High Fruit and Vegetable Consumption and Moderate Fat Intake Are Associated with Higher Carotenoid Concentration in Human Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Ethics Statement
2.1.2. Sample Selection
2.1.3. Covariates
2.1.4. Sample Size Calculation
2.2. Carotenoids Extraction and Analysis
2.2.1. Standards and Samples
2.2.2. Extraction
2.2.3. HPLC-UV-VIS-MS/MS Analysis
2.3. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Carotenoid Concentration in Plasma
3.2.1. High F&V vs. Low F&V
3.2.2. Very High Fat vs. Low-to-Moderate Fat Intake
3.2.3. Comparisons between Extreme Values
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhan, J.; Liu, Y.-J.; Cai, L.-B.; Xu, F.-R.; Xie, T.; He, Q.-Q. Fruit and vegetable consumption and risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 1650–1663. [Google Scholar] [CrossRef]
- Carotenoids. In Modern Nutrition in Health and Disease; Ross, A.C.; Caballero, B.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. (Eds.) Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; pp. 427–439. ISBN 9781605474618. [Google Scholar]
- Roohbakhsh, A.; Karimi, G.; Iranshahi, M. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed. Pharmacother. 2017, 91, 31–42. [Google Scholar] [CrossRef]
- Müller, L.; Caris-Veyrat, C.; Lowe, G.; Böhm, V. Lycopene and Its Antioxidant Role in the Prevention of Cardiovascular Diseases—A Critical Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1868–1879. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.D.; Strachan, A.A.; Thies, F.; Aucott, L.S.; Reid, D.M.; Hardcastle, A.C.; Mavroeidi, A.; Simpson, W.G.; Duthie, G.G.; Macdonald, H.M. Patterns of dietary intake and serum carotenoid and tocopherol status are associated with biomarkers of chronic low-grade systemic inflammation and cardiovascular risk. Br. J. Nutr. 2014, 112, 1341–1352. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: A systematic review and dose-response meta-analysis of prospective studies. Am. J. Clin. Nutr. 2018, 108, 1069–1091. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Barroso, S.; Trius-Soler, M.; Lamuela-Raventós, R.M.; Zamora-Ros, R. Vegetable and Fruit Consumption and Prognosis Among Cancer Survivors: A Systematic Review and Meta-Analysis of Cohort Studies. Adv. Nutr. 2020, 11, 1569–1582. [Google Scholar] [CrossRef]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and Chlorophylls as Antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef]
- van Het Hof, K.H.; West, C.E.; Weststrate, J.A.; Hautvast, J.G. Dietary factors that affect the bioavailability of carotenoids. J. Nutr. 2000, 130, 503–506. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; de Alvarenga, J.; Torrado, X.; Lamuela-Raventos, R. Carotenoid Profile of Tomato Sauces: Effect of Cooking Time and Content of Extra Virgin Olive Oil. Int. J. Mol. Sci. 2015, 16, 9588–9599. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi de Alvarenga, J.F.; Tran, C.; Hurtado-Barroso, S.; Martinez-Huélamo, M.; Illan, M.; Lamuela-Raventos, R.M. Home cooking and ingredient synergism improve lycopene isomer production in Sofrito. Food Res. Int. 2017, 99, 851–861. [Google Scholar] [CrossRef]
- Priyadarshani, A.M.B. A review on factors influencing bioaccessibility and bioefficacy of carotenoids. Crit. Rev. Food Sci. Nutr. 2017, 57, 1710–1717. [Google Scholar] [CrossRef]
- Moran, N.E.; Mohn, E.S.; Hason, N.; Erdman, J.W.; Johnson, E.J. Intrinsic and Extrinsic Factors Impacting Absorption, Metabolism, and Health Effects of Dietary Carotenoids. Adv. Nutr. 2018, 9, 465–492. [Google Scholar] [CrossRef] [Green Version]
- Bohn, T.; Desmarchelier, C.; Dragsted, L.O.; Nielsen, C.S.; Stahl, W.; Rühl, R.; Keijer, J.; Borel, P. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Mol. Nutr. Food Res. 2017, 61, 1600685. [Google Scholar] [CrossRef]
- Jayarajan, P.; Reddy, V.; Mohanram, M. Effect of dietary fat on absorption of beta carotene from green leafy vegetables in children. Indian J. Med. Res. 1980, 71, 53–56. [Google Scholar]
- Failla, M.L.; Chitchumronchokchai, C.; Ferruzzi, M.G.; Goltz, S.R.; Campbell, W.W. Unsaturated fatty acids promote bioaccessibility and basolateral secretion of carotenoids and α-tocopherol by Caco-2 cells. Food Funct. 2014, 5, 1101–1112. [Google Scholar] [CrossRef] [Green Version]
- Salas-Salvadó, J.; Díaz-López, A.; Ruiz-Canela, M.; Basora, J.; Fitó, M.; Corella, D.; Serra-Majem, L.; Wärnberg, J.; Romaguera, D.; Estruch, R.; et al. Effect of a Lifestyle Intervention Program With Energy-Restricted Mediterranean Diet and Exercise on Weight Loss and Cardiovascular Risk Factors: One-Year Results of the PREDIMED-Plus Trial. Diabetes Care 2018, 42, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-González, M.A.; Buil-Cosiales, P.; Corella, D.; Bulló, M.; Fitó, M.; Vioque, J.; Romaguera, D.; Martínez, J.A.; Wärnberg, J.; López-Miranda, J.; et al. Cohort Profile: Design and methods of the PREDIMED-Plus randomized trial. Int. J. Epidemiol. 2019, 48, 387–388o. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galilea-Zabalza, I.; Buil-Cosiales, P.; Salas-Salvadó, J.; Toledo, E.; Ortega-Azorín, C.; Díez-Espino, J.; Vázquez-Ruiz, Z.; Zomeño, M.D.; Vioque, J.; Martínez, J.A.; et al. Mediterranean diet and quality of life: Baseline cross-sectional analysis of the PREDIMED-PLUS trial. PLoS ONE 2018, 13, e0198974. [Google Scholar] [CrossRef] [Green Version]
- Al-Delaimy, W.K.; van Kappel, A.L.; Ferrari, P.; Slimani, N.; Steghens, J.; Bingham, S.; Johansson, I.; Wallström, P.; Overvad, K.; Tjønneland, A.; et al. Plasma levels of six carotenoids in nine European countries: Report from the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr. 2004, 7, 713–722. [Google Scholar] [CrossRef]
- Colmán-Martínez, M.; Martínez-Huélamo, M.; Miralles, E.; Estruch, R.; Lamuela-Raventós, R.M. A New Method to Simultaneously Quantify the Antioxidants: Carotenes, Xanthophylls, and Vitamin A in Human Plasma. Oxid. Med. Cell. Longev. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Hrvolová, B.; Martínez-Huélamo, M.; Colmán-Martínez, M.; Hurtado-Barroso, S.; Lamuela-Raventós, R.; Kalina, J. Development of an Advanced HPLC–MS/MS Method for the Determination of Carotenoids and Fat-Soluble Vitamins in Human Plasma. Int. J. Mol. Sci. 2016, 17, 1719. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Ballart, J.D.; Piñol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Martín-Moreno, J.M. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helsel, D.R. Statistics for Censored Environmental Data Using Minitab® and R, 2nd ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 9780470479889. [Google Scholar]
- Soria-Florido, M.T.; Castañer, O.; Lassale, C.; Estruch, R.; Salas-Salvadó, J.; Martínez-González, M.Á.; Corella, D.; Ros, E.; Arós, F.; Elosua, R.; et al. Dysfunctional High-Density Lipoproteins Are Associated With a Greater Incidence of Acute Coronary Syndrome in a Population at High Cardiovascular Risk. Circulation 2020, 141, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Beddhu, S.; Chertow, G.M.; Cheung, A.K.; Cushman, W.C.; Rahman, M.; Greene, T.; Wei, G.; Campbell, R.C.; Conroy, M.; Freedman, B.I.; et al. Influence of Baseline Diastolic Blood Pressure on Effects of Intensive Compared With Standard Blood Pressure Control. Circulation 2018, 137, 134–143. [Google Scholar] [CrossRef]
- Franzke, B.; Schober-Halper, B.; Hofmann, M.; Oesen, S.; Tosevska, A.; Strasser, E.-M.; Marculescu, R.; Wessner, B.; Wagner, K.-H. Fat Soluble Vitamins in Institutionalized Elderly and the Effect of Exercise, Nutrition and Cognitive Training on Their Status—The Vienna Active Aging Study (VAAS): A Randomized Controlled Trial. Nutrients 2019, 11, 1333. [Google Scholar] [CrossRef] [Green Version]
- Duthie, S.J.; Duthie, G.G.; Russell, W.R.; Kyle, J.A.M.; Macdiarmid, J.I.; Rungapamestry, V.; Stephen, S.; Megias-Baeza, C.; Kaniewska, J.J.; Shaw, L.; et al. Effect of increasing fruit and vegetable intake by dietary intervention on nutritional biomarkers and attitudes to dietary change: A randomised trial. Eur. J. Nutr. 2018, 57, 1855–1872. [Google Scholar] [CrossRef] [Green Version]
- Pezdirc, K.; Hutchesson, M.J.; Williams, R.L.; Rollo, M.E.; Burrows, T.L.; Wood, L.G.; Oldmeadow, C.; Collins, C.E. Consuming High-Carotenoid Fruit and Vegetables Influences Skin Yellowness and Plasma Carotenoids in Young Women: A Single-Blind Randomized Crossover Trial. J. Acad. Nutr. Diet. 2016, 116, 1257–1265. [Google Scholar] [CrossRef]
- Uriarte, P.A.; Bergera, L.M.; Alonso, P.R.; Gaspar, T.V.; Moreno, E.R.; Torres, J.M.Á.; Moreiras, G.V. Informe del Estado de la Situación Sobre “Frutas y Hortalizas: Nutrición y Salud en la España del S. XXI; Sociedad Española de Nutrición: Madrid, Spain, 2018. [Google Scholar]
- Partearroyo, T.; Samaniego-Vaesken, M.D.; Ruiz, E.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G. Current Food Consumption amongst the Spanish ANIBES Study Population. Nutrients 2019, 11, 2663. [Google Scholar] [CrossRef] [Green Version]
- EU Science Hub Health Promotion and Disease Prevention: Nutrition-Fruit and Vegetables. Available online: Ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/fruit-vegetables (accessed on 27 October 2020).
- Lock, K.; Pomerleau, J.; Causer, L.; Altmann, D.R.; McKee, M. The global burden of disease attributable to low consumption of fruit and vegetables: Implications for the global strategy on diet. Bull. World Health Organ. 2005, 83, 100–108. [Google Scholar]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf (accessed on 27 October 2020).
- Fischer, C.G.; Garnett, T.; Food and Agriculture Organization of the United Nations; Food Climate Research Network. Plates, Pyramids, and Planets: Developments in National Healthy and Sustainable Dietary Guidelines: A State of Play Assessment; University of Oxford: Oxford, UK, 2016; ISBN 9789251092224. [Google Scholar]
- Souverein, O.W.; de Vries, J.H.M.; Freese, R.; Watzl, B.; Bub, A.; Miller, E.R.; Castenmiller, J.J.M.; Pasman, W.J.; van het Hof, K.; Chopra, M.; et al. Prediction of fruit and vegetable intake from biomarkers using individual participant data of diet-controlled intervention studies. Br. J. Nutr. 2015, 113, 1396–1409. [Google Scholar] [CrossRef] [Green Version]
- Djuric, Z.; Ren, J.; Mekhovich, O.; Venkatranamoorthy, R.; Heilbrun, L.K. Effects of High Fruit-Vegetable and/or Low-Fat Intervention on Plasma Micronutrient Levels. J. Am. Coll. Nutr. 2006, 25, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Marhuenda-Muñoz, M.; Hurtado-Barroso, S.; Tresserra-Rimbau, A.; Lamuela-Raventós, R.M. A review of factors that affect carotenoid concentrations in human plasma: Differences between Mediterranean and Northern diets. Eur. J. Clin. Nutr. 2019, 72, 18–25. [Google Scholar] [CrossRef]
- Mashurabad, P.C.; Palika, R.; Jyrwa, Y.W.; Bhaskarachary, K.; Pullakhandam, R. Dietary fat composition, food matrix and relative polarity modulate the micellarization and intestinal uptake of carotenoids from vegetables and fruits. J. Food Sci. Technol. 2017, 54, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; An, Y.; Tang, H.; Wang, Y. Alterations of Bile Acids and Gut Microbiota in Obesity Induced by High Fat Diet in Rat Model. J. Agric. Food Chem. 2019, 67, 3624–3632. [Google Scholar] [CrossRef] [PubMed]
- Arranz, S.; Martínez-Huélamo, M.; Vallverdu-Queralt, A.; Valderas-Martinez, P.; Illán, M.; Sacanella, E.; Escribano, E.; Estruch, R.; Lamuela-Raventos, R.M.A. Influence of olive oil on carotenoid absorption from tomato juice and effects on postprandial lipemia. Food Chem. 2015, 168, 203–210. [Google Scholar] [CrossRef]
- Roodenburg, A.J.; Leenen, R.; van het Hof, K.H.; Weststrate, J.A.; Tijburg, L.B. Amount of fat in the diet affects bioavailability of lutein esters but not of α-carotene, β-carotene, and vitamin E in humans. Am. J. Clin. Nutr. 2000, 71, 1187–1193. [Google Scholar] [CrossRef]
- Nidhi, B.; Mamatha, B.S.; Baskaran, V. Olive oil improves the intestinal absorption and bioavailability of lutein in lutein-deficient mice. Eur. J. Nutr. 2014, 53, 117–126. [Google Scholar] [CrossRef]
Characteristics | All | Low F&V | High F&V | p-Value * | ||
---|---|---|---|---|---|---|
Low-to- Moderate Fat | Very High Fat | Low-to- Moderate Fat | Very High Fat | |||
No. of subjects | 230 | 59 | 58 | 60 | 53 | |
Age, years | 66.1 ± 4.40 | 65.9 ± 4.46 | 66.3 ± 3.61 | 65.8 ± 5.07 | 66.2 ± 4.25 | 0.935 |
Women, n (%) | 106 (46.1) | 26 (44.1) | 26 (44.8) | 32 (53.3) | 22 (41.5) | 0.604 |
Type-2 diabetes mellitus, n (%) | 55 (23.6) | 11 (18.6) | 11 (19.0) | 21 (35.0) | 11 (20.8) | 0.135 |
Hypercholesterolemia, n (%) | 155 (67.4) | 39 (66.1) | 42 (72.4) | 40 (66.7) | 34 (64.2) | 0.811 |
Hypertension, n (%) | 200 (87.0) | 50 (84.7) | 53 (91.4) | 53 (88.3) | 44 (83.0) | 0.510 |
Body mass index, kg/m2 | 32.7 ± 3.50 | 32.0 ± 2.99 | 32.7 ± 3.64 | 32.4 ± 3.76 | 33.6 ± 3.53 | 0.100 |
Current smoker, n (%) | 37 (16.1) | 8 (13.6) | 10 (17.2) | 6 (10.0) | 13 (24.5) | 0.189 |
Leisure-time physical activity, MET·min/week | 2525 ± 2458 | 1780 ± 1855 | 2276 ± 1890 | 3064 ± 3248 | 3019 ± 2368 | 0.011 |
High F&V vs. Low F&V | p-Value | High F&V vs. Low F&V (Low-to- Moderate Fat) | p-Value | High F&V vs. Low F&V (High Fat) | p-Value | ||
---|---|---|---|---|---|---|---|
Total carotenoids | Median | 5.31 vs. 2.08 | 6.75 vs. 2.48 | 4.23 vs. 1.71 | |||
ß [CI]-model 1 | 3.64 [1.85; 5.44] | <0.001 | 5.01 [2.54; 7.48] | <0.001 | 2.12 [−0.43; 4.67] | 0.104 | |
ß [CI]-model 2 | 2.97 [1.18; 4.76] | 0.001 | 4.13 [1.67; 6.60] | 0.001 | 1.67 [−0.84; 4.18] | 0.192 | |
ß [CI]-model 3 | 3.04 [0.90; 5.17] | 0.005 | 3.83 [0.97; 6.70] | 0.009 | 1.33 [−1.64; 4.30] | 0.379 | |
Carotenes | Median | 3.00 vs. 0.25 | 4.26 vs. 0.95 | 1.36 vs. 0.19 | |||
ß [CI]-model 1 | 3.47 [1.50; 5.44] | <0.001 | 4.70 [1.99; 7.42] | <0.001 | 2.06 [−0.75; 4.88] | 0.150 | |
ß [CI]-model 2 | 2.77 [0.79; 4.74] | 0.006 | 3.79 [1.07; 6.51] | 0.006 | 1.60 [−1.17; 4.37] | 0.257 | |
ß [CI]-model 3 | 2.80 [0.46; 5.14] | 0.019 | 3.53 [0.38; 6.68] | 0.028 | 1.35 [−1.92; 4.62] | 0.419 | |
Xanthophylls | Median | 2.04 vs. 1.09 | 2.44 vs. 1.04 | 2.03 vs. 1.09 | |||
ß [CI]-model 1 | 1.00 [0.67; 1.33] | <0.00001 | 1.27 [0.81; 1.73] | <0.00001 | 0.69 [0.22; 1.17] | 0.004 | |
ß [CI]-model 2 | 0.89 [0.55; 1.23] | <0.00001 | 1.13 [0.67; 1.59] | <0.00001 | 0.62 [0.15; 1.09] | 0.009 | |
ß [CI]-model 3 | 0.88 [0.48; 1.27] | <0.001 | 1.00 [0.48; 1.53] | <0.001 | 0.42 [−0.13; 0.96] | 0.136 |
High fat vs. Low-to-Moderate Fat | p-Value | High Fat vs. Low-to-Moderate Fat (Low F&V) | p-Value | High Fat vs. Low-to-Moderate Fat (High F&V) | p-Value | ||
---|---|---|---|---|---|---|---|
Total carotenoids | Median | 2.35 vs. 5.02 | 1.71 vs. 2.48 | 4.23 vs. 6.75 | |||
ß [CI]-model 1 | −1.46 [−3.31; 0.39] | 0.122 | 0.039 [−2.45; 2.53] | 0.976 | −2.85 [−5.39; −0.30] | 0.028 | |
ß [CI]-model 2 | −1.59 [−3.37; 0.19] | 0.081 | −0.29 [−2.72; 2.15] | 0.816 | −2.75 [−5.24; −0.27] | 0.030 | |
ß [CI]-model 3 | −2.69 [−5.54; 0.16] | 0.064 | −0.021 [−3.54; 3.50] | 0.991 | −2.52 [−6.10; 1.05] | 0.166 | |
Carotenes | Median | 0.37 vs. 2.48 | 0.19 vs. 0.95 | 1.36 vs. 4.26 | |||
ß [CI]-model 1 | −1.19 [−3.21; 0.82] | 0.245 | 0.23 [−2.55; 3.00] | 0.873 | −2.41 [−5.18; 0.35] | 0.087 | |
ß [CI]-model 2 | −1.32 [−3.27; 0.63] | 0.185 | −0.12 [−2.85; 2.60] | 0.928 | −2.31 [−5.02; 0.39] | 0.094 | |
ß [CI]-model 3 | −2.36 [−5.51; 0.79] | 0.142 | 0.13 [−3.81; 4.07] | 0.948 | −2.05 [−5.97; 1.87] | 0.305 | |
Xanthophylls | Median | 1.25 vs. 1.54 | 1.09 vs. 1.04 | 2.03 vs. 2.44 | |||
ß [CI]-model 1 | −0.35 [−0.71; 0.002] | 0.051 | −0.045 [−0.51; 0.42] | 0.847 | −0.62 [−1.09; −15] | 0.010 | |
ß [CI]-model 2 | -0.38 [−0.72; −0.034] | 0.031 | −0.10 [−0.55; 0.35] | 0.668 | −0.61 [−1.07; −0.14] | 0.010 | |
ß [CI]-model 3 | −0.88 [−1.41; −0.35] | 0.001 | −0.19 [−0.84; 0.45] | 0.555 | −0.78 [−1.44; −0.13] | 0.019 |
Low-to-Moderate Fat & High F&V vs. High Fat & Low F&V | p-Value | High Fat & High F&V vs. Low-to-Moderate Fat & Low F&V | p-Value | ||
---|---|---|---|---|---|
Total carotenoids | Median | 6.75 vs. 1.71 | 4.23 vs. 2.48 | ||
ß [CI]-model 1 | 4.97 [2.49; 7.45] | <0.001 | 2.16 [−0.39; 4.70] | 0.096 | |
ß [CI]-model 2 | 4.42 [1.98; 6.86] | <0.001 | 1.38 [−1.15; 3.91] | 0.284 | |
ß [CI]-model 3 | 3.86 [0.86; 6.85] | 0.012 | 1.31 [−3.27; 5.89] | 0.575 | |
Carotenes | Median | 4.26 vs. 0.19 | 1.36 vs. 0.95 | ||
ß [CI]-model 1 | 4.48 [1.75; 7.21] | 0.001 | 2.29 [−0.52; 5.10] | 0.110 | |
ß [CI]-model 2 | 3.92 [1.22; 6.61] | 0.004 | 1.48 [−1.32; 4.27] | 0.300 | |
ß [CI]-model 3 | 3.40 [0.079; 6.72] | 0.045 | 1.48 [−3.58; 6.54] | 0.567 | |
Xanthophylls | Median | 2.44 vs. 1.09 | 2.03 vs. 1.04 | ||
ß [CI]-model 1 | 1.32 [0.86; 1.77] | <0.00001 | 0.65 [0.18; 1.12] | 0.007 | |
ß [CI]-model 2 | 1.23 [0.77; 1.68] | <0.00001 | 0.52 [0.049; 0.99] | 0.031 | |
ß [CI]-model 3 | 1.20 [0.65; 1.75] | <0.001 | 0.22 [−0.62; 1.06] | 0.608 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marhuenda-Muñoz, M.; Rinaldi de Alvarenga, J.F.; Hernáez, Á.; Tresserra-Rimbau, A.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Malcampo, M.; Martínez, J.A.; Alonso-Gómez, Á.M.; et al. High Fruit and Vegetable Consumption and Moderate Fat Intake Are Associated with Higher Carotenoid Concentration in Human Plasma. Antioxidants 2021, 10, 473. https://doi.org/10.3390/antiox10030473
Marhuenda-Muñoz M, Rinaldi de Alvarenga JF, Hernáez Á, Tresserra-Rimbau A, Martínez-González MÁ, Salas-Salvadó J, Corella D, Malcampo M, Martínez JA, Alonso-Gómez ÁM, et al. High Fruit and Vegetable Consumption and Moderate Fat Intake Are Associated with Higher Carotenoid Concentration in Human Plasma. Antioxidants. 2021; 10(3):473. https://doi.org/10.3390/antiox10030473
Chicago/Turabian StyleMarhuenda-Muñoz, María, José Fernando Rinaldi de Alvarenga, Álvaro Hernáez, Anna Tresserra-Rimbau, Miguel Ángel Martínez-González, Jordi Salas-Salvadó, Dolores Corella, Mireia Malcampo, José Alfredo Martínez, Ángel M. Alonso-Gómez, and et al. 2021. "High Fruit and Vegetable Consumption and Moderate Fat Intake Are Associated with Higher Carotenoid Concentration in Human Plasma" Antioxidants 10, no. 3: 473. https://doi.org/10.3390/antiox10030473
APA StyleMarhuenda-Muñoz, M., Rinaldi de Alvarenga, J. F., Hernáez, Á., Tresserra-Rimbau, A., Martínez-González, M. Á., Salas-Salvadó, J., Corella, D., Malcampo, M., Martínez, J. A., Alonso-Gómez, Á. M., Wärnberg, J., Vioque, J., Romaguera, D., López-Miranda, J., Estruch, R., Tinahones, F. J., Lapetra, J., Serra-Majem, J. L., Bueno-Cavanillas, A., ... Lamuela-Raventós, R. M. (2021). High Fruit and Vegetable Consumption and Moderate Fat Intake Are Associated with Higher Carotenoid Concentration in Human Plasma. Antioxidants, 10(3), 473. https://doi.org/10.3390/antiox10030473