, 54, 176–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? Br. J. Pharmacol. 2004, 142, 231–255. [Google Scholar] [CrossRef] [Green Version]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Mezes, M.; Barta, M.; Nagy, G. Comparative investigation on the effect of T-2 mycotoxin on lipid peroxidation and antioxidant status in different poultry species. Res. Vet. Sci. 1999, 66, 19–23. [Google Scholar] [CrossRef]
- Galvano, F.; Piva, A.; Ritieni, A.; Galvano, G. Dietary strategies to counteract the effects of mycotoxins: A review. J. Food Prot. 2001, 64, 120–131. [Google Scholar] [CrossRef]
- Chen, J.; Chen, K.; Yuan, S.; Peng, X.; Fang, J.; Wang, F.; Cui, H.; Chen, Z.; Yuan, J.; Geng, Y. Effects of aflatoxin B1 on oxidative stress markers and apoptosis of spleens in Broilers. Toxicol. Ind. Health 2016, 32, 278–284. [Google Scholar] [CrossRef]
- Shahid, A.R.; Sun, L.; Zhang, N.; Khalil, M.M.; Gao, X.; Ling, Z.; Zhu, L.; Khan, F.A.; Zhang, J.; Qi, D. Ameliorative Effects of Grape Seed Proanthocyanidin Extract on Growth Performance, Immune Function, Antioxidant Capacity, Biochemical Constituents, Liver Histopathology and Aflatoxin Residues in Broilers Exposed to Aflatoxin B1. Toxins 2017, 9, 371. [Google Scholar]
- Halliwell, B.; Chirico, S. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 1993, 57, 715S–725S. [Google Scholar] [CrossRef] [Green Version]
- Shridhar, M.; Suganthi, R.U.; Thammiaha, V. Effect of dietary resveratrol in ameliorating aflatoxin B1 -induced changes in broiler birds. J. Anim. Physiol. Anim. Nutr. 2014, 99, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
- Eraslan, G.; Akdoúan, M.; Yarsan, E.; Þahündokuyucu, F.; Eþsüz, D.; Altintaþ, L. The Effects of Aflatoxins on Oxidative Stress in Broiler Chickens. Turk. J. Vet. Anim. Sci. 2005, 29, 701–707. [Google Scholar]
- Li, K.; Cao, Z.; Guo, Y.; Tong, C.; Yang, S.; Long, M.; Li, P.; He, J. Selenium Yeast Alleviates Ochratoxin A-Induced Apoptosis and Oxidative Stress via Modulation of the PI3K/AKT and Nrf2/Keap 1 Signaling Pathways in the Kidneys of Chickens. Oxidat. Med. Cell. Longev. 2020, 12, 143. [Google Scholar]
- Oskoueian, E. Cytoprotective effect of palm kernel cake phenolics against aflatoxin B1- induced cell damage and its underlying mechanism of action. BMC Complement. Altern. Med. 2015, 15, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dvorska, J.E.; Pappas, A.C.; Karadas, F.; Speake, B.K.; Surai, P.F. Protective effect of modified glucomannans and organic selenium against antioxidant depletion in the chicken liver due to T-2 toxin-contaminated feed consumption. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 145, 582–587. [Google Scholar] [CrossRef]
- Hussein, H.S.; Brasel, J.M. Toxicity, metabolism and impact of mycotoxins on humans and animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef]
- Weaver, A.C.; See, M.T.; Hansen, J.A.; Kim, Y.B.; De Souza, A.L.P.; Middleton, T.F.; Kim, S.W. The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig growth, organ, health, and immune status during chronic exposure. Toxins 2013, 5, 1261–1281. [Google Scholar] [CrossRef] [Green Version]
- Thanh, B.V.L.; Lemay, M.; Bastien, A.; Lapointe, J.; Lessard, M.; Chorfi, Y.; Guay, F. The potential effects of antioxidant feed additives in mitigating the adverse effects of corn naturally contaminated with Fusarium mycotoxins on antioxidant systems in the intestinal mucosa, plasma, and liver in weaned pigs. Mycotoxin Res. 2016, 32, 99–116. [Google Scholar] [CrossRef]
- Sun, Y.; Park, I.; Guo, J.; Weaver, A.C.; Kim, S.W. Impacts of low level aflatoxin in feed and the use of modified yeast cell wall extract on growth and health of nursery pigs. Anim. Nutr. 2015, 1, 177–183. [Google Scholar] [CrossRef]
- Da Silva, E.O.; Gerez, J.R.; Hohmann, M.S.N.; Verri, W.A.; Bracarense, A.P.F. Phytic acid Decreases Oxidative Stress and Intestinal Lesions Induced by Fumonisin B1 and Deoxynivalenol in Intestinal Explants of Pigs. Toxins 2019, 11, 18. [Google Scholar] [CrossRef] [Green Version]
- Taranu, I.; Marin, D.E.; Palade, M.; Pistol, G.C.; Chedea, V.S.; Gras, M.A.; Rotar, C. Assessment of the efficacy of a grape seed waste in counteracting the changes induced by aflatoxin B1 contaminated diet on performance, plasma, liver and intestinal tissues of pigs after weaning. Toxicon 2019, 162, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Deng, H.; Deng, Y.; Liang, Z.; Deng, J.; Zuo, Z.; Hu, Y.; Shen, L.; Yu, S.; Cao, S. Combined effects of deoxynivalenol and zearalenone on oxidative injury and apoptosis in porcine splenic lymphocytes in vitro. Exp. Toxicol. Pathol. 2017, 69, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Sorrenti, V.; Di Giacomo, C.; Acquaviva, R.; Barbagallo, I.; Barbagallo, M.; Galvano, F. Toxicity of ochratoxin A and its modulation by antioxidants: A review. Toxins 2013, 5, 1742–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhaya, S.D.; Sung, H.G.; Lee, C.H.; Lee, S.Y.; Kim, S.W.; Jo, K.J.; Ha, J.K. Comparative study on the aflatoxin B1 degradation ability of rumen fluid from Holstein steers and Korean native goats. J. Vet. Sci. 2009, 10, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, I. A review on the effects of mycotoxins in dairy ruminants. Anim. Prod. Sci. 2014, 54, 1155–1165. [Google Scholar] [CrossRef]
- May, H.D.; Wu, Q.; Blake, C.K. Effects of the Fusarium spp. mycotoxins fusaric acid and deoxynivalenol on the growth of Ruminococcus albus and Methanobrevibacter ruminantium. Can. J. Microbiol. 2000, 46, 692–699. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Frisvad, J.C.; Bertuzzi, T.; Nielsen, K.F. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects. Toxins 2015, 7, 3057–3111. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, X.; Zou, Y.; Yang, Z.; Li, S.; Cao, Z. Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp. J. Anim. Sci. Biotechnol. 2013, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.W.; Burhans, W.S.; Overton, T.R. Protein nutrition in late pregnancy, maternal protein reserves and lactation performance in dairy cows. Proc. Nutr. Soc. 2000, 59, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M.J.; Pye, D.; Palomero, J. The production of reactive oxygen and nitrogen species by skeletal muscle. J. Appl. Physiol. 2007, 102, 1664–1670. [Google Scholar] [CrossRef] [Green Version]
- Kuhla, B.; Nürnberg, G.; Albrecht, D.; Görs, S.; Hammon, H.M.; Metges, C.C. Involvement of Skeletal Muscle Protein, Glycogen, and Fat Metabolism in the Adaptation on Early Lactation of Dairy Cows. J. Proteome Res. 2011, 10, 4252–4262. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Guo, C.; Hu, F.; Zhu, W.; Mao, S. Undernutrition-induced lipid metabolism disorder triggers oxidative stress in maternal and fetal livers using a model of pregnant sheep. FASEB J. 2020, 34, 6508–6520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of multi-mycotoxin exposure in Southern Italy by urinary multi-biomarker determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zheng, N.; Fan, C.; Cheng, M.; Wang, S.; Jabar, A.; Wang, J.Q.; Cheng, J.B. Effects of aflatoxin B1combined with ochratoxin A and/or zearalenone on metabolism, immune function, and antioxidant status in lactating dairy goats. Asian Australas J. Anim. Sci. 2018, 31, 505–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozer, J.; Ratner, M.; Shaw, M.; Bailey, W.; Schomaker, S. The current state of serum biomarkers of hepatotoxicity. Toxicology 2008, 245, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.; Kim, S.; Chung, H.T.; Pae, H.O. Reactive Oxygen Species in the Activation of MAP Kinases. Methods Enzymol. 2013, 528, 27–48. [Google Scholar] [PubMed]
- Costa-Pereira, A.P. Regulation of IL-6-type cytokine responses by MAPKs. Biochem. Soc. Trans. 2014, 42, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.; Abd El-Hafeez, A.; Ibrahim, E.; Abd El Mola, A. Ameliorating effects of organic and inorganic mycotoxin binders on the performance of Ossimi sheep. Egypt. J. Sheep Goats Sci. 2019, 14, 33–48. [Google Scholar]
- Wang, J.; Lin, L.; Jiang, Q.; Huang, W. Effect of supplemental lactic acid bacteria on growth performance, glutathione turnover and aflatoxin B1 removal in lambs. Czech J. Anim. Sci. 2019, 64, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Dasari, S.; Ganjayi, M.S.; Oruganti, L.; Balaji, H.; Meriga, B. Glutathione s-transferases detoxify endogenous and exogenous toxic agents-mini review. J. Dairy Vet. Anim. Res. 2017, 5, 157–159. [Google Scholar] [CrossRef] [Green Version]
- Nayakwadi, S.; Ramu, R.; Kumar Sharma, A.; Kumar Gupta, V.; Rajukumar, K.; Kumar, V.; Shirahatti, P.S.; Rashmi, L.; Basalingappa, K.M. Toxicopathological studies on the effects of T-2 mycotoxin and their interaction in juvenile goats. PLoS ONE 2020, 15, e0229463. [Google Scholar] [CrossRef]
- Schuster, A.; Hunder, G.; Fichtl, B.; Forth, W. Role of lipid peroxidation in the toxicity of T-2 toxin. Toxicon 1987, 25, 1321–1328. [Google Scholar] [CrossRef]
- Chaudhari, M.; Jayaraj, R.; Santhosh, S.R.; Rao, P.V.L. Oxidative damage and gene expression profile of antioxidant enzymes after T-2 toxin exposure in mice. J. Biochem. Mol. Toxicol. 2009, 23, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Y.; Zheng, N.; Zhao, S.; Li, S.; Wang, J. The biochemical and metabolic profiles of dairy cows with mycotoxins-contaminated diets. PeerJ 2020, 8, e8742. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.S.; Trevisi, E.; Ji, P.; Drackley, J.K.; Luchini, D.; Bertoni, G.; Loor, J.J. Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with Smartamine M or MetaSmart. J. Dairy Sci. 2014, 97, 7437–7450. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, Y.; Zheng, N.; Guo, L.; Song, X.; Zhao, S.; Wang, J. Biological System Responses of Dairy Cows to Aflatoxin B1 Exposure Revealed with Metabolomic Changes in Multiple Biofluids. Toxins 2019, 11, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, J.L.; Wang, Y.M.; Nennich, T.D.; Li, Y.; Liu, J.X. Transfer of dietary aflatoxin B1 to milk aflatoxin M1 and effect of inclusion of adsorbent in the diet of dairy cows. J. Dairy Sci. 2015, 98, 2545–2554. [Google Scholar] [CrossRef] [PubMed]
- Capraro, J.; Rossi, F. The effects of ochratoxin A on liver metabolism. Med. J. Nutr. Metab. 2012, 5, 177–185. [Google Scholar] [CrossRef]
- Elgioushy, M.M.; Elgaml, S.A.; El-Adl, M.M.; Hegazy, A.M.; Hashish, E.A. Aflatoxicosis in cattle: Clinical findings and biochemical alterations. Environ. Sci. Pollut. Res. 2020, 27, 35526–35534. [Google Scholar] [CrossRef]
- Pauletto, M.; Giantin, M.; Tolosi, R.; Bassan, I.; Barbarossa, A.; Zaghini, A.; Dacasto, M. Curcumin Mitigates AFB1-Induced Hepatic Toxicity by Triggering Cattle Antioxidant and Anti-inflammatory Pathways: A Whole Transcriptomic In Vitro Study. Antioxidants 2020, 9, 1059. [Google Scholar] [CrossRef]
- Wang, J.; Jin, Y.; Wu, S.; Yu, H.; Zhao, Y.; Fang, H.; Shen, J.; Zhou, C.; Fu, Y.; Li, R.; et al. Deoxynivalenol induces oxidative stress, inflammatory response and apoptosis in bovine mammary epithelial cells. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1663–1674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, J.; Fang, H.; Yu, H.; Zhao, Y.; Shen, J.; Zhou, C.; Jin, Y. Pterostilbene inhibits deoxynivalenol-induced oxidative stress and inflammatory response in bovine mammary epithelial cells. Toxicon 2021, 189, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Colavecchia, L.; Danieli, P.P.; Basiricò, L.; Lacetera, N.; Nardone, A.; Ronchi, B. Aflatoxin B1 and fumonisin B1 affect the oxidative status of bovine peripheral blood mononuclear cells. Toxicol. In Vitro 2011, 25, 684–691. [Google Scholar] [CrossRef]
- Papastergiadis, A.; Fatouh, A.; Jacxsens, L.; Lachat, C.; Shrestha, K.; Daelman, J.; Kolsteren, P.; Van Langenhove, H.; De Meulenaer, B. Exposure assessment of Malondialdehyde, 4-Hydroxy-2-(E)-Nonenal and 4-Hydroxy-2-(E)-Hexenal through specific foods available in Belgium. Food Chem. Toxicol. 2014, 73, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Saieva, C.; Peluso, M.; Palli, D.; Cellai, F.; Ceroti, M.; Selvi, V.; Bendinelli, B.; Assedi, M.; Munnia, A.; Masala, G. Dietary and lifestyle determinants of malondialdehyde DNA adducts in a representative sample of the Florence City population. Mutagenesis 2016, 31, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Pate, R.T.; Cardoso, F.C. Injectable trace minerals (selenium, copper, zinc, and manganese) alleviates inflammation and oxidative stress during an aflatoxin challenge in lactating multiparous Holstein cows. J. Dairy Sci. 2018, 101, 8532–8543. [Google Scholar] [CrossRef] [PubMed]
- Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed Sci. Technol. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Zhu, Y.; Hassan, Y.I.; Watts, C.; Zhou, T. Innovative technologies for the mitigation of mycotoxins in animal feed and ingredients—A review of recent patents. Anim. Feed Sci. Technol. 2016, 216, 19–29. [Google Scholar] [CrossRef]
- Haque, M.A.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M.K.; He, C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb. Pathog. 2020, 142, 104095. [Google Scholar] [CrossRef]
- Munkvold, G.P. Cultural and genetic approaches to managing mycotoxins in maize. Annu. Rev. Phytopathol. 2003, 41, 99–116. [Google Scholar] [CrossRef]
- Rachaputi, N.; Krosch, S.; Wright, G.C. Management practices to minimise pre-harvest aflatoxin contamination in Australian peanuts. Aust. J. Exp. Agric. 2002, 42, 595–605. [Google Scholar] [CrossRef]
- Hell, K.; Cardwell, K.F.; Setamou, M.; Poehling, H.M. The influence of storage practices on aflatoxin contamination in maize in four agroecological zones of Benin, West Africa. J. Stored Prod. Res. 2000, 36, 365–382. [Google Scholar] [CrossRef]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- He, J.; Zhou, T. Patented techniques for detoxification of mycotoxins in feeds and food matrices. Recent Pat. Food Nutr. Agric. 2010, 2, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Lanyasunya, T.P.; Wamae, L.W.; Musa, H.H.; Olowofeso, O.; Lokwaleput, I.K. The risk of mycotoxins contamination of dairy feed and milk on smallholder dairy farms in Kenya. Pak. J. Nutr. 2005, 4, 162–169. [Google Scholar]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodoni, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef]
- Calado, T.; Venâncio, A.; Abrunhosa, L. Irradiation for mold and mycotoxin control: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1049–1061. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Kuča, K.; Humpf, H.U.; Klímová, B.; Cramer, B. Fate of deoxynivalenol and deoxynivalenol-3-glucoside during cereal-based thermal food processing: A review study. Mycotoxin Res. 2017, 33, 79–91. [Google Scholar] [CrossRef]
- Adebo, O.A.; Molelekoa, T.; Makhuvele, R.; Adebiyi, J.A.; Oyedeji, A.B.; Gbashi, S.; Adefisoye, M.A.; Ogundele, O.M.; Njobeh, P.B. A review on novel non-thermal food processing techniques for mycotoxin reduction. Int. J. Food Sci. Technol. 2021, 56, 13–27. [Google Scholar] [CrossRef]
- Abd-Elsalam, K.A.; Hashim, A.F.; Alghuthaymi, M.A.; Said-Galiev, E. Nanobiotechnological strategies for toxigenic fungi and mycotoxin control. In Food Preservation; Academic Press: Cambridge, MA, USA, 2017; pp. 337–364. [Google Scholar]
- Bacon, C.W.; Yates, I.E.; Hinton, D.M.; Meredith, F. Biological control of Fusarium moniliforme in maize. Environ. Health Perspect. 2001, 109, 325–332. [Google Scholar]
- Cleveland, T.E.; Dowd, P.F.; Desjardins, A.E.; Bhatnagar, D.; Cotty, P.J. United States Department of Agriculture—Agricultural Research Service research on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in US crops. Pest Manag. Sci. 2003, 59, 629–642. [Google Scholar] [CrossRef] [PubMed]
- Dorner, J.W. Biological control of aflatoxin contamination of crops. J. Toxicol. Toxin Rev. 2004, 23, 425–450. [Google Scholar] [CrossRef]
- Jouany, J.P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim. Feed Sci. Technol. 2007, 137, 342–362. [Google Scholar] [CrossRef]
- Huwig, A.; Freimund, S.; Käppeli, O.; Dutler, H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 2001, 122, 179–188. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.; Nepovimova, E.; Wang, Y.; Yang, H.; Li, L.; Zhang, X.; Kuca, K. Antioxidant agents against trichothecenes: New hints for oxidative stress treatment. Oncotarget 2017, 8, 110708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strasser, A.; Carra, M.; Ghareeb, K.; Awad, W.; Böhm, J. Protective effects of antioxidants on deoxynivalenol-induced damage in murine lymphoma cells. Mycotoxin Res. 2013, 29, 203–208. [Google Scholar] [CrossRef]
- Diplock, A.T.; Charleux, J.L.; Grozier-Willi, G.; Kok, F.J.; Rice-Evans, C.; Roberfroid, M. Functional food science and defence against reactive oxidative species. Br. J. Nutr. 1998, 80 (Suppl. 1), S77–S112. [Google Scholar] [CrossRef] [Green Version]
- Rock, C.L.; Jacob, R.A.; Bowen, P. Update on the biological characteristics of the antioxidant micronutrients: Vitamin C, vitamin E, and the carotenoids. J. Am. Diet. Assoc. 1996, 96, 693–702. [Google Scholar] [CrossRef]
- Boussabbeh, M.; Salem, I.B.; Belguesmi, F.; Neffati, F.; Najjar, M.F.; Abid-Essefi, S.; Bacha, H. Crocin protects the liver and kidney from patulin-induced apoptosis in vivo. Environ. Sci. Pollut. Res. 2016, 23, 9799–9808. [Google Scholar] [CrossRef]
- Salem, I.B.; Boussabbeh, M.; Neffati, F.; Najjar, M.F.; Abid-Essefi, S.; Bacha, H. Zearalenone-induced changes in biochemical parameters, oxidative stress and apoptosis in cardiac tissue: Protective role of crocin. Hum. Exp. Toxicol. 2016, 35, 623–634. [Google Scholar] [CrossRef]
- Verma, R.J.; Mathuria, N. Curcumin ameliorates aflatoxin-induced lipid-peroxidation in liver and kidney of mice. Acta Pol. Pharm. 2008, 65, 195–202. [Google Scholar] [PubMed]
- Zheng, J.; Zhang, Y.; Xu, W.; Luo, Y.; Hao, J.; Shen, X.L.; Yang, X.; Li, X.; Huang, K. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A. Toxicol. Appl. Pharmacol. 2013, 268, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zuo, Z.; Zhao, C.; Zhang, Z.; Peng, G.; Cao, S.; Hu, Y.; Yu, S.; Zhong, Z.; Deng, J.; et al. Protective role of selenium in the activities of antioxidant enzymes in piglet splenic lymphocytes exposed to deoxynivalenol. Environ. Toxicol. Pharmacol. 2016, 47, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Matrella, R.; Monaci, L.; Milillo, M.A.; Palmisano, F.; Tantillo, M.G. Ochratoxin A determination in paired kidneys and muscle samples from swines slaughtered in southern Italy. Food Control 2006, 17, 114–117. [Google Scholar] [CrossRef]
- Bailly, J.D.; Guerre, P. Mycotoxins in meat and processed meat products. In Safety of Meat and Processed Meat; Springer: New York, NY, USA, 2009; pp. 83–124. [Google Scholar]
- Dall’Asta, C.; Galaverna, G.; Bertuzzi, T.; Moseriti, A.; Pietri, A.; Dossena, A.; Marchelli, R. Occurrence of ochratoxin A in raw ham muscle, salami and dry-cured ham from pigs fed with contaminated diet. Food Chem. 2010, 120, 978–983. [Google Scholar] [CrossRef]
- Gareis, M.; Scheuer, R. Ochratoxin A in meat and meat products. Arch. Lebensm. 2000, 51, 102–104. [Google Scholar]
- Perši, N.; Pleadin, J.; Kovačević, D.; Scortichini, G.; Milone, S. Ochratoxin A in raw materials and cooked meat products made from FUM -treated pigs. Meat Sci. 2014, 96, 203–210. [Google Scholar] [CrossRef]
- Montanha, F.P.; Anater, A.; Burchard, J.F.; Luciano, F.B.; Meca, G.; Manyes, L.; Pimpão, C.T. Mycotoxins in dry-cured meats: A review. Food Chem. Toxicol. 2018, 111, 494–502. [Google Scholar] [CrossRef]
- Zaghini, A.; Martelli, G.; Roncada, P.; Simioli, M.; Rizzi, L. Mannanoligosaccharides and aflatoxin B1 in feed for laying hens: Effects on egg quality, aflatoxins B1 and M1 residues in eggs, and aflatoxin B1 levels in liver. Poult. Sci. 2005, 84, 825–832. [Google Scholar] [CrossRef]
- Jia, R.; Ma, Q.; Fan, Y.; Ji, C.; Zhang, J.; Liu, T.; Zhao, L. The toxic effects of combined aflatoxins and zearalenone in naturally contaminated diets on laying performance, egg quality and mycotoxins residues in eggs of layers and the protective effect of Bacillus subtilis biodegradation product. Food Chem. Toxicol. 2016, 90, 142–150. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Nisar, S.; Asi, M.R.; Jinap, S. Natural incidence of aflatoxins, ochratoxin A and zearalenone in chicken meat and eggs. Food Control 2014, 43, 98–103. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain; Alexander, J.; Autrup, H.; Bard, D.; Carere, A.; Costa, L.G.; Cravedi, J.-P.; Di Domenico, A.; Fanelli, R.; Fink-Gremmels, J.; et al. Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to zearalenone as undesirable substance in animal feed. EFSA J. 2004, 89, 1–35. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain; Alexander, J.; Autrup, H.; Bard, D.; Carere, A.; Costa, L.G.; Cravedi, J.-P.; Di Domenico, A.; Fanelli, R.; Fink-Gremmels, J.; et al. Opinion of the scientific panel on contaminants in food chain on a request from the commission related to fumonisins as undesirable substances in animal feed. EFSA J. 2005, 235, 1–32. [Google Scholar]
- Flores-Flores, M.E.; Lizarraga, E.; de Cerain, A.L.; González-Peñas, E. Presence of mycotoxins in animal milk: A review. Food Control 2015, 53, 163–176. [Google Scholar] [CrossRef]
- Fink-Gremmels, J. Mycotoxins in cattle feeds and carry-over to dairy milk: A review. Food Addit. Contam. Part A 2008, 25, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Veldman, A.; Meijs, J.A.C.; Borggreve, G.J.; Heeres-van, D.T. Carry-over of aflatoxin from cows’ food to milk. Anim. Sci. 1992, 55, 163–168. [Google Scholar] [CrossRef]
- Becker-Algeri, T.A.; Castagnaro, D.; de Bortoli, K.; de Souza, C.; Drunkler, D.A.; Badiale-Furlong, E. Mycotoxins in bovine milk and dairy products: A review. J. Food Sci. 2016, 81, 544–552. [Google Scholar] [CrossRef] [Green Version]
- Ardic, M.; Karakaya, Y.; Atasever, M.; Adiguzel, G. Aflatoxin M1 levels of Turkish white brined cheese. Food Control 2009, 20, 196–199. [Google Scholar] [CrossRef]
- Govaris, A.; Roussi, V.; Koidis, P.A.; Botsoglou, N.A. Distribution and stability of aflatoxin M1 during production and storage of yoghurt. Food Addit. Contam. 2002, 19, 1043–1050. [Google Scholar] [CrossRef]
- Pandey, I.; Chauhan, S.S. Studies on production performance and toxin residues in tissues and eggs of layer chickens fed on diets with various concentrations of aflatoxin AFB1. Br. Poult. Sci. 2007, 48, 713–723. [Google Scholar] [CrossRef]
- Lee, J.T.; Jessen, K.A.; Beltran, R.; Starkl, V.; Schatzmayr, G.; Borutova, R.; Caldwell, D.J. Effects of mycotoxin-contaminated diets and deactivating compound in laying hens: 2. Effects on white shell egg quality and characteristics. Poult. Sci. 2012, 91, 2096–2104. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Kuśnirek, M.; Antoszkiewicz, Z.; Lipiński, K.; Fijałkowska, M.; Purwin, C.; Kotlarczyk, S. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed diets naturally contaminated with ochratoxin A. Arch. Anim. Nutr. 2019, 73, 431–444. [Google Scholar] [CrossRef] [PubMed]
Mycotoxin | Mycotoxin-Producing Fungi | Food/Feed Material | References |
---|---|---|---|
Aflatoxins | Aspergillus flavus | Maize, peanuts, wheat, rice, sorghum, pistachio, ground nuts, tree nuts (almonds, walnut, hazelnut, brazil nuts), cottonseed, spices (cumin, black pepper, chili pods/powder), dried fruits (figs, raising, currant, sultanas, plums, date, apricots), cereals, soybean, cocoa, milk, milk products, meat, feeds | [1,2,3,4,5,6,25] |
Aspergillus parasiticus, Aspergillus ochraceus, Aspergillus carbonarius, | Maize, peanuts, brazil nuts, cocoa | [3,5] | |
Aspergillus niger | |||
Ochratoxins | Aspergillus ochrareus | Barley, wheat, maize, cereals, dried vine fruits, wine, grapes, coffee, cocoa, cheese, feeds | [1,2,5,6,25] |
Aspergillus niger | Coffee, grapes, maize | [5] | |
Aspergillus carbonarius | Maize, cereals, dried vine fruits, wine, grapes, coffee, cocoa, cheese | [2,5] | |
Penicillium verrucosum | Barley, wheat, cereals, dried vine fruits, wine, grapes, coffee, cocoa, cheese, feeds | [1,2,3,6] | |
Penicillium viridicatum | cereals, dried vine fruits, wine, grapes, coffee, cocoa, cheese, feeds | [1,2,6,25] | |
Zearaleone | Fusarium graminearum | Wheat, maize, cereal product, barley, feeds | [1,2,6,25] |
Fusarium culmorum, Fusarium equiseti, Fusarium cerealis, Fusarium verticillioides, Fusarium incarnatum | Wheat, maize, cereal product, barley, rye | [2,6] | |
Fumonisins | Fusarium verticillioides, Fusarium proliferatum | Maize products, sorghum, asparagus, feeds | [1,2,25] |
T-2 and HT-2 | Fusarium langsethiae, Fusarium sporotrichioides | Maize, wheat, barley, oat, rye | [2,6] |
Deoxynivalenol | Fusarium graminearum, Fusarium culmorum, Fusarium cerealis, Fusarium sporotrichioides, Fusarium poae, Fusarium tricinctum, and Fusarium acuminatum | Maize, wheat, barley, oat, cereal, cereal product, feeds | [1,2,6] |
Nivalenol | Fusarium crookwellense, Fusarium poae, Fusarium nivale, Fusarium culmorum, and Fusarium graminearum | Maize, wheat, barley | [3,6] |
Sterigmatocystin | Aspergillus flavus, Aspergillus parasiticus, Aspergillus versicolor, Aspergillus nidulans and Aspergillus versicolor | Wheat, oats, ryes, barley, buckwheat, grain-based products, breakfast cereals, cooking oils, sorghum, maize on the cob, maize-based thickeners, maize syrup, polenta, tacos, tinned sweet maize, popcorn and maize snacks, cheese, nuts (peanut, hazelnuts), coffee beans, fresh fruits and sterilized fruits (grapes, plums, apples, pears, bananas and oranges), fruit juices (apple juices, blackcurrant juice and cherry juice), green vegetables and canned vegetables, beer, spices, animal feed | [7,11,20,37] |
Ergot alkaloids | Claviceps purpurea, Claviceps fusiformis, Claviceps africana, Neotyphodium spp., | Rye, rye-containing commodities, wheat, triticale, barley, millet, oat, grains, grass | [2,14,24] |
Alternaria | Alternaria alternata, Alternaria tenuissima, Alternaria arborescens | Grain based products, all cereal grains, fruit and fruit products, vegetables and vegetable products, oilseeds, beer, wine | [2,6,24] |
Mycotoxin | Foodstuffs | Maximum Levels (μg/kg) | EU Commission Regulations or Recommendations | ||
---|---|---|---|---|---|
Aflatoxins | B1 | B1, B2, G1, G2 | M1 | ||
Cereal products | 2 | 4 | - | 165/2010 | |
Maize and rice to be subjected to sorting or other physical treatment before human consumption or use as an ingredient in foodstuffs | 5 | 10 | 165/2010 | ||
Raw milk, heat-treated milk and milk for the manufacture of milk-based products | - | - | 0.05 | 165/2010 | |
Feed raw materials (concerns feed with a moisture content of 12%) | 0.02 | - | - | 574/2011 | |
Complementary and complete feeding stuffs, except: (A) compound feeds for dairy cattle and calves, dairy sheep and lambs, dairy goats and kids, piglets and young poultry, and (B) compound feeding stuffs for bovine animals (excluding dairy cattle and calves), sheep (excluding dairy sheep and lambs), goats (excluding dairy goats and goats) and pigs (excluding piglets) and poultry (except chickens) (concerns feed with a moisture content of 12%) | 0.01 | - | - | 574/2011 | |
Compound feed for dairy cattle and calves, dairy sheep and lambs, piglets, dairy goats and kids and young poultry (concerns feed with a moisture content of 12%) | 0.005 | - | - | 574/2011 | |
Compound feeding stuffs for bovine animals (excluding dairy cattle and calves), sheep (excluding dairy sheep and lambs), goats (excluding dairy goats and young goats) and pigs (excluding piglets) and poultry (excluding from young) (concerns feed with a moisture content of 12%) | 0.02 | - | - | 574/2011 | |
Ochratoxin A | Unprocessed cereals | 5 | 594/2012 | ||
Feed raw materials Cereal products (concerns feed with a moisture content of 12%) | 0.25 | 2016/1319 * | |||
Complementary and complete feed for pigs (concerns feed with a moisture content of 12%) | 0.05 | 2016/1319 * | |||
Complementary and complete feed for poultry (concerns feed with a moisture content of 12%) | 0.1 | 2016/1319 * | |||
Complementary and complete feed for dog and cats | 0.01 | 2016/1319 * | |||
Zearalenone | Unprocessed cereals (not maize) | 100 | 1126/2007 | ||
Unprocessed maize with the exception of unprocessed maize intended to be processed by wet milling | 350 | 1126/2007 | |||
Feed raw materials Cereal products (concerns feed with a moisture content of 12%) | 2 | 2016/1319 * | |||
Feed raw materials maize by-products (concerns feed with a moisture content of 12%) | 3 | 2016/1319 * | |||
Compound feed for piglets, gilts (young sows), puppies, kittens, dogs and cats for reproduction (concerns feed with a moisture content of 12%) | 0.1 | 2016/1319 * | |||
Compound feed adult dogs and cats other than for reproduction (concerns feed with a moisture content of 12%) | 0.2 | 2016/1319 * | |||
Compound feed sows and fattening pigs (concerns feed with a moisture content of 12%) | 0.25 | 2016/1319 * | |||
Compound feed calves, dairy cattle, sheep (including lamb) and goats (including kids) (concerns feed with a moisture content of 12%) | 0.5 | 2016/1319 * | |||
Fumonisins | Unprocessed maize, with the exception of unprocessed maize intended to be processed by wet milling | 4000 | 1126/2007 | ||
Raw materials: maize products (concerns feed with a moisture content of 12%) | 60 | 2016/1319 * | |||
Compound feed for pigs, horses (Equidae), rabbits and pets (concerns feed with a moisture content of 12%) | 5 | 2016/1319 * | |||
Compound feed for fish (concerns feed with a moisture content of 12%) | 10 | 2016/1319 * | |||
Compound feed for poultry, calves (<4 months) and lambs and young goats (concerns feed with a moisture content of 12%) | 20 | 2016/1319 * | |||
Complementary and complete feed for adult ruminants (>4 months) and mink animals (concerns feed with a moisture content of 12%) | 50 | 2016/1319 * | |||
T-2 and HT-2 toxin | Compound feed for cats | 0.05 | 2016/1319 * | ||
Deoxynivalenol | Feed materials, cereal products with the exception of maize (concerns feed with a moisture content of 12%) by-products | 8 | 2016/1319 * | ||
Feed materials—Maize by-products (concerns feed with a moisture content of 12%) | 12 | 2016/1319 * | |||
Compound feed for pigs (concerns feed with a moisture content of 12%) | 0.9 | 2016/1319 * | |||
Compound feed for calves (<4 months), lambs, kids and dogs (concerns feed with a moisture content of 12%) | 2 | 2016/1319 * | |||
Compound feed (concerns feed with a moisture content of 12%) | 5 | 2016/1319 * | |||
Citrinin | Food supplements based on rice fermented with red yeast Monascus purpureus | 2000 | 212/2014 |
Animal Species | Mycotoxin Tested | Levels | Oxidative Indices | Antioxidant Enzymes | Other Indices | References |
---|---|---|---|---|---|---|
Broilers | Aflatoxin B1 | (1) 0.15 mg AFB1/kg (2) 0.3 mg AFB1/kg (3) 0.6 mg AFB1/kg | ↑ MDA ↑ GSH | Spleen: ↓GSH-Px ↓GR ↓CAT | [51] | |
Broilers | Aflatoxin B1 | 1 mg AFB1/kg | ↑ MDA | Liver and serum: ↓CAT ↓ GSH-Px ↓ T-SOD ↓ GR ↓ GSTs | [52] | |
Broilers | Aflatoxin B1 | 1 ppm | ↑ MDA ↓ TAC | Serum: ↑ SOD ↓ CAT | ↑ AST ↑ ALT ↓ Glucose ↑ Cholesterol ↑ Triglyceride | [54] |
Broilers | Aflatoxin B1 | (1) 0.05 mg/kg (2) 0.1 mg/kg (3) 0.5 mg/kg (4) 1.0 mg/kg | ↑ MDA | ↓ SOD ↓ CAT ↓ G6PD ↓ GSH-Px | [55] | |
Broilers | Ochratoxin | 50 μg/kg OTA | Kidneys: ↑ MDA ↓ GSH ↓ TAC | ↓ CAT ↓ SOD ↓ CAT (mRNA expression) ↓ SOD(mRNA expression) ↓ GSH-Px(mRNA expression) | [56] | |
Broilers (and broilers hepatocytes cells in vitro) | T-2 toxin HT-2 toxin | (1) 1 mg/kg T-2 + 0.167 mg/kg HT-2 (2) 2 mg/kg T-2 + 0.333 mg/kg HT-2 (3) 4 mg/kg T-2 + 0.667 mg/kg HT-2 Hepatocytes treated for 24 h with 10, 20, 50 and 100 nM of T-2 and HT-2 toxins | ↑ MDA | (Relative mRNA expression of in vivo and in vitro trials) ↑ GSH-Px ↑ CAT ↑ SOD | ↑ALT ↑AST | [33] |
Broilers | T-2 toxin | 8.1 mg/kg | ↓ reduced glutathione | ↓ Se-GSH-Px | [58] | |
Chicken (hepatocytes cells in vitro) | Aflatoxin B1 | 5 μM | ↑ MDA | ↓SOD ↓CAT ↓ GR | ↑IL1β ↑NFkB ↑TNF-α | [57] |
Pigs (weaned) | Deoxynivalenol Zearaleone | (1) 0.8 mg DON/kg (2) 3.1 mg DON/kg + 1.8 mg ZEA/kg | Plasma: ↑ MDA Liver and plasma: −GSH | ↑ SOD in liver ↓ GPX2 gene expression in jejunum | [61] | |
Pigs | Aflatoxins | 20 μg AF/kg | −MDA | ↑TNF-α | [62] | |
Pigs | Fumonisin B1 Deoxynivalenol | (1) 10 μM DON (2) 70 μM FB1 (3) 10 μM DON + 70 μM FB1 | ↓ GSH ↑ MDA ↓ TAC (ABTS) | [63] | ||
Pigs (weaned) | Aflatoxins | 320 ppb pure AFB1 | ↓ TAC | Plasma and organs: ↓ CAT ↓ SOD ↓ GSH-Px | [64] | |
Pigs (porcine splenic lymphocytes cells in vitro) | Deoxynivalenol Zearaleone | (1) 0.06, 0.3, 1.5, and 7.5 μg/mL DON (2) 0.08, 0.4, 2, and 10 μg/mL ZEA (3) DON + ZEA at 0.06 and 0.08 μg/mL, 0.3 and 0.4 μg/mL, and 1.5 and 2 μg/mL respectively | ↑ MDA ↓ GSH | ↓ SOD ↓ CAT ↓ GSH-Px | [65] |
Animal Species | Mycotoxin Tested | Levels | Oxidative Indices | Antioxidant Enzymes | Other Indices | Notes | References |
---|---|---|---|---|---|---|---|
Dairy goats | Aflatoxin B1 (AFB1) Ochratoxin (OTA) Zearaleone (ZEA) | 50 μg AFB1/kg DMI 50 μg AFB1 + 100 μg OTA/kg DMI 50 μg AFB1 + 500 μg ZEA/kg DMI 50 μg AFB1 + 100 μg OTA + 500 μg ZEA/kg DMI | ↓ TAC ↑ MDA | ↓ SOD ↓ GSH-PX | ↑ ALT ↑ ALP ↑ TBIL ↑ IL-6 ↓ IgA | OTA + AFB1 more detrimental than ZEA + AFB1 | [77] |
Goats (kids) | T-2 toxin | 10 and 20 ppm | ↑ MDA (Lipid peroxidation) | Liver, Intestines, Kidneys: ↑ CAT ↑ SOD | 2–3 months old | [84] | |
Sheep (Peripartum period) | Aflatoxin B1 (AFB1) Ochratoxin (OTA) | 50 μg AFB1 + 100 μg OTA/kg DMI | ↓ TAC ↑ MDA | ↓ CAT ↓ SOD ↓ GSH-PX | ↓ TP ↓ ALB ↓ Chol ↑ ALT ↑ AST ↑ Urea | Lambs’ mortality | [81] |
Lambs | Aflatoxin B1 (AFB1) | 100 μg AFB1/kg DMI | ↓ GSH Liver ↓ GSH Duodenal | ↓ GSTs Liver and Duodenal ↓ GR Liver and Duodenal | 2 months old | [82] | |
Cows | Aflatoxin B1 (AFB1) Zearaleone (ZEA) | Level 1: 20.08 μg AFB1 + 80.13 μg ZEA/daily/cow Level 2: 40.16 μg AFB1 + 160.26 μg ZEA/daily/cow | -MDA | -GSH-PX -SOD | ↓ GGT | -14 days interval -Late lactation | [87] |
Cows | Aflatoxin B1 (AFB1) | 20 or 40 μg AFB1/kg DMI (app. 20 kg DMI/day) | ↑ TAC ↑ MDA (40 μg) | ↓ SOD (40 μg) | -7 days contamination interval -Late lactation | [89] | |
Cows | Aflatoxin B1 (AFB1) | 20 or 40 μg AFB1/kg DMI (app. 17 kg DMI/day) | ↑ MDA | ↓ GSH-Px | -7 days contamination interval -Late lactation | [90] | |
Cows | Aflatoxin B1 (AFB1) | 20 μg AFB1/kg DMI (app. 24 kg DMI/day) | ↓ TAC ↑ MDA | ↓ SOD ↓ GSH-Px | ↓ IgG ↓ IgA | -Early lactation -9 Weeks contamination interval | [36] |
Cows | Aflatoxin B1 (AFB1) | 5–20 ng/mL (TLC assay) | ↑ MDA | ↑ CAT ↓ GSH-Px | ↓ Total protein ↑ ALT ↑ AST ↑ ALP ↑ Creatine | Naturally contaminated feeds | [92] |
Cows | Aflatoxin B1 (AFB1) | 100 μg AFB1/kg DMI (21.9–23.4 kg DMI/day) | ↑ SOD | ↑ Glucose | -7 days contamination interval -Mid-lactation | [34] | |
Cows | Aflatoxin B1 (AFB1) | 100 μg AFB1/kg DMI (21.4–22.8 kg DMI/day) | ↑ SOD | -3 days contamination interval -Mid-lactation -ingested through rumen canula | [35] | ||
Cows | Aflatoxin B1 (AFB1) | 100 μg AFB1/kg DMI (24.9 kg DMI/day) | -SOD -GPX ↑ GPX1 (1) | -Chol -Albumin -BUN ↑ NFkB (1) | -Gene expression in Liver -Mid-late lactation -3 days contamination interval | [99] | |
Cows (bovine fetal hepatocytes cells in vitro) | Aflatoxin B1 (AFB1) | 3.6 μM AFB1 in 6 × 103 hepatocytes | ↑ MDA | -GSH-Px -CAT -SOD | transcriptional profiles using RNA -seq | [93] | |
Cows (bovine mammary epithelia cells in vitro) | Deoxynivalenol (DON) | Cells were treated with DON (0.25 μg/mL) for 24 h | ↓ TAC ↑ MDA ↓ GSH | ↓ SOD | ↑ NFkB ↑ MyD88 ↑ TNF-α ↑ IL-1b ↑ IL-6 ↑ IL-8 | -Higher cells’ apoptotic rate | [94] |
Cows (bovine mammary epithelia cells in vitro) | Deoxynivalenol (DON) | Cells were treated with DON (0.25 μg/mL) for 24 h | ↓ TAC ↑ MDA ↓ GSH | ↓ SOD1 (expres.) ↓ SOD2 (expres.) | ↑ NFkB ↑ COX-2 ↑ iNOS ↑ IL-1b ↑ IL-6 ↑ IL-8 ↑ TNF-α (Protein) | -Incubated for 9 h. -Decreased cell viability and proliferation | [95] |
Cows in vitro (Peripheral blood mononuclear cells) | Aflatoxin B1 (AFB1) Fumonisin B1 (FB1) | 0, 5, 20 μg/mL AFB1 0, 35, 70 μg/mL FB1 | ↑ MDA | ↓ SOD (expres.) ↓ GPX1 (expres.) AFB1 5 μg ↓ GPX1 (expres.) FB1 | 2- and 7-days incubation | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavrommatis, A.; Giamouri, E.; Tavrizelou, S.; Zacharioudaki, M.; Danezis, G.; Simitzis, P.E.; Zoidis, E.; Tsiplakou, E.; Pappas, A.C.; Georgiou, C.A.; et al. Impact of Mycotoxins on Animals’ Oxidative Status. Antioxidants 2021, 10, 214. https://doi.org/10.3390/antiox10020214
Mavrommatis A, Giamouri E, Tavrizelou S, Zacharioudaki M, Danezis G, Simitzis PE, Zoidis E, Tsiplakou E, Pappas AC, Georgiou CA, et al. Impact of Mycotoxins on Animals’ Oxidative Status. Antioxidants. 2021; 10(2):214. https://doi.org/10.3390/antiox10020214
Chicago/Turabian StyleMavrommatis, Alexandros, Elisavet Giamouri, Savvina Tavrizelou, Maria Zacharioudaki, George Danezis, Panagiotis E. Simitzis, Evangelos Zoidis, Eleni Tsiplakou, Athanasios C. Pappas, Constantinos A. Georgiou, and et al. 2021. "Impact of Mycotoxins on Animals’ Oxidative Status" Antioxidants 10, no. 2: 214. https://doi.org/10.3390/antiox10020214
APA StyleMavrommatis, A., Giamouri, E., Tavrizelou, S., Zacharioudaki, M., Danezis, G., Simitzis, P. E., Zoidis, E., Tsiplakou, E., Pappas, A. C., Georgiou, C. A., & Feggeros, K. (2021). Impact of Mycotoxins on Animals’ Oxidative Status. Antioxidants, 10(2), 214. https://doi.org/10.3390/antiox10020214