Plant-Based Phenolic Molecules as Natural Preservatives in Comminuted Meats: A Review
Abstract
:1. Introduction
2. Plant-Based Bioactive Molecules for Food Preservation
3. Extraction of Plant Bioactive Compounds for Food Application
4. Antioxidant Mechanism of Action
5. Antimicrobial Mechanism of Action for Preservation in Food Systems
6. Application of Polyphenolic-Rich Plants in Meat System
6.1. Plant-Based Antioxidants Applied for Preservation in Meat Systems
6.1.1. Drumstick Leaves (Moringa oleifera)
6.1.2. Amla (Emblica officinalis)
6.1.3. Mountain Savory (Saturaja montana L.)
6.1.4. Green Tea (Camellia sinensis)
6.1.5. Clove Extract (Syzigium aromaticum L.)
6.1.6. Grape Seed Extract (Vitis vinifera)
6.2. Plant-Based Antimicrobial Applied for Preservation in Meat Systems
6.2.1. Roselle Calyx Extract (Hibiscus sabdariffa)
6.2.2. Chestnut Inner Shell (Castanea crenata Mill)
6.2.3. Acacia nilotica Extract
6.2.4. Carob Fruits (Ceratonia Siliqua)
6.2.5. Lemongrass (Cymbopogon citratus)
7. Limitations of Natural Preservatives when Applied in Food Systems
8. Regulations of Natural Food Preservatives
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The State of Food Insecurity in the World Addressing Food Insecurity in Protracted Crises; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berton-Carabin, C.C.; Ropers, M.-H.; Genot, C. Lipid Oxidation in Oil-in-Water Emulsions: Involvement of the Interfacial Layer. Compr. Rev. Food Sci. Food Saf. 2014, 13, 945–977. [Google Scholar] [CrossRef]
- D’Amore, T.; Di Taranto, A.; Berardi, G.; Vita, V.; Marchesani, G.; Chiaravalle, A.E.; Iammarino, M. Sulfites in meat: Occurrence, activity, toxicity, regulation, and detection. A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2701–2720. [Google Scholar] [CrossRef]
- Binstok, G.C.C.; Varelab, O.; Gerschenson, L.N. Sorbate ± nitrite reactions in meat products. Food Res. Int. 1998, 31, 581–585. [Google Scholar] [CrossRef]
- Hoang, Y.T.H.; Vu, A.T.L. Sodium Benzoate and Potassium Sorbate in Processed Meat Products Collected in Ho Chi Minh City, Vietnam. Int. J. Adv. Sci. Technol. 2016, 6, 477. [Google Scholar] [CrossRef]
- Yehye, W.A.; Rahman, N.A.; Ariffin, A.; Abd Hamid, S.B.; Alhadi, A.A.; Kadir, F.A.; Yaeghoobi, M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. Eur. J. Med. Chem. 2015, 101, 295–312. [Google Scholar] [CrossRef]
- Rajendran, C.; Mahesh, S.; Jayathilakan, K. Advances in Meat Preservation and Safety. Int. J. Sci. Res. 2019, 10, 1499–1502. [Google Scholar]
- Osterbauer, K.J.; King, A.M.; Seman, D.L.; Milkowski, A.L.; Glass, K.A.; Sindelar, J.J. Effects of Nitrite and Erythorbate on Clostridium perfringens Growth during Extended Cooling of Cured Ham. J. Food Prot. 2017, 80, 1697–1704. [Google Scholar] [CrossRef]
- Aziz, M.; Karboune, S. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 486–511. [Google Scholar] [CrossRef]
- Williams, P.G.; Markoska, J.; Chachay, V.; Anne, M. ‘Natural’ Claims on Foods: A Review of Regulations and a Pilot Study of the Views of Australian Consumers 2009. Available online: https://ro.uow.edu.au/hbspapers/121 (accessed on 1 December 2020).
- Ahmad, S.R.; Gokulakrishnan, P.; Giriprasad, R.; Yatoo, M.A. Fruit-based Natural Antioxidants in Meat and Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1503–1513. [Google Scholar] [CrossRef]
- Hęś, M.; Gramza-Michałowska, A. Effect of Plant Extracts on Lipid Oxidation and Changes in Nutritive Value of Protein in Frozen-Stored Meat Products. J. Food Process. Preserv. 2017, 41, e12989. [Google Scholar] [CrossRef]
- Zahid, M.A.; Choi, J.Y.; Seo, J.K.; Parvin, R.; Ko, J.; Yang, H.S. Effects of clove extract on oxidative stability and sensory attributes in cooked beef patties at refrigerated storage. Meat Sci. 2020, 161, 107972. [Google Scholar] [CrossRef] [PubMed]
- Ozen, B.O.; Soyer, A. Effect of plant extracts on lipid and protein oxidation of mackerel (Scomber scombrus) mince during frozen storage. J. Food Sci. Technol. 2018, 55, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Henning, S.M.; Lee, R.P.; Huang, J.; Zerlin, A.; Li, Z.; Heber, D. Turmeric and black pepper spices decrease lipid peroxidation in meat patties during cooking. Int. J. Food Sci. Nutr. 2015, 66, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Mukumbo, F.E.; Descalzo, A.M.; Collignan, A.; Hoffman, L.C.; Servent, A.; Muchenje, V.; Arnaud, E. Effect of Moringa oleifera leaf powder on drying kinetics, physico-chemical properties, ferric reducing antioxidant power, α-tocopherol, β-carotene, and lipid oxidation of dry pork sausages during processing and storage. J. Food Process. Preserv. 2019, 44, 44. [Google Scholar] [CrossRef]
- Das, A.K.; Nanda, P.K.; Madane, P.; Biswas, S.; Das, A.; Zhang, W.; Lorenzo, J.M. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci. Technol. 2020, 99, 323–336. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Michalak, A. Phenolic Compounds and Their Antioxidant Activity in Plants Growing under Heavy Metal Stress. Pol. J. Environ. Stud. 2006, 15, 523–530. [Google Scholar]
- Jiang, J.; Xiong, Y.L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Qing-Wen, Z.; Li-Gen, L.; Wen-Cai, Y. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar]
- Machado, A.; Pereira, A.L.D.; Barbero, G.F.; Martinez, J. Recovery of anthocyanins from residues of Rubus fruticosus, Vaccinium myrtillus and Eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chem. 2017, 231, 1–10. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Hirondart, M.; Rombaut, N.; Fabiano-Tixier, A.S.; Bily, A.; Chemat, F. Comparison between Pressurized Liquid Extraction and Conventional Soxhlet Extraction for Rosemary Antioxidants, Yield, Composition, and Environmental Footprint. Foods 2020, 9, 584. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.P.; Saldaña, M.D.A. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 2011, 44, 2452–2458. [Google Scholar] [CrossRef]
- Wijngaard, H.; Hossain, M.B.; Rai, D.K.; Brunton, N. Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int. 2012, 46, 505–513. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Tir, R.; Dutta, P.C.; Badjah-Hadj-Ahmed, A.Y. Effect of the extraction solvent polarity on the sesame seeds oil composition. Eur. J. Lip. Sci. Technol. 2012, 114, 1427–1438. [Google Scholar] [CrossRef]
- Salminen, J.-P. Effects of sample drying and storage, and choice of extraction solvent and analysis method on the yield of birch leaf hydrolyzable tannins. J. Chem. Ecol. 2003, 29, 1289–1305. [Google Scholar] [CrossRef] [PubMed]
- Anita, S.; Casimir, C.A.; Weiguang, Y.; Joan, F.; Gerard, K. Effect of Storage Conditions on the Biological Activity of Phenolic Compounds of Blueberry Extract Packed in Glass Bottles. J. Agric. Food Chem. 2007, 55, 2705–2713. [Google Scholar]
- Senanayake, S.P.J.N. Green tea extract: Chemistry, antioxidant properties and food applications—A review. J. Funct. Foods 2013, 5, 1529–1541. [Google Scholar] [CrossRef]
- Kelly, E.H.; Anthony, R.T.; Dennis, J.B. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar]
- Cao, G.; Emin, S.; Ronald, L.P. Antioxidant And Prooxidant Behavior Of Flavonoids: Structure—Activity Relationships. Free Rad. Biol. Med. 1997, 22, 749–760. [Google Scholar] [CrossRef]
- Saskia, A.B.E.V.A.; Marcel, J.D.G.; Michel, N.J.T.; Gabrielle, D.D.K.; van der Wim, J.F.V.; Aalt, B. A Quantum Chemical Explanation of the Antioxidant Activity of Flavonoids. Chem. Res. Toxicol. 1996, 9, 1305–1312. [Google Scholar]
- BozÏidar, L.M.; Sonja, M.D.; Jasna, M.C.A.-B. Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chem. 1998, 61, 443–447. [Google Scholar]
- Rabin, G.; Saeed, A.H.; Salam, I. Plant extracts as antimicrobials in food products. In Handbook of Natural Antimicrobials for Food Safety and Quality; North Carolina A&T State University: Greensboroo, NC, USA, 2015; pp. 49–68. [Google Scholar] [CrossRef]
- Chibane, L.B.; Degraeve, P.; Ferhout, H.; Bouajila, J.; Oulahal, N. Plant antimicrobial polyphenols as potential natural food preservatives. J. Sci. Food Agric. 2019, 99, 1457–1474. [Google Scholar] [CrossRef] [Green Version]
- Stojkovic, D.; Petrovic, J.; Sokovic, M.; Glamoclija, J.; Kukic-Markovic, J.; Petrovic, S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J. Sci. Food Agric. 2013, 93, 3205–3208. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.J.D.; Dean, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control. 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Alcaraz, L.E.; Blanco, S.E.; Puig, O.N.; Tomas, F.; Ferretti, F.H. Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains. J. Theor. Biol. 2000, 205, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Ultee, A.; Bennik, M.H.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [Green Version]
- Olatunde, O.O.; Benjakul, S. Natural Preservatives for Extending the Shelf-Life of Seafood: A Revisit. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1595–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jed, W.F.; Amy, T.Z.; Paul, T. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar]
- Das, A.K.; Rajkumar, V.; Verma, A.K.; Swarup, D. Moringa oleiferia leaves extract: A natural antioxidant for retarding lipid peroxidation in cooked goat meat patties. Int. J. Food Sci. Technol. 2012, 47, 585–591. [Google Scholar] [CrossRef]
- Xiaoli, L.; Chun, C.; Mouming, Z.; Jinshui, W.; Wei, L.; Bao, Y.; Yueming, J. Identification of phenolics in the fruit of emblica (Phyllanthus emblica L.) and their antioxidant activities. Food Chem. 2008, 109, 909–915. [Google Scholar]
- Bariya, A.R.; Patel, A.S.; Gamit, V.V.; Bhedi, K.R.; Parmar, R.B. Assessment of Antioxidant and Sensory Properties of Amla (Emblica officinalis) Fruit and Seed Coat Powder Incorporated Cooked Goat Meat Patties. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3306–3318. [Google Scholar] [CrossRef]
- Kumar, Y.; Langoo, B.A. Effects of Aloe, Green Tea, and Amla Extracts on Microbiological and Oxidative Parameters of Refrigerated Raw Meat Batter. Agric. Res. 2015, 5, 81–88. [Google Scholar] [CrossRef]
- Sajad, A.R.; Rehana, A.; Masoodi, F.A.; Adil, G.; Wani, S.M. Utilization of apple pomace powder as a fat replacer in goshtaba: A traditional meat product of Jammu and Kashmir, India. J. Food Meas. Charact. 2015, 9, 389–399. [Google Scholar]
- Chauhan, P.; Das, A.K.; Nanda, P.K.; Kumbhar, V.; Yadav, J.P. Effect of Nigella sativa seed extract on lipid and protein oxidation in raw ground pork during refrigerated storage. Nutr. Food Sci. 2018, 48, 2–15. [Google Scholar] [CrossRef]
- Jia, N.; Kong, B.; Liu, Q.; Diao, X.; Xia, X. Antioxidant activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on lipid and protein oxidation of pork patties during chilled storage. Meat Sci. 2012, 91, 533–539. [Google Scholar] [CrossRef]
- Luis, M.; Irene, C.; Jose, A.; Bel, T.; Pedro, R. Effect of Capsicum annuum (Red Sweet and Cayenne) and Piper nigrum (Black and White) Pepper Powders on the Shelf Life of Fresh Pork Sausages Packaged in Modified Atmosphere. J. Food Sci. 2006, 71, S48–S53. [Google Scholar]
- Kim, S.-J.; Cho, A.R.; Han, J. Antioxidant and antimicrobial activities of leafy green vegetable extracts and their applications to meat product preservation. Food Control. 2013, 29, 112–120. [Google Scholar] [CrossRef]
- Yogesh, K.; Jha, S.N.; Yadav, D.N. Antioxidant Activities of Murraya koenigii (L.) Spreng Berry Extract: Application in Refrigerated (4 ± 1 °C) Stored Meat Homogenates. Agric. Res. 2012, 1, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Engy, F.Z. Incorporation of Fenugreek Seed Powder In The Manufacturing of Rabbit Sausage and its effects on the Quality Properties During Storage. J. Adv. Food Sci. Technol. 2018, 5, 8–14. [Google Scholar]
- Draszanowska, A.; Karpinska-Tymoszczyk, M.; Olszewska, M.A. The effect of ginger rhizome and refrigerated storage time on the quality of pasteurized canned meat. Food Sci. Technol. Int. 2020, 26, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Kobus-Cisowska, J.; Flaczyk, E.; Rudzinska, M.; Kmiecik, D. Antioxidant properties of extracts from Ginkgo biloba leaves in meatballs. Meat Sci. 2014, 97, 174–180. [Google Scholar] [CrossRef]
- Khan, I.A.; Xu, W.; Wang, D.; Yun, A.; Khan, A.; Zongshuai, Z.; Ijaz, M.U.; Yiqun, C.; Hussain, M.; Huang, M. Antioxidant potential of chrysanthemum morifolium flower extract on lipid and protein oxidation in goat meat patties during refrigerated storage. J. Food Sci. 2020, 85, 618–627. [Google Scholar] [CrossRef]
- Yun-Sang, C.; Ji-Hun, C.; Hack-Youn, K.; Hyun-Wook, K.; Mi-Ai, L.; Hai-Jung, C.; Sung, K.L.; Cheon-Jei, K. Effect of Lotus (Nelumbo nucifera) Leaf Powder on the Quality Characteristics of Chicken Patties in Refrigerated Storage. Korean J. Food Sci. Anim. 2011, 31, 9–18. [Google Scholar]
- Arun, K.D.; Vincent, R.; Pramod, K.N.; Pranav, C.; Soubhagya, R.P.; Subhasish, B. Antioxidant Efficacy of Litchi (Litchi chinensis Sonn.) Pericarp Extract in Sheep Meat Nuggets. Antioxidants (Basel) 2016, 5, 16. [Google Scholar]
- Xinzhuang, Z.; Deyong, L.; Qingxiang, M.; Cui, H.; Liping, R. Effect of Melberry leaf Extract on Color, Lipid Oxidation, Antioxidanr Enzyme, Active and Oxidative bBreakdown Products of Raw ground Beef during Refrigerated Storage. J. Food Qual. 2016, 39, 159–170. [Google Scholar]
- Akarpat, A.; Turhan, S.; Ustun, N.S. Effects of Hot Water Extracts From Myrtle, Rosemary, Nettle And Lemon Balm Leaves On Lipid Oxidation And Color Of Beef Patties During Frozen Storage. J. Food Process. Preserv. 2008, 32, 117–132. [Google Scholar] [CrossRef]
- Qin, Y.-Y.; Zhang, Z.-H.; Li, L.; Xiong, W.; Shi, J.-Y.; Zhao, T.-R.; Fan, J. Antioxidant effect of pomegranate rind powder extract, pomegranate juice, and pomegranate seed powder extract as antioxidants in raw ground pork meat. Food Sci. Biotechnol. 2013, 22, 1063–1069. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, R.; Fan, L.; Ma, Y.; Xiang, Q. Effect of rosemary extract on lipid oxidation of cooked pork during simulated gastric digestion. J. Sci. Food Agric. 2020, 100, 1735–1740. [Google Scholar] [CrossRef]
- Mancini, S.; Preziuso, G.; Paci, G. Effect of turmeric powder (Curcuma longa L.) and ascorbic acid on antioxidant capacity and oxidative status in rabbit burgers after cooking. World Rabbit. Sci. 2016, 24, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Babiker, E.E.; Al-Juhaimi, F.Y.; Alqah, H.A.; Adisa, A.R.; Adiamo, O.Q.; Ahmed, I.A.M.; Alsawmahi, O.N.; Ghafoor, K.; Ozcan, M.M. The effect of Acacia nilotica seed extract on the physicochemical, microbiological and oxidative stability of chicken patties. J. Food Sci. Technol. 2019, 56, 3910–3920. [Google Scholar] [CrossRef]
- Hassanein, H.D.; Said, A.A.H.; Abdelmohsen, M.M. Antioxidant polyphenolic constituents of Satureja montana L. Growing in Egypt. Int. J. Pharm. Sci. 2014, 6, 578–581. [Google Scholar]
- de Oliveira, T.L.C.; de Carvalho, S.M.; de Araújo Soares, R.; Andrade, M.A.; Cardoso, M.D.G.; Ramos, E.M.; Piccoli, R.H. Antioxidant effects of Satureja montana L. essential oil on TBARS and color of mortadella-type sausages formulated with different levels of sodium nitrite. LWT-Food Sci. Technol. 2012, 45, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Jayawardana, B.C.; Viraji, B.W.; Thotawattage, G.H.; Dharmasena, V.A.K.I.; Liyanage, R. Black and green tea (Camellia sinensis L.) extracts as natural antioxidants in uncured pork sausages. J. Food Process. Preserv. 2019, 43, e13870. [Google Scholar] [CrossRef]
- Bozkurt, H. Utilization of natural antioxidants: Green tea extract and Thymbra spicata oil in Turkish dry-fermented sausage. Meat Sci. 2006, 73, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Huiyun, Z.; Xinyan, P.; Xinling, L.; Jingjuan, W.; Xinyu, G. The Application of Clove Extract Protects Chinese-style Sausages against Oxidation and Quality Deterioration. Korean J. Food Sci. Anim. Resour. 2017, 37, 114–122. [Google Scholar]
- John, S.; Jianmel, Y.; Joseph, E.P.; Yukio, K. Polyphenolics in Grape Seeds—Biochemistry and Functionality. J. Food Med. 2003, 6, 291–299. [Google Scholar]
- Reham, A.A.; Shimaa, N.E. Grape Seed Extract as Natural Antioxidant and Antibacterial in Minced Beef. PSM Biol. Res. 2017, 2, 89–96. [Google Scholar]
- El-Zainy, A.R.; Morsy, A.E.; Sedki, A.G.; Mosa, N.M. Polyphenols Grape seeds extract as antioxidant and antimicrobial in Beef sausage. Int. J. Curr. Sci. 2016, 19, 112–121. [Google Scholar]
- Purbowati, I.S.M.; Maksum, A. The antioxidant activity of Roselle (Hibiscus sabdariffa Linii) phenolic compounds in different variations microwave-assisted extraction time and power. IOP Conf. Ser. Earth Envirion. Sci. 2019, 406, 012005. [Google Scholar] [CrossRef] [Green Version]
- Marquez-Rodriguez, A.S.; Nevarez-Baca, S.; Lerma-Hernandez, J.C.; Hernandez-Ochoa, L.R.; Nevarez-Moorillon, G.V.; Gutierrez-Mendez, N.; Munoz-Castellanos, L.N.; Salas, E. In Vitro Antibacterial Activity of Hibiscus sabdariffa L. Phenolic Extract and Its In Situ Application on Shelf-Life of Beef Meat. Foods 2020, 9, 1080. [Google Scholar] [CrossRef]
- Chao, C.Y.; Yin, M.C. Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice. Foodborne Pathog. Dis. 2009, 6, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Echegaray, N.; Gómez, B.; Barba, F.J.; Franco, D.; Estévez, M.; Carballo, J.; Marszałek, K.; Lorenzo, J.M. Chestnuts and by-products as source of natural antioxidants in meat and meat products: A review. Trends Food Sci. Technol. 2018, 82, 110–121. [Google Scholar] [CrossRef]
- Ja-Young, H.; In-Kyeong, H.; Jae-Bok, P. Analysis of Physicochemical Factors Related to the Automatic Pellicle Removal in Korean Chestnut (Castanea crenata). J. Agric. Food Chem. 2001, 49, 6045–6049. [Google Scholar]
- Lee, N.-K.; Jung, B.S.; Na, D.S.; Yu, H.H.; Kim, J.-S.; Paik, H.-D. The impact of antimicrobial effect of chestnut inner shell extracts against Campylobacter jejuni in chicken meat. LWT-Food Sci.Technol. 2016, 65, 746–750. [Google Scholar] [CrossRef]
- Maslin, B.R.; Miller, J.T.; Seigler, D.S. Overview of the generic status of Acacia (Leguminosae: Mimosoideae). Aust. Syst. Bot. 2003, 16, 1–18. [Google Scholar] [CrossRef]
- Adiamo, O.Q.; Netzel, M.E.; Hoffman, L.C.; Sultanbawa, Y. Acacia seed proteins: Low or high quality? A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 19, 21–43. [Google Scholar] [CrossRef]
- Sadiq, M.B.; Hanpithakpong, W.; Tarning, J.; Anal, A.K. Screening of phytochemicals and in vitro evaluation of antibacterial and antioxidant activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. Ind. Crop. Prod. 2015, 77, 873–882. [Google Scholar] [CrossRef]
- Al-Juhaimi, F.Y.; Almusallam, I.A.; Ahmed, I.A.M.; Ghafoor, K.; Babiker, E.E. Potential of Acacia nilotica fruit flesh extract as an anti-oxidative and anti-microbial agent in beef burger. J. Food Process. Preserv. 2020, 44, 44. [Google Scholar] [CrossRef]
- Fayemi, P.O.; Öztürk, I.; Özcan, C.; Muguruma, M.; Yetim, H.; Sakata, R.; Ahhmed, A. Antimicrobial activity of extracts of Callistemon citrinus flowers and leaves against Listeria monocytogenes in beef burger. J. Food Meas. Charact. 2017, 11, 924–929. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; González-Rodríguez, R.M.; Sánchez, M.; Amado, I.R.; Franco, D. Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (buthylatedhydroxytoluene, BHT) on the physical, chemical, microbiological and sensory characteristics of dry cured sausage “chorizo”. Food Res. Int. 2013, 54, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Xi, Y.; Sullivan, G.A.; Jackson, A.L.; Zhou, G.H.; Sebranek, J.G. Effects of natural antimicrobials on inhibition of Listeria monocytogenes and on chemical, physical and sensory attributes of naturally-cured frankfurters. Meat Sci. 2012, 90, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Jayawardana, B.C.; Liyanage, R.; Lalantha, N.; Iddamalgoda, S.; Weththasinghe, P. Antioxidant and antimicrobial activity of drumstick (Moringa oleifera) leaves in herbal chicken sausages. LWT-Food Sci. Technol. 2015, 64, 1204–1208. [Google Scholar] [CrossRef]
- Gadang, V.P.; Hettiarachchy, N.S.; Johnson, M.G.; Owens, C. Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a Turkey frankfurter system. J. Food Sci. 2008, 73, M389–M394. [Google Scholar] [CrossRef]
- Price, A.; Diaz, P.; Banon, S.; Garrido, M.D. Natural extracts versus sodium ascorbate to extend the shelf life of meat-based ready-to-eat meals. Food Sci. Technol. Int. 2013, 19, 427–438. [Google Scholar] [CrossRef]
- George, B.; Antia, O.; Evgenia, Y.; Vassilis, G.; Vlasios, G. Antioxidant and Antimicrobial Effects of Pistacia lentiscus L. Extracts in Pork Sausages. Food Technol. Biotech. 2015, 53, 472–478. [Google Scholar]
- Lara-Lledo, M.; Olaimat, A.; Holley, R.A. Inhibition of Listeria monocytogenes on bologna sausages by an antimicrobial film containing mustard extract or sinigrin. Int. J. Food Microbiol. 2012, 156, 25–31. [Google Scholar] [CrossRef]
- Goulas, V.; Stylos, E.; Chatziathanasiadou, M.V.; Mavromoustakos, T.; Tzakos, A.G. Functional Components of Carob Fruit: Linking the Chemical and Biological Space. Int. J. Mol. Sci. 2016, 17, 1875. [Google Scholar] [CrossRef] [PubMed]
- Hsouna, A.B.; Trigui, M.; Mansour, R.B.; Jarraya, R.M.; Damak, M.; Jaoua, S. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 2011, 148, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Josea, C.; Critina, T.; Jaime, R.; Guillermo-Hirschmann, G. Free Radical Scavengers and Antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.). J. Agric. Food Chem. 2005, 53, 2511–2517. [Google Scholar]
- Ceruso, M.; Clement, J.A.; Todd, M.J.; Zhang, F.; Huang, Z.; Anastasio, A.; Pepe, T.; Liu, Y. The Inhibitory Effect of Plant Extracts on Growth of the Foodborne Pathogen, Listeria monocytogenes. Antibiotics (Basel) 2020, 9, 319. [Google Scholar] [CrossRef] [PubMed]
- Boeira, C.P.; Piovesan, N.; Soquetta, M.B.; Flores, D.C.B.; Lucas, B.N.; Rosa, C.S.D.; Terra, N.N. Extraction of bioactive compounds of lemongrass, antioxidant activity and evaluation of antimicrobial activity in fresh chicken sausage. Ciência Rural 2018, 48, e20180477. [Google Scholar] [CrossRef]
- Martínez-Graciá, C.; González-Bermúdez, C.A.; Cabellero-Valcárcel, A.M.; Santaella-Pascual, M.; Frontela-Saseta, C. Use of herbs and spices for food preservation: Advantages and limitations. Curr. Opin. Food Sci. 2015, 6, 38–43. [Google Scholar] [CrossRef]
- Devlieghere, F.; Vermeiren, L.; Debevere, J. New preservation technologies: Possibilities and limitations. Int. Dairy J. 2004, 14, 273–285. [Google Scholar] [CrossRef]
- Lourenco, S.C.; Moldao-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darfour, B.; Asare, I.K.; Ofosu, D.O.; Achel, D.G.; Achoribo, E.S.; Agbenyegah, S. The Effect of Different Drying Methods on the Phytochemicals and Radical Scavenging Activity of Ceylon Cinnamon (Cinnamomum zeylanicum) Plant Parts. Eur. J. Med. Plants 2014, 4, 1324–1335. [Google Scholar]
- Borreli, R.A.; Capasso, R.; Izzo, A.A. Garlic (Allium sativum L.): Adverse effects and drug interactions in humans. Mol. Nutr. Food Res. 2007, 51, 1386. [Google Scholar] [CrossRef] [PubMed]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol. 2018, 71, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Dreger, M.; Wielgus, K. Application of essential oils as natural cosmetic preservatives. Herba Pol. 2013, 59, 142–156. [Google Scholar] [CrossRef] [Green Version]
- EU. European Parliament and the Council of the European Union Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2998 on food additives. Off. J. Eur. Union. 2008, 354, 16–33. [Google Scholar]
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-Derived Natural Antioxidants in Meat and Meat Products. Antioxidants (Basel) 2020, 9, 1215. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Substances Generally Recognized as Safe, Final Rule. Federal Register 81 (17 August 2016): 54960–55055. Available online: https://www.gpo.gov/fdsys/pkg/FR-2016-08-17/pdf/2016-19164.pdf (accessed on 18 December 2020).
- Maffini, M.V.; Neltner, T.G.; Vogel, S. We are what we eat: Regulatory gaps in the United States that put our health at risk. PLoS Biol. 2017, 15, e2003578. [Google Scholar] [CrossRef] [Green Version]
- Sinopoli, D.A. What Exactly is a Food Additive? A Comparative Analysis between the European Union and the United States on the Scope and Function of Food Additives; Law and Governance Group, Wageningen University: Wageningen, The Netherlands, 2013. [Google Scholar]
Plant Sources | Scientific Name | Major Component | Part Used | Delivery System | Amount Added in Meat (%) | Meat System | Effect | References |
---|---|---|---|---|---|---|---|---|
Amla | Emblica officinalis | Gallic acid, ellagic acid, quercetin, and kaempferol. | Fruit, seed | Extract | - | Goat patties | Inhibition of lipid oxidation | [51] |
Apple | Malus domestica | Lycopene | Peel and seed | Pomace powder | 1-5 | Indian traditional meat | Shelf-life extension | [53] |
Black cumin | Nigella sativa L. | Thymoquinone, thymohydroquinone, dithymoquinone, p-cymene, and trans-anethol | Seed | Extract | 1.5 | Fresh minced beef | Lower level of TBARS | [54] |
Black currant | Ribes nigrum | Anthocyanins | Fruits | Extract | >0.5 | Pork patties | Inhibited lipid oxidation | [55] |
Black pepper | Piper nigrum | Capsanthin and capsorubin | Fruit | Powder | 1 | Fresh pork sausage | Inhibition of lipid oxidation | [56] |
Broccoli | Brassica oleracea | Phenolic acids and flavonoids | Leaf | extract | >0.1 | Ground beef patties | Lower level of TBARS | [57] |
Chilli pepper | Capsicum annuum | Capsaicin and dihydrocapsaicin | Fruit | Powder | 2 | Fresh pork sausage | Inhibition of lipid oxidation | [56] |
Clove Extracts | Syzigium aromaticum L. | Eugenol and eugenyl acetate | Flower buds | Extract | 0.1 | Beef patties | Inhibition of lipid oxidation | [15] |
Curry | Murraya koenigii L. | Tannic, gallic, caffeic, cinnamic, chlorogenic, ferulic, and vanillic acids | Leaf | Extract | 2.5 | Meat homogenate | Lower level of TBARS | [58] |
drumstick | M. oleifera | Glucosinalates, isothiocyanates, zeatin, quercetin, betasitosterol caffeoylquinic and kaempferol | Leaf | Extract | 0.1 | Beef patty | Lower level of TBARS | [48] |
Fatsia | Aralia elata Seem | Phenolic acid, Flavonoid, aromatic compounds | Leaf | Extract | 1 and 5 | Beef patties | Lower level of TBARS | [57] |
Fenugreek | Trigonella foenum-graecum | Galactomannans, nicotinic acid, alkaloids, flavonoids | Seed | Powder | - | Rabbit sausage | Reduced lipid oxidation | [59] |
Ginger | Zingiber officinale L. | Gingerol and shogaols | Rhizome | Peeled and shredded | 1.5 | Minced meat | Lower level of TBARS | [60] |
Ginkgo biloba | - | Polyphenols | Leaf | Extract | 0.05 | Meatballs | Lower level of TBARS | [61] |
Grape seed | Vitis vinifera | Catechin, epicatechin, gallic acid and phenolic acid | Seed | Extract | 0.01 | Fish mince | Lower level of TBARS | [16] |
Green tea | Camellia sinensis | Catechin | Leaf | Extract | 0.01 | Fish mince | Lower level of TBARS | [16] |
Hardy garden mum | Chrysanthemum morifolium | Polyphenolic compounds | Flower | Extract | 1 and 2 | Goat meat patties | Inhibit lipid and protein oxidation | [62] |
Lotus | Nelumbo nucifera | Tartaric acid, citric acid, malic acid, succinic acid, tannin | Leaf | Leaf powder | 6 | Chicken patties | Lower level of TBARS | [63] |
Lychee seed | Litchi chinensis | Epicatechin, procyanidin B4 and procyanidin B2 | Fruit | Pericarp extract | >0.1 | Sheep meat nugget | Lower level of TBARS | [64] |
Mulberry | Morus alba L. | polyphenols, flavonoids and antho- cyanins Polyphenols, flavonoids, and anthocyanins | Leaf | Extract | >0.01 | Ground beef | Lower level of TBARS | [65] |
Myrtle | Myrtus communis | α-pinene, 1,8-cineole, limonene, linalool, α-terpineol | Leaf | Extract | - | Beef patties | Lower level of TBARS | [66] |
Pomegranate | Punica granatum | Tannins, anthocyanins, and flavonoids | Fruit | Extracts | 0.02 | Ground pork meat | Lower level of TBARS | [67] |
Rosemary | Rosemarinus officinalis L. | Carnosic acid, Caffeic acid, and rosmarinic acid | Leaves | Extract | >0.012 | Pork meat | Inhibition of lipid oxidation | [68] |
Turmeric | curcuma longa | Curcumin | Rhizome | Powder | 3.5 | Rabbit patties | Inhibition of lipid oxidation | [69] |
Wattles | Acacia nilotica | Flavone, alkaloids, and gums | Seed | Extract | >0.1 | Chicken patties | Shelf-life extension | [70] |
Plant | Scientific Name | Meats | Amount Added in meat (%) | Delivery System | Targeted Species | Outcome | References |
---|---|---|---|---|---|---|---|
Acacia nilotica | Acacia nilotica | Minced chicken | - | Seed extract | E. coli, S. typhimurium, Y. enterocolitica, K. pneumonia, B. cereus, S. aureus | Growth inhibition | [70] |
Bottlebrushes | Callistemon citrinus | Burgers | 2 | Leaves and flowers extracts | L. monocytogens | Growth inhibition | [89] |
Chestnut | Castanea sativa | Chorizo | 0.1 | Leaves extracts | Total Viable counts | Microbial growth inhibition | [90] |
Cranberry | Vaccinium subg. Oxycoccus | Cured Frankfurters | 3 | Powder | Listeria monocytogens | Growth inhibition | [91] |
Drumsticks | M. oleifera | Poultry sausage | 0.5 | Ground powder | E. coli, S.aureus, Total plate counts | Growth inhibition | [92] |
Grape seed | Vitis vinifera | Turkey Frankfurters | 0.5 | Seed extract | E. coli O157:H7, L. monocytogenes, S. typhimurium, | Contributed to the microbial reduction | [93] |
Green tea | Camellia sinensis | Pork meatballs | 0.03 | Extract | Mold, Yeast, Coliforms | Growth inhibition | [94] |
Lentisk | Pistacia lentiscus L. | Pork sausage | 0.03 | Extracts | Total Viable counts | Slowing microbial growth | [95] |
Mustard | Brassica juncea | Bologna | 5 | Extract | L. monocytogens | Growth inhibition | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beya, M.M.; Netzel, M.E.; Sultanbawa, Y.; Smyth, H.; Hoffman, L.C. Plant-Based Phenolic Molecules as Natural Preservatives in Comminuted Meats: A Review. Antioxidants 2021, 10, 263. https://doi.org/10.3390/antiox10020263
Beya MM, Netzel ME, Sultanbawa Y, Smyth H, Hoffman LC. Plant-Based Phenolic Molecules as Natural Preservatives in Comminuted Meats: A Review. Antioxidants. 2021; 10(2):263. https://doi.org/10.3390/antiox10020263
Chicago/Turabian StyleBeya, Michel M., Michael E. Netzel, Yasmina Sultanbawa, Heather Smyth, and Louwrens C. Hoffman. 2021. "Plant-Based Phenolic Molecules as Natural Preservatives in Comminuted Meats: A Review" Antioxidants 10, no. 2: 263. https://doi.org/10.3390/antiox10020263
APA StyleBeya, M. M., Netzel, M. E., Sultanbawa, Y., Smyth, H., & Hoffman, L. C. (2021). Plant-Based Phenolic Molecules as Natural Preservatives in Comminuted Meats: A Review. Antioxidants, 10(2), 263. https://doi.org/10.3390/antiox10020263