Anti-Inflammatory Principles from the Needles of Pinus taiwanensis Hayata and In Silico Studies of Their Potential Anti-Aging Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material
2.3. Extraction and Isolation
2.4. Spectral and Physical Data of 1–5
2.4.1. 1-[(7′R,8′S)-7′,9′-Dihydroxy-7′-(4-hydroxyphenyl)propan-8′-yloxy]benzoic Acid (1)
2.4.2. 1-[(7′R,8′S)-7′,9′-Dihydroxy-7′-( 4-hydroxy-3-methoxyphenyl)propan-8′-yloxy]-2-hydroxybenzoic Acid (2)
2.4.3. (13E,12R)-12-Hydroxyagathic Acid (3)
2.4.4. 5-Isopropyl-3-oxocyclohex-1-ene-1-carboxylic Acid (4)
2.4.5. Styraxinolic Acid (5)
2.5. Anti-Inflammatory Bioactivity Examination
2.5.1. Human Neutrophil Preparation
2.5.2. Superoxide Anion Generation Measurement
2.5.3. Elastase Release Assay
2.5.4. Statistical Analysis
2.6. Molecular Docking Study
3. Results and Discussion
3.1. Structural Elucidation of Compounds 1–5
3.2. Anti-Inflammatory Activity
3.3. Molecular Docking Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, Q.; Liu, Z.; Li, Z. Chemical composition and antioxidant activity of essential oil of six Pinus taxa native to China. Molecules 2015, 20, 9380–9392. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.Y.; Chung, H.J. Flavor compounds of pine sprout tea and pine needle tea. J. Agric. Food Chem. 2000, 48, 1269–1272. [Google Scholar] [CrossRef]
- Park, G.; Paudyal, D.P.; Hwang, I.; Tripathi, G.R.; Yang, Y.; Cheong, H. Production of fermented needle extracts from red pine and their functional characterization. Biotechnol. Bioprocess Eng. 2008, 13, 256. [Google Scholar] [CrossRef]
- Idžojtić, M.; Kajba, D.; Franjić, J. Differentiation of F1 hybrids P. nigra J. F. Arnold × P. sylvestris L., P. nigra J. F. Arnold × P. densiflora Siebold et Zucc., P. nigra J. F. Arnold × P. thunbergiana Franco and their parental species by needle volatile composition. Biochem. Syst. Ecol. 2005, 33, 427–439. [Google Scholar] [CrossRef]
- Kim, Y.S.; Shin, D.H. Volatile components and antibacterial effects of pine needle (Pinus densiflora S. and Z.) extracts. Food Microbiol. 2005, 22, 37–45. [Google Scholar] [CrossRef]
- Dob, T.; Berramdane, T. Essential oil composition of Pinus halepensis Mill. from three different regions of Algeria. J. Essent. Oil Res. 2007, 19, 40–43. [Google Scholar] [CrossRef]
- Nam, A.M.; Tomi, F.; Gibernau, M.; Casanova, J.; Bighelli, A. Composition and chemical variability of the needle oil from Pinus halepensis growing in Corsica. Chem. Biodivers. 2016, 13, 380–386. [Google Scholar] [CrossRef]
- Sezik, E.; Üstün, O.; Demirci, B.; Başer, K.H.C. Composition of the essential oils of Pinus nigra Arnold from Turkey. Turk. J. Chem. 2010, 34, 313–325. [Google Scholar]
- Kupcinskiene, E.; Stikliene, A.; Judzentiene, A. The essential oil qualitative and quantitative composition in the needles of Pinus sylvestris L. growing along industrial transects. Environ. Pollut. 2008, 155, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Shen, Y.H.; He, Y.R.; Zhang, W.D. Chemical constituents and biological activities of Pinus species. Chem. Biodivers. 2013, 10, 2133–2160. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Kim, H.S.; Jung, M.J.; Choi, J.S. (+)-Catechin, an antioxidant principle from the leaves of Pinus densiflora that acts on 1,1-diphenyl-2-picrylhydrazyl radical. Nat. Prod. Sci. 2001, 7, 1–4. [Google Scholar]
- Jung, M.J.; Chung, H.Y.; Choi, J.H.; Choi, J.S. Antioxidant principles from the needles of red pine, Pinus densiflora. Phytother. Res. 2003, 17, 1064–1068. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C.; Duh, P.D.; Huang, D.W.; Hsu, C.L.; Fu, T.Y.C. Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of iNOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 2008, 46, 175–185. [Google Scholar] [CrossRef]
- Chen, Y.H.; Hsieh, P.C.; Mau, J.L.; Sheu, S.C. Antioxidant properties and mutagenicity of Pinus morrisonicola and its vinegar preparation. LWT Food Sci. Technol. 2011, 44, 1477–1481. [Google Scholar] [CrossRef]
- Venkatesan, T.; Choi, Y.W.; Lee, J.; Kim, Y.K. Pinus densiflora needle supercritical fluid extract suppresses the expression of pro-inflammatory mediators iNOS, IL-6 and IL-1β, and activation of inflammatory STAT1 and STAT3 signaling proteins in bacterial lipopolysaccharide-challenged murine macrophages. DARU J. Pharm. Sci. 2017, 25, 18. [Google Scholar] [CrossRef] [Green Version]
- Yoon, C.J.; Choi, W.S.; Kang, H.S.; Kim, H.J.; Lee, W.T.; Lee, J.S.; Lee, S.; Son, S.Y.; Lee, C.H.; Sohn, U.D.; et al. Pinus thunbergii Parl. extracts reduce acute inflammation by targeting oxidative stress. Evid. Based Complement. Alternat. Med. 2021, 2021, 7924645. [Google Scholar] [CrossRef]
- Chiu, H.F.; Wang, H.M.; Shen, Y.C.; Venkatakrishnan, K.; Wang, C.K. Anti-inflammatory properties of fermented pine (Pinus morrisonicola Hay.) needle on lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J. Food Biochem. 2019, 43, e12994. [Google Scholar] [CrossRef] [PubMed]
- Howard, A.D.; Feighner, S.D.; Cully, D.F.; Arena, J.P.; Liberator, P.A.; Rosenblum, C.I.; Hamelin, M.; Hreniuk, D.L.; Palyha, O.C.; Anderson, J.; et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 1996, 273, 974–977. [Google Scholar] [CrossRef]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef]
- Cui, H.; López, M.; Rahmouni, K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat. Rev. Endocrinol. 2017, 13, 338–351. [Google Scholar] [CrossRef]
- Leidy, H.J.; Gardner, J.K.; Frye, B.R.; Snook, M.L.; Schuchert, M.K.; Richard, E.L.; Williams, N.I. Circulating ghrelin is sensitive to changes in body weight during a diet and exercise program in normal-weight young women. J. Clin. Endocrinol. Metab. 2004, 89, 2659–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, M.; Kangawa, K. Ghrelin: Structure and function. Physiol. Rev. 2005, 85, 495–522. [Google Scholar] [CrossRef]
- Broglio, F.; Gottero, C.; Benso, A.; Prodam, F.; Destefanis, S.; Gauna, C.; Maccario, M.; Deghenghi, R.; van der Lely, A.J.; Ghigo, E. Effects of ghrelin on the insulin and glycemic responses to glucose, arginine, or free fatty acids load in humans. J. Clin. Endocrinol. Metab. 2003, 88, 4268–4272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, K.C.; Li, Y.X.; Asakawa, A.; Inui, A. The role of ghrelin in energy homeostasis and its potential clinical relevance (Review). Int. J. Mol. Med. 2010, 26, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, R.C.; Strizich, G.; Aneke-Nash, C.; Dominguez-Islas, C.; Bužková, P.; Strickler, H.; Rohan, T.; Pollak, M.; Kuller, L.; Kizer, J.R.; et al. Insulinlike growth factor binding protein-1 and ghrelin predict health outcomes among older adults: Cardiovascular health study cohort. J. Clin. Endocrinol. Metab. 2017, 102, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Li, W.G.; Gavrila, D.; Liu, X.; Wang, L.; Gunnlaugsson, S.; Stoll, L.L.; McCormick, M.L.; Sigmund, C.D.; Tang, C.; Weintraub, N.L. Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 2004, 109, 2221–2226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granado, M.; Priego, T.; Martín, A.I.; Villanúa, M.A.; López-Calderón, A. Anti-inflammatory effect of the ghrelin agonist growth hormone-releasing peptide-2 (GHRP-2) in arthritic rats. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E486–E492. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.H.; Chen, Y.J.; Chang, C.I.; Lin, Y.W.; Chen, C.Y.; Lee, M.R.; Lee, V.S.; Tzen, J.T.C. Teaghrelins, unique acylated flavonoid tetraglycosides in Chin-shin oolong tea, are putative oral agonists of the ghrelin receptor. J. Agric. Food Chem. 2014, 62, 5085–5091. [Google Scholar] [CrossRef]
- Li, Y.C.; Wu, C.J.; Lin, Y.C.; Wu, R.H.; Chen, W.Y.; Kuo, P.C.; Tzen, J.T.C. Identification of two teaghrelins in Shy-jih-chuen oolong tea. J. Food Biochem. 2019, 43, e12810. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.H.; Chen, Y.J.; Chung, T.Y.; Lin, N.H.; Chen, W.Y.; Chen, C.Y.; Lee, M.R.; Chou, C.C.; Tzen, J.T.C. Emoghrelin, a unique emodin derivative in Heshouwu, stimulates growth hormone secretion via activation of the ghrelin receptor. J. Ethnopharmacol. 2015, 159, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.K.; Chung, T.Y.; Li, Y.C.; Lo, Y.H.; Lin, N.H.; Kuo, P.C.; Chen, W.Y.; Tzen, J.T.C. Ginkgoghrelins, unique acylated flavonoid diglycosides in Folium Ginkgo, stimulate growth hormone secretion via activation of the ghrelin receptor. J. Ethnopharmacol. 2016, 193, 237–247. [Google Scholar] [CrossRef]
- Lin, Y.C.; Wu, C.J.; Kuo, P.C.; Chen, W.Y.; Tzen, J.T.C. Quercetin 3-O-malonylglucoside in the leaves of mulberry (Morus alba) is a functional analog of ghrelin. J. Food Biochem. 2020, 44, e13379. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.J.; Chien, M.Y.; Lin, N.H.; Lin, Y.C.; Chen, W.Y.; Chen, C.H.; Tzen, J.T.C. Echinacoside isolated from Cistanche tubulosa putatively stimulates growth hormone secretion via activation of the ghrelin receptor. Molecules 2019, 24, 720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, S.K.; Lo, Y.H.; Wu, C.C.; Chung, T.Y.; Tzen, J.T.C. Identification of biosynthetic intermediates of teaghrelins and teaghrelin-like compounds in oolong teas, and their molecular docking to the ghrelin receptor. J. Food Drug Anal. 2015, 23, 660–670. [Google Scholar] [CrossRef] [Green Version]
- Brooijmans, N.; Kuntz, I.D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 335–373. [Google Scholar] [CrossRef] [PubMed]
- Muegge, I.; Rarey, M. Small molecule docking and scoring. In Reviews in Computational Chemistry; Lipkowitz, K.B., Boyd, D.B., Eds.; Wiley: Hoboken, NJ, USA, 2001; Volume 17, pp. 1–60. [Google Scholar]
- Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 2002, 47, 409–443. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.H.; Li, Y.C.; Lin, N.H.; Kuo, P.C.; Tzen, J.T.C. Characterization of vasorelaxant principles from the needles of Pinus morrisonicola Hayata. Molecules 2018, 23, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Editorial Committee of Flora of Taiwan. Flora of Taiwan, 2nd ed.; National Science Council: Taipei, Taiwan, 1994; Volume 1, p. 571.
- Yang, S.C.; Chung, P.J.; Ho, C.M.; Kuo, C.Y.; Hung, M.F.; Huang, Y.T.; Chang, W.Y.; Chang, Y.W.; Chan, K.H.; Hwang, T.L. Propofol inhibits superoxide production, elastase release, and chemotaxis in formyl peptide-activated human neutrophils by blocking formyl peptide receptor 1. J. Immunol. 2013, 190, 6511–6519. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Shiimura, Y.; Horita, S.; Hamamoto, A.; Asada, H.; Hirata, K.; Tanaka, M.; Mori, K.; Uemura, T.; Kobayashi, T.; Iwata, S.; et al. Structure of an antagonist-bound ghrelin receptor reveals possible ghrelin recognition mode. Nat. Commun. 2020, 11, 4160. [Google Scholar] [CrossRef]
- BIOVIA; Dassault Systèmes. Discovery Studio Client 2020, v.20.1.0.19295; Dassault Systèmes: San Diego, CA, USA, 2019. [Google Scholar]
- Lu, Y.; Xue, Y.; Liu, J.; Yao, G.; Li, D.; Sun, B.; Zhang, J.; Liu, Y.; Qi, C.; Xiang, M.; et al. (±)-Acortatarinowins A–F, Norlignan, Neolignan, and Lignan Enantiomers from Acorus tatarinowii. J. Nat. Prod. 2015, 78, 2205–2214. [Google Scholar] [CrossRef]
- Huo, C.; Liang, H.; Zhao, Y.; Wang, B.; Zhang, Q. Neolignan glycosides from Symplocos caudata. Phytochemistry 2008, 69, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.L.; Fang, J.M.; Cheng, Y.S. Terpenoids and flavonoids from Pseudotsuga wilsoniana. Phytochemistry 1998, 47, 845–850. [Google Scholar] [CrossRef]
- Russell, A.B.; Michael, B.G.; Vincent, Y.T. Synthesis of methyl 12S- and 12R-hydroxylabd-8(17)-en-19-oates. Can. J. Chem. 1975, 53, 2869–2873. [Google Scholar] [CrossRef] [Green Version]
- Segal, R.; Milo-Goldzweig, I.; Sokoloff, S.; Zaitschek, D.V. A new benzofuran from the seeds of Styrax officinalis L. J. Chem. Soc. C 1967, 2402–2404. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Hwang, T.L.; Li, G.L.; Lan, Y.H.; Chia, Y.C.; Hsieh, P.W.; Wu, Y.H.; Wu, Y.C. Potent inhibition of superoxide anion production in activated human neutrophils by isopedicin, a bioactive component of the Chinese medicinal herb Fissistigma Oldhamii. Free Radic. Biol. Med. 2009, 46, 520–528. [Google Scholar] [CrossRef]
- Ennis, M. Neutrophils in asthma pathophysiology. Curr. Allergy Asthma Rep. 2003, 3, 159–165. [Google Scholar] [CrossRef]
- Malech, H.L.; Gallin, J.I. Neutrophils in human diseases. N. Engl. J. Med. 1987, 317, 687–694. [Google Scholar] [CrossRef]
- Okajima, K.; Harada, N.; Uchiba, M. Ranitidine reduces ischemia/reperfusion-induced liver injury in rats by inhibiting neutrophil activation. J. Pharmacol. Exp. Ther. 2002, 301, 1157–1165. [Google Scholar] [CrossRef] [Green Version]
- Vinten-Johansen, J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc. Res. 2004, 61, 481–497. [Google Scholar] [CrossRef] [Green Version]
- Witko-Sarsat, V.; Rieu, P.; Descamps-Latscha, B.; Lesavre, P.; Halbwachs-Mecarelli, L. Neutrophils: Molecules, functions and pathophysiological aspects. Lab. Investig. 2000, 80, 617–653. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.P.; Hsieh, P.W.; Chang, Y.J.; Chung, P.J.; Kuo, L.M.; Hwang, T.L. 2-(2-Fluorobenzamido)benzoate ethyl ester (EFB-1) inhibits superoxide production by human neutrophils and attenuates hemorrhagic shock-induced organ dysfunction in rats. Free Radic. Biol. Med. 2011, 50, 1737–1748. [Google Scholar] [CrossRef] [PubMed]
- Bartke, A. Growth hormone and aging: Updated review. World J. Mens Health 2019, 37, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Neves, J.; Sousa-Victor, P. Regulation of inflammation as an anti-aging intervention. FEBS J. 2020, 287, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.A.; Bester, M.J.; Neitz, A.W.; Gaspar, A.R.M. Rational In Silico design of novel α-glucosidase inhibitory peptides and in vitro evaluation of promising candidates. Biomed. Pharmacother. 2018, 107, 234–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jindal, H.M.; Le, C.F.; Yusof, M.Y.M.; Velayuthan, R.D.; Lee, V.S.; Zain, S.M.; Isa, D.M.; Sekaran, S.D. Antimicrobial activity of novel synthetic peptides derived from indolicidin and ranalexin against Streptococcus pneumoniae. PLoS ONE 2015, 10, e0128532. [Google Scholar] [CrossRef] [Green Version]
- Kaur, K.; Kaur, P.; Mittal, A.; Nayak, S.K.; Khatik, G.L. Design and molecular docking studies of novel antimicrobial peptides using autodock molecular docking software. Asian J. Pharm. Clin. Res. 2017, 10, 28–31. [Google Scholar] [CrossRef]
Position | 1 | 2 | ||
---|---|---|---|---|
δH | δc | δH | δc | |
1 | – | 162.1 | – | 150.2 |
2 | 6.86 (2H, d, J = 8.8 Hz) | 116.3 | – | 148.1 |
3 | 7.83 (2H, d, J = 8.8 Hz) | 132.0 | 7.45 (1H, d, J = 2.0 Hz) | 118.3 |
4 | – | 116.1 | – | 132.4 |
5 | 7.83 (2H, d, J = 8.8 Hz) | 132.0 | 7.38 (1H, dd, J = 8.4, 2.0 Hz) | 122.5 |
6 | 6.86 (2H, d, J = 8.8 Hz) | 116.3 | 6.96 (1H, d, J = 8.4 Hz) | 116.5 |
7 | – | 175.4 | – | 174.4 |
1′ | – | 133.5 | – | 134.0 |
2′ | 7.24 (2H, d, J = 8.4 Hz) | 129.2 | 7.02 (1H, d, J = 2.0 Hz) | 111.4 |
3′ | 6.72 (2H, d, J = 8.4 Hz) | 115.9 | – | 148.9 |
4′ | – | 157.9 | – | 147.2 |
5′ | 6.72 (2H, d, J = 8.4 Hz) | 115.9 | 6.74 (1H, d, J = 8.4 Hz) | 115.9 |
6′ | 7.24 (2H, d, J = 8.4 Hz) | 129.2 | 6.84 (1H, dd, J = 8.4, 2.0 Hz) | 120.6 |
7′ | 4.85 (1H, d, J = 5.6 Hz) | 73.8 | 4.93 (1H, d, J = 5.2 Hz) | 73.8 |
8′ | 4.48 (1H, m) | 84.1 | 4.33 (1H, m) | 86.3 |
9′ | 3.81 (1H, dd, J = 12.0, 4.0 Hz) 3.86 (1H, dd, J = 12.0, 5.6 Hz) | 62.0 | 3.55 (1H, dd, J = 12.0, 5.2 Hz) 3.78 (1H, dd, J = 12.0, 4.4 Hz) | 61.7 |
OCH3-3′ | – | – | 3.81 (3H, s) | 56.3 |
Compound | Superoxide Anion Generation | Elastase Release | ||
---|---|---|---|---|
IC50 (μM) a | Inh % b | IC50 (μM) | Inh % | |
45 | 6.4 ± 0.7 | 70.5 ± 6.8 *** | – c | 34.2 ± 6.9 ** |
47 | 6.0 ± 1.1 | 71.8 ± 8.1 *** | – | 43.5 ± 6.9 *** |
48 | 3.3 ± 0.9 | 87.5 ± 5.4 *** | 5.3 ± 0.2 | 93.9 ± 5.2 *** |
49 | 7.7 ± 0.9 | 60.6 ± 3.9 *** | – | 40.3 ± 6.0 ** |
50 | 5.3 ± 1.1 | 72.9 ± 6.3 *** | 5.8 ± 0.9 | 81.4 ± 12.0 *** |
51 | – | 45.2 ± 5.6 *** | 8.3 ± 0.8 | 57.0 ± 4.6 *** |
LY294002 d | 1.1 ± 0.3 | 100.6 ± 1.0 *** | 3.2 ± 1.0 | 76.7 ± 6.8 *** |
Compound | Affinity (kcal/mol) |
---|---|
45 | −8.8 |
47 | −8.2 |
48 | −8.2 |
49 | −10.5 |
50 | −11.0 |
51 | −10.7 |
GHRP-6 | −10.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, P.-C.; Li, Y.-C.; Kusuma, A.M.; Tzen, J.T.C.; Hwang, T.-L.; Ye, G.-H.; Yang, M.-L.; Wang, S.-Y. Anti-Inflammatory Principles from the Needles of Pinus taiwanensis Hayata and In Silico Studies of Their Potential Anti-Aging Effects. Antioxidants 2021, 10, 598. https://doi.org/10.3390/antiox10040598
Kuo P-C, Li Y-C, Kusuma AM, Tzen JTC, Hwang T-L, Ye G-H, Yang M-L, Wang S-Y. Anti-Inflammatory Principles from the Needles of Pinus taiwanensis Hayata and In Silico Studies of Their Potential Anti-Aging Effects. Antioxidants. 2021; 10(4):598. https://doi.org/10.3390/antiox10040598
Chicago/Turabian StyleKuo, Ping-Chung, Yue-Chiun Li, Anjar M. Kusuma, Jason T. C. Tzen, Tsong-Long Hwang, Guan-Hong Ye, Mei-Lin Yang, and Sheng-Yang Wang. 2021. "Anti-Inflammatory Principles from the Needles of Pinus taiwanensis Hayata and In Silico Studies of Their Potential Anti-Aging Effects" Antioxidants 10, no. 4: 598. https://doi.org/10.3390/antiox10040598