Composition and Antioxidant Activity of Phenolic Compounds in Fruit of the Genus Rosa L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Preparation of Rosa L. Fruit Samples
2.4. Preparation of Rosa L. Fruit Extracts
2.5. Spectrophotometric Assays
2.5.1. Determination of the Total Amounts of Phenolic Compounds, Flavonoids, and Hydroxycinnamic Acid Derivatives
2.5.2. Evaluation of Antioxidant Activity
2.6. Chromatographic Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Determination of the Total Content of Phenolic Compounds, Flavonoids, and Hydroxycinnamic Acid Derivatives in Rosa L. Fruit Samples
3.2. Determination of the Qualitative and Quantitative Composition of Phenolic Compounds by UHPLC in Rosa L. Fruit Samples
3.3. Determination of the Antioxidant Activity of Rosa L. Fruit-Sample Extracts In Vitro
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hummer, K.E.; Janick, J. Rosaceae: Taxonomy, economic importance, genomics. In Genetics and genomics of Rosaceae; Folta, K.M., Gardiner, S.E., Eds.; Springer: New York, NY, USA, 2009; pp. 1–17. [Google Scholar]
- Nybom, H.; Carlson-Nilsson, U.; Werlemark, G.; Uggla, M. Different levels of morphometric variation in three heterogamous dogrose species (Rosa sect. Caninae, Rosaceae). Plant Syst. Evol. 1997, 204, 207–224. [Google Scholar] [CrossRef]
- Czyzowska, A.; Klewicka, E.; Pogorzelski, E.; Nowak, A. Polyphenols, vitamin C and antioxidant activity in wines from Rosa canina L. and Rosa rugosa Thunb. J. Food Compos. Anal. 2015, 39, 62–68. [Google Scholar] [CrossRef]
- Ghazghazi, H.; Miguel, M.G.; Hasnaoui, B.; Sebei, H.; Ksontini, M.; Figueiredo, A.C.; Barroso, J.G. Phenols, Essential Oils and Carotenoids of Rosa canina from Tunisia and Their Antioxidant Activities. Afr. J. Biotechnol. 2010, 9, 2709–2716. [Google Scholar]
- Council of Europe. Dog rose, 07/2019:1510. In European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019; pp. 1415–1416. [Google Scholar]
- Jiménez, S.; Jiménez-Moreno, N.; Luquin, A.; Laguna, M.; Rodríguez-Yoldi, M.J.; Ancín-Azpilicueta, C. Chemical composition of rosehips from different Rosa species: An alternative source of antioxidants for the food industry. Food Addit. Contam. Part A 2017, 34, 1121–1130. [Google Scholar] [CrossRef]
- Nađpal, J.D.; Lesjak, M.M.; Šibul, F.S.; Anačkov, G.T.; Četojević-Simin, D.D.; Mimica-Dukić, N.M.; Beara, I.N. Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds. Food Chem. 2016, 192, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Carvalho, A.M.; Morais, J.S.; Ferreira, I.C.F.R. Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chem. 2010, 120, 247–254. [Google Scholar] [CrossRef]
- Orhan, D.D.; Hartevioğlu, A.; Küpeli, E.; Yesilada, E. In vivo Anti-Inflammatory and antinociceptive activity of the crude extract and fractions from Rosa canina L. fruits. J. Ethnopharmacol. 2007, 112, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Wenzig, E.M.; Widowitz, U.; Kunert, O.; Chrubasik, S.; Bucar, F.; Knauder, E.; Bauer, R. Phytochemical composition and in vitro pharmacological activity of two rose hip (Rosa canina L.) preparations. Phytomedicine 2008, 15, 826–835. [Google Scholar] [CrossRef]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Exotic fruits as a source of important phytochemicals: Improving the traditional use of Rosa canina fruits in Portugal. Food Res. Int. 2011, 44, 2233–2236. [Google Scholar] [CrossRef]
- Tumbas, V.T.; Čanadanović-Brunet, J.M.; Četojević-Simin, D.D.; Ćetković, G.S.; Ðilas, S.M.; Gille, L. Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. J. Sci. Food Agric. 2012, 92, 1273–1281. [Google Scholar] [CrossRef]
- Willich, S.N.; Rossnagel, K.; Roll, S.; Wagner, A.; Mune, O.; Erlendson, J.; Kharazmi, A.; Sörensen, H.; Winther, K. Rose hip herbal remedy in patients with rheumatoid arthritis—A randomised controlled trial. Phytomedicine 2010, 17, 87–93. [Google Scholar] [CrossRef]
- Saaby, L.; Jäger, A.K.; Moesby, L.; Hansen, E.W.; Christensen, S.B. Isolation of immunomodulatory triterpene acids from a standardized rose hip powder (Rosa canina L.). Phytother. Res. 2011, 25, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Ashtiyani, S.C.; Najafi, H.; Jalalvandi, S.; Hosseinei, F. Protective effects of Rosa canina L fruit extracts on renal disturbances induced by reperfusion injury in rats. Iran. J. Kidney Dis. 2013, 7, 290. [Google Scholar]
- Vossen, E.; Utrera, M.; De Smet, S.; Morcuende, D.; Estévez, M. Dog rose (Rosa canina L.) as a functional ingredient in porcine frankfurters without added sodium ascorbate and sodium nitrite. Meat Sci. 2012, 92, 451–457. [Google Scholar] [CrossRef]
- Koczka, N.; Stefanovits-Bányai, É.; Ombódi, A. Total polyphenol content and antioxidant capacity of rosehips of some Rosa species. Medicines 2018, 5, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A.A. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT Food Sci. Technol. 2014, 57, 126–133. [Google Scholar] [CrossRef]
- Szołtysik, M.; Kucharska, A.Z.; Sokół-Łętowska, A.; Dąbrowska, A.; Bobak, Ł.; Chrzanowska, J. The effect of Rosa spinosissima fruits extract on lactic acid bacteria growth and other yoghurt parameters. Foods 2020, 9, 1167. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.R.; Thakare, V.N.; Joshi, F.P. Functional foods and herbs as potential immunoadjuvants and medicines in maintaining healthy immune system: A commentary. J. Complement. Integr. Med. 2010, 7, 1–29. [Google Scholar] [CrossRef]
- Asgary, S.; Rastqar, A.; Keshvari, M. Functional food and cardiovascular disease prevention and treatment: A review. J. Am. Coll. Nutr. 2018, 37, 429–455. [Google Scholar] [CrossRef]
- Langhans, W. Food components in health promotion and disease prevention. J. Agric. Food Chem. 2018, 66, 2287–2294. [Google Scholar] [CrossRef] [PubMed]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef] [PubMed]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Tsao, R.; Deng, Z. Separation procedures for naturally occurring antioxidant phytochemicals. J. Chromatogr. B 2004, 812, 85–99. [Google Scholar] [CrossRef]
- Council of Europe. Loss on drying, 07/2019:20232. In European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019; p. 57. [Google Scholar]
- Bobinaitė, R.; Viškelis, P.; Venskutonis, P.R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef]
- Urbonavičiūtė, A.; Jakštas, V.; Kornyšova, O.; Janulis, V.; Maruška, A. Capillary electrophoretic analysis of flavonoids in single-styled hawthorn (Crataegus monogyna Jacq.) Ethanolic Extracts. J. Chromatogr. A 2006, 1112, 339–344. [Google Scholar] [CrossRef]
- Fraisse, D.; Felgines, C.; Texier, O.; Lamaison, J.-L. Caffeoyl derivatives: Major antioxidant compounds of some wild herbs of the Asteraceae family. Food Nutr. Sci. 2011, 2, 181–192. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- González-Burgos, E.; Liaudanskas, M.; Viškelis, J.; Žvikas, V.; Janulis, V.; Gómez-Serranillos, M.P. Antioxidant activity, neuroprotective properties and bioactive constituents analysis of varying polarity extracts from Eucalyptus globulus leaves. J. Food Drug Anal. 2018, 26, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.-Q.; Zhang, D.; Farha, A.K.; Yang, X.; Li, H.-B.; Kong, K.-W.; Zhang, J.-R.; Chan, C.-L.; Lu, W.-Y.; Corke, H.; et al. Phytochemicals, essential oils, and bioactivities of an underutilized wild fruit cili (Rosa roxburghii). Ind. Crop. Prod. 2020, 143, 111928. [Google Scholar] [CrossRef]
- Nađpal, J.D. Phytochemical composition and in vitro functional properties of three wild rose hips and their traditional preserves. Food Chem. 2018, 241, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Tahirović, A.; Bašić, N. Determination of phenolic content and antioxidant activity of Rosa canina L. fruits in different extraction systems. Work. Fac. For. Univ. Sarajevo 2017, 47, 13. [Google Scholar]
- Heleno, S.A.; Martins, A.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem. 2015, 173, 501–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. Med. Plants Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Taofiq, O.; Calhelha, R.C.; Heleno, S.; Barros, L.; Martins, A.; Santos-Buelga, C.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Res. Int. 2015, 76, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Buys-Gonçalves, G.F.; Abreu, L.A.S.; Gregorio, B.M.; Sampaio, F.J.B.; Pereira-Sampaio, M.A.; de Souza, D.B. Antioxidants as renoprotective agents for ischemia during partial nephrectomy. BioMed Res. Int. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Domitrović, R.; Cvijanović, O.; Šušnić, V.; Katalinić, N. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology 2014, 324, 98–107. [Google Scholar] [CrossRef]
- Saha, P.; Talukdar, A.D.; Nath, R.; Sarker, S.D.; Nahar, L.; Sahu, J.; Choudhury, M.D. Role of natural phenolics in hepatoprotection: A mechanistic review and analysis of regulatory network of associated genes. Front. Pharmacol. 2019, 10, 509. [Google Scholar] [CrossRef]
- Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic effects of simple phenolic acids: A comprehensive review: Antidiabetic effects of phenolic acids. Phytother. Res. 2016, 30, 184–199. [Google Scholar] [CrossRef]
- Aron, P.M.; Kennedy, J.A. Flavan-3-Ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 2008, 52, 79–104. [Google Scholar] [CrossRef]
- Braicu, C.; Pilecki, V.; Balacescu, O.; Irimie, A.; Berindan Neagoe, I. The relationships between biological activities and structure of flavan-3-ols. Int. J. Mol. Sci. 2011, 12, 9342–9353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, L.; Yang, Y.; He, H.; Chen, E.; Du, L.; Dong, J.; Yang, J. Flavan-3-ols consumption and cancer risk: A meta-analysis of epidemiologic studies. Oncotarget 2016, 7, 73573–73592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mena, P.; Domínguez-Perles, R.; Gironés-Vilaplana, A.; Baenas, N.; García-Viguera, C.; Villaño, D. Flavan-3-ols, anthocyanins, and inflammation: Anti-inflammatory effects of anthocyanins and flavan-3-ols. IUBMB Life 2014, 66, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Hackman, R.M.; Polagruto, J.A.; Zhu, Q.Y.; Sun, B.; Fujii, H.; Keen, C.L. Flavanols: Digestion, absorption and bioactivity. Phytochem. Rev. 2007, 7, 195–208. [Google Scholar] [CrossRef]
- Raman, G.; Shams-White, M.; Avendano, E.E.; Chen, F.; Novotny, J.A.; Cassidy, A. Dietary intakes of flavan-3-ols and cardiovascular health: A field synopsis using evidence mapping of randomized trials and prospective cohort studies. Syst. Rev. 2018, 7, 1–11. [Google Scholar] [CrossRef]
- Mulero, J.; Abellán, J.; Zafrilla, P.; Amores, D.; Hernández Sánchez, P. Sustancias bioactivas con efecto preventivo en la enfermedad cardiovascular. Nutr. Hosp. 2015, 32, 1462–1467. [Google Scholar]
- Tabaszewska, M.; Najgebauer-Lejko, D. The content of selected phytochemicals and in vitro antioxidant properties of rose hip (Rosa canina L.) tinctures. NFS J. 2020, 21, 50–56. [Google Scholar] [CrossRef]
- Fetni, S.; Bertella, N.; Ouahab, A.; Martinez Zapater, J.M.; De Pascual-Teresa Fernandez, S. Composition and biological activity of the Algerian plant Rosa canina L. by HPLC-UV-MS. Arab. J. Chem. 2020, 13, 1105–1119. [Google Scholar] [CrossRef]
- Cho, Y.-J. Antioxidant and antimicrobial activity of Rosa multiflora Thunberg fruits extracts. Curr. Res. Agric. Life Sci. 2013, 31, 170–176. [Google Scholar]
- Sharma, A.; Sharma, P.; Tuli, H.S.; Sharma, A.K. Phytochemical and pharmacological properties of flavonols. eLS 2018, 1–12. [Google Scholar]
- Nasri, I.; Chawech, R.; Girardi, C.; Mas, E.; Ferrand, A.; Vergnolle, N.; Fabre, N.; Mezghani-Jarraya, R.; Racaud-Sultan, C. Anti-inflammatory and anticancer effects of flavonol glycosides from Diplotaxis harra through GSK3β regulation in intestinal cells. Pharm. Biol. 2017, 55, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maalik, A.; Khan, F.; Mumtaz, A.; Mehmood, A.; Azhar, S.; Atif, M.; Karim, S.; Altaf, Y.; Tariq, I. Pharmacological applications of quercetin and its derivatives: A short review. Trop. J. Pharm Res 2014, 13, 1561–1566. [Google Scholar] [CrossRef]
- Lakhanpal, P.; Rai, D.K. Role of Quercetin in Cardiovascular Diseases. Int. J. Med. Updat. 2008, 3, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Ferenczyova, K.; Kalocayova, B.; Bartekova, M. Potential implications of quercetin and its derivatives in cardioprotection. Int. J. Mol. Sci. 2020, 21, 1585. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules 2019, 10, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magalingam, K.B.; Radhakrishnan, A.; Haleagrahara, N. Protective effects of quercetin glycosides, rutin, and isoquercetrin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat pheochromocytoma (PC-12) cells. Int. J. Immunopathol. Pharmacol. 2016, 29, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef] [PubMed]
- Hajhashemi, V.; Vaseghi, G.; Pourfarzam, M.; Abdollahi, A. Are antioxidants helpful for disease prevention? Res. Pharm. Sci. 2010, 5, 1–8. [Google Scholar] [PubMed]
- García-Sánchez, A.; Miranda-Díaz, A.G.; Cardona-Muñoz, E.G. The role of oxidative stress in physiopathology and pharmacological treatment with pro- and antioxidant properties in chronic diseases. Oxid. Med. Cell. Longev. 2020, 2020, 2082145. [Google Scholar] [CrossRef]
- Szymanska, R.; Pospíšil, P.; Kruk, J. Plant-derived antioxidants in disease prevention 2018. Oxid. Med. Cell. Longev. 2018, 2018, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serafini, M. The role of antioxidants in disease prevention. Medicine 2006, 34, 533–535. [Google Scholar] [CrossRef]
- Taneva, I.; Petkova, N.; Dimov, I.; Ivanov, I.; Denev, P. Characterization of rose hip (Rosa canina L.) fruits extracts and evaluation of their in vitro antioxidant activity. J. Pharmacogn. Phytochem. 2016, 5, 35–38. [Google Scholar]
Compound | Parent Ion (m/z) | Daughter Ion (m/z) | Cone Voltage, V | Collision Energy, eV |
---|---|---|---|---|
Caffeic acid | 179 | 107 | 36 | 22 |
(−)-Epicatechin | 289 | 123 | 60 | 34 |
(+)-Catechin | 289 | 123 | 60 | 34 |
Quercetin | 301 | 151 | 48 | 20 |
Chlorogenic acid | 353 | 191 | 32 | 14 |
Phloridzin | 435 | 273 | 42 | 14 |
(−)-Epicatechin gallate | 441 | 169 | 40 | 16 |
Kaempferol-3-glucoside | 447 | 284 | 54 | 28 |
Quercitrin | 447 | 300 | 50 | 26 |
Rutin | 609 | 300 | 70 | 38 |
Compound, µg/g DW | Caffeic Acid | Chlorogenic Acid | (+)-Catechin | (−)-Epicatechin | (−)-Epicatechin Gallate |
---|---|---|---|---|---|
R. canina | ND | 2.68 ± 0.03 b | 107.93 ± 1.93 e | ND | 117.52 ± 2.27 b,c |
R. multiflora | ND | ND | 145.37 ± 3.38 d | ND | 84.32 ± 0.76 d |
R. multiflora “Nana” | ND | 16.31 ± 0.85 a | 592.63 ± 6.39 a | 2.74 ± 0.07 b | 126.15 ± 1.70 b |
R. pimpinellifolia “Papula” | 4.81 ± 0.02 b | 1.62 ± 0.08 b,c | 89.17 ± 1.25 f | 9.71 ± 0.04 a | 149.29 ± 2.76 a |
R. pimpinellifolia “Single Cherry” | 3.73 ± 0.03 c,d | ND | 39.43 ± 0.93 g | 0.38 ± 0.02 e | ND |
R. rugosa “Adam Chodun” | ND | ND | 93.73 ± 1.83 e,f | 1.99 ± 0.04 | 85.89 ± 1.53 d |
R. rugosa “Dart’s Defender” | 3.69±0.07 c,d | 0.29±0.01 c | 232.08 ± 3.92 b | 0.02 ± 0.001 f | 122.67 ± 3.41 b,c |
R. rugosa “Fru Dagmar Hastrup” | 3.46 ± 0.06 d | ND | 43.66 ± 0.86 g | 0.90 ± 0.05 d | ND |
R. rugosa “Kornik” | 3.95 ± 0.10 c | ND | 50.38 ± 0.65 g | ND | 113.01 ± 2.42 c |
R. rugosa “Marie Bugnet” | ND | 0.87 ± 0.01 b,c | 197.96 ± 3.47 c | 0.22 ± 0.01 e,f | 79.61 ± 0.83 d |
R. rugosa “Rudolf” | 5.78 ± 0.07 a | ND | 52.10 ± 0.99 g | ND | ND |
Compound, µg/g DW | Kaempferol-3-O-glucoside | Phloridzin | Quercetin | Quercitrin | Rutin |
---|---|---|---|---|---|
R. canina | 3.34 ± 0.51 e,f | 1.76 ± 1.08 c,d | ND | 2.63 ± 0.01 e | ND |
R. multiflora | 10.14 ± 0.71 d | 20.78 ± 1.12 b | 5.56 ± 0.32 c | 142.58 ± 2.94 b | 6.51 ± 0.44 c |
R. multiflora “Nana” | 46.47 ± 1.38 a | 28.75 ± 1.25 a | 6.95 ± 0.06 b | 278.47 ± 2.65 a | 19.44 ± 1.41 a |
R. pimpinellifolia “Papula” | ND | 3.99 ± 0.27 f | 6.73 ± 0.32 b,c | 2.52 ± 0.39 e | ND |
R. pimpinellifolia “Single Cherry” | ND | ND | 43.96 ± 0.12 a | 1.83 ± 0.04 e | ND |
R. rugosa “Adam Chodun” | 12.47 ± 0.52 d | 13.26 ± 0.75 c,d | ND | 1.75 ± 0.04 e | 1.54 ± 0.04 d |
R. rugosa “Dart’s Defender” | 38.61 ± 0.84 b | 14.96 ± 0.94 c | ND | 32.09 ± 1.03 c | 9.97 ± 0.28 c |
R. rugosa “Fru Dagmar Hastrup” | 5.57 ± 0.43 e | 11.85 ± 0.25 c,d | ND | 2.79 ± 0.13 e | ND |
R. rugosa “Kornik” | 12.52 ± 0.56 d | 5.73 ± 0.21 e,f | ND | 3.83 ± 0.12 e | 0.87 ± 0.11 d |
R. rugosa “Marie Bugnet” | 22.62 ± 1.23 c | 9.55 ± 0.48 d,e | ND | 21.88 ± 0.70 d | 14.03 ± 0.46 b |
R. rugosa “Rudolf” | 0.68 ± 0.01 f | 1.51 ± 0.01 f | ND | 0.52 ± 0.03 e | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaudanskas, M.; Noreikienė, I.; Zymonė, K.; Juodytė, R.; Žvikas, V.; Janulis, V. Composition and Antioxidant Activity of Phenolic Compounds in Fruit of the Genus Rosa L. Antioxidants 2021, 10, 545. https://doi.org/10.3390/antiox10040545
Liaudanskas M, Noreikienė I, Zymonė K, Juodytė R, Žvikas V, Janulis V. Composition and Antioxidant Activity of Phenolic Compounds in Fruit of the Genus Rosa L. Antioxidants. 2021; 10(4):545. https://doi.org/10.3390/antiox10040545
Chicago/Turabian StyleLiaudanskas, Mindaugas, Irena Noreikienė, Kristina Zymonė, Rugilė Juodytė, Vaidotas Žvikas, and Valdimaras Janulis. 2021. "Composition and Antioxidant Activity of Phenolic Compounds in Fruit of the Genus Rosa L." Antioxidants 10, no. 4: 545. https://doi.org/10.3390/antiox10040545
APA StyleLiaudanskas, M., Noreikienė, I., Zymonė, K., Juodytė, R., Žvikas, V., & Janulis, V. (2021). Composition and Antioxidant Activity of Phenolic Compounds in Fruit of the Genus Rosa L. Antioxidants, 10(4), 545. https://doi.org/10.3390/antiox10040545