Determination of Bioactive Compounds in Sequential Extracts of Chia Leaf (Salvia hispanica L.) Using UHPLC-HRMS (Q-Orbitrap) and a Global Evaluation of Antioxidant In Vitro Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation, Sampling and Drying of Chia Plants
2.2. Extraction
2.3. Chemicals and Reagents
2.4. Antioxidant Capacity
2.4.1. ORAC-FL Assay
2.4.2. ORAC-PGR Assay
2.4.3. DPPH Scavenging Capacity Assay
2.4.4. Cellular Antioxidant Activity (CAA)
2.5. Phenolic Composition
2.5.1. Total Phenolic Content
2.5.2. Caffeic and Rosmarinic Acid Analysis
2.5.3. UHPLC-HRMS (Q-Orbitrap) Phenolic Identification
2.6. Statistical Analysis
3. Results
3.1. Extraction
3.2. Leaf Antioxidant Capacity
3.3. Phenolic Composition
3.4. Phenolic Identification
4. Discussion
4.1. Antioxidant Capacity
4.2. Total Phenolic Content and Caffeic and Rosmarinic Acids Content
4.3. Polyphenol Identification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joseph, C.P. Genetic diversity among varieties of Chia (Salvia hispanica L.). Genet. Resour. Crop. Evol. 2004, 51, 773–781. [Google Scholar] [CrossRef]
- Ayerza, R. Oil content and fatty acid composition of chia (Salvia hispanica L.) from five northwestern locations in Argentina. J. Am. Oil Chem. Soc. 1995, 72, 1079–1081. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Influence of environment on growing period and yield, protein, oil and α-linolenic content of three chia (Salvia hispanica L.) selections. Ind. Crop. Prod. 2009, 30, 321–324. [Google Scholar] [CrossRef]
- Jamboonsri, W.; Phillips, T.D.; Geneve, R.L.; Cahill, J.P.; Hildebrand, D.F. Extending the range of an ancient crop, Salvia hispanica L.—A new ω3 source. Genet. Resour. Crop. Evol. 2011, 59, 171–178. [Google Scholar] [CrossRef]
- Moraes, É.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.N.; Maróstica, M.R. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT Food Sci. Technol. 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- de Falco, B.; Fiore, A.; Rossi, R.; Amato, M.; Lanzotti, V. Metabolomics driven analysis by UAEGC-MS and antioxidant activity of chia (Salvia hispanica L.) commercial and mutant seeds. Food Chem. 2018, 254, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, M.; Caruso, M.C.; Guzzo, F.; Galgano, F.; Commisso, M.; Bochicchio, R.; Labella, R.; Favati, F. Nutritional quality of seeds and leaf metabolites of Chia (Salvia hispanica L.) from Southern Italy. Eur. Food Res. Technol. 2015, 241, 615–625. [Google Scholar] [CrossRef]
- Vijay, R.; Sharmila, K.; Shuchetha Kumari, N.; Pushpalatha, K. In vitro evaluation of phytochemical and antioxidant of aqueous seed extract of Salvia hispanica L. (chia). World J. Pharm. Pharm. Sci. 2014, 3, 776–789. [Google Scholar]
- Martínez-Cruz, O.; Paredes-López, O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J. Chromatogr. A 2014, 1346, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Kaleem, M.; Ahmad, A. Flavonoids as Nutraceuticals, in Therapeutic, Probiotic, and Unconventional Foods; Grumezescu, A.M., Holban, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 137–155. [Google Scholar]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.C.; Sethu, V.; Selvarajoo, A. Performance study of chia seeds, chia flour and Mimosa pudica hydrogel as polysaccharide-based superabsorbent polymers for sanitary napkins. Mater. Today Commun. 2021, 26, 101712. [Google Scholar] [CrossRef]
- Urbizo-Reyes, U.; Martin-González, M.F.S.; Garcia-Bravo, J.; Liceaga, A.M. Development of chia seed (Salvia hispanica) mucilage films plasticized with polyol mixtures: Mechanical and barrier properties. Int. J. Biol. Macromol. 2020, 163, 854–864. [Google Scholar] [CrossRef] [PubMed]
- Cahill, J.P. Ethnobotany of chia, Salvia hispanica L. (Lamiaceae). Econ. Bot. 2003, 57, 604–618. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Aliberti, L.; Amato, M.; De Feo, V.; Camele, I. Chemical composition and antimicrobial activity of chia (Salvia hispanica L.) essential oil. Eur. Food Res. Technol. 2018, 244, 1675–1682. [Google Scholar] [CrossRef]
- Lopez-Alarcon, C.; Lissi, E. A novel and simple ORAC methodology based on the interaction of Pyrogallol Red with peroxyl radicals. Free. Radic. Res. 2006, 40, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gu, L.; Holden, J.; Haytowitz, D.B.; Gebhardt, S.E.; Beecher, G.; Prior, R.L. Development of a database for total antioxidant capacity in foods: A preliminary study. J. Food Compos. Anal. 2004, 17, 407–422. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Development and Validation of Oxygen Radical Absorbance Capacity Assay for Lipophilic Antioxidants Using Randomly Methylated β-Cyclodextrin as the Solubility Enhancer. J. Agric. Food Chem. 2002, 50, 1815–1821. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, E.; Campos, A.; Edwards, A.; Lissi, E.; Lopez, C. Antioxidant capacity of herbal infusions and tea extracts: A comparison of ORAC-fluorescein and ORAC-pyrogallol red methodologies. Food Chem. 2008, 107, 1114–1119. [Google Scholar] [CrossRef]
- Speisky, H.; Lopez-Alarcón, C.; Gómez, M.; Fuentes, J.; Sandoval-Acuña, C. First Web-Based Database on Total Phenolics and Oxygen Radical Absorbance Capacity (ORAC) of Fruits Produced and Consumed within the South Andes Region of South America. J. Agric. Food Chem. 2012, 60, 8851–8859. [Google Scholar] [CrossRef]
- Adımcılar, V.; Kalaycıoğlu, Z.; Aydoğdu, N.; Dirmenci, T.; Kahraman, A.; Erim, F.B. Rosmarinic and carnosic acid contents and correlated antioxidant and antidiabetic activities of 14 Salvia species from Anatolia. J. Pharm. Biomed. Anal. 2019, 175, 112763. [Google Scholar] [CrossRef] [PubMed]
- Koşar, M.; Göger, F.; Başer, K.H.C. In vitro antioxidant properties and phenolic composition of Salvia halophila Hedge from Turkey. Food Chem. 2011, 129, 374–379. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.; Lee, E.S.; Huh, J.H.; Chung, C.H. Caffeic acid ameliorates hepatic steatosis and reduces ER stress in high fat diet–induced obese mice by regulating autophagy. Nutrition 2018, 55–56, 63–70. [Google Scholar] [CrossRef]
- Bezerra, R.M.N.; Veiga, L.F.; Caetano, A.C.; Rosalen, P.L.; Amaral, M.E.C.; Palanch, A.C.; de Alencar, S.M. Caffeic acid phenethyl ester reduces the activation of the nuclear factor κB pathway by high-fat diet-induced obesity in mice. Metabolism 2012, 61, 1606–1614. [Google Scholar] [CrossRef]
- Toma, L.; Sanda, G.M.; Niculescu, L.S.; Deleanu, M.; Stancu, C.S.; Sima, A.V. Caffeic acid attenuates the inflammatory stress induced by glycated LDL in human endothelial cells by mechanisms involving inhibition of AGE-receptor, oxidative, and endoplasmic reticulum stress. BioFactors 2017, 43, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Ben Farhat, M.; Landoulsi, A.; Chaouch-Hamada, R.; Sotomayor, J.A.; Jordán, M.J. Characterization and quantification of phenolic compounds and antioxidant properties of Salvia species growing in different habitats. Ind. Crop. Prod. 2013, 49, 904–914. [Google Scholar] [CrossRef]
- Colica, C.; Di Renzo, L.; Aiello, V.; De Lorenzo, A.; Abenavoli, L. Rosmarinic Acid as Potential Anti-Inflammatory Agent. Rev. Recent Clin. Trials 2018, 13, 240–242. [Google Scholar] [CrossRef] [PubMed]
Extract | Extraction (%) | Mass (g) |
---|---|---|
B-EtOH | 11.279 | 1.5507 |
B-AcET | 2.389 | 0.3285 |
B-DCM | 1.727 | 0.2374 |
B-HEX | 35.790 | 4.9231 |
W-EtOH | 14.668 | 0.9689 |
W-AcET | 7.267 | 0.4800 |
W-DCM | 3.043 | 0.2010 |
W-HEX | 43.194 | 2.8532 |
Compound | Rt (min) | Formula | Delta m/z | B-EtOH | B-EA | B-DCM | B-Hex | W-EtOH | W-EA | W-DCM | W-Hex |
---|---|---|---|---|---|---|---|---|---|---|---|
Protocatechuic acid | 4.44 | C7H6O4 | −0.78 | + | + | + | + | + | − | n.d. | n.d. |
Chlorogenic acid | 5.78 | C16H18O9 | −0.20 | − | n.d. | − | n.d. | n.d. | n.d. | n.d. | n.d. |
p-coumaric acid | 5.87 | C9H8O3 | −0.38 | − | − | − | − | n.d. | n.d. | n.d. | n.d. |
Coumaric acid-O-hexose | 5.87 | C15H18O8 | −0.83 | − | − | − | − | n2. | n.d. | n.d. | n.d. |
Caffeic acid | 6.48 | C9H8O4 | −0.63 | ++ | + | + | + | − | − | − | − |
Coumaroyl quinic acid | 6.63 | C16H18O8 | −0.26 | − | n.d. | + | n.d. | − | n.d. | + | n.d. |
Orientin | 7.21 | C21H20O11 | −0.79 | ++ | + | + | + | + | − | + | − |
Vitexin | 7.64 | C21H20O10 | −0.95 | ++ | ++ | ++ | ++ | + | + | + | + |
Acetyl orientin | 7.76 | C23H22O12 | −0.87 | + | − | − | − | − | n.d. | − | − |
Luteolin-O-glucuronide | 7.94 | C21H18O12 | −0.62 | + | + | + | + | + | − | + | + |
Sinapic acid | 9.00 | C11H12O5 | −0.47 | n.d. | n.d. | − | − | − | − | n.d. | n.d. |
Rosmarinic acid | 9.03 | C18H16O8 | −068 | ++ | ++ | ++ | ++ | + | + | − | + |
Ferulic acid | 9.50 | C10H10O4 | −1.19 | + | + | + | + | − | − | + | + |
Kaempferol | 10.45 | C15H10O6 | −0.51 | − | − | + | + | n.d. | n.d. | − | − |
Genistein | 11.56 | C15H10O5 | −0.75 | − | − | + | + | n.d. | n.d. | − | − |
Naringenin | 11.66 | C15H12O5 | −0.50 | − | − | ++ | ++ | + | + | + | + |
Salvianolic acid F isomer | 11.84 | C17H14O6 | −0.14 | − | n.d. | − | − | + | + | − | − |
Dimethyl quercetin (quercetin dimethyl ether) | 11.86 | C17H14O7 | −0.37 | + | + | ++ | ++ | ++ | ++ | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zúñiga-López, M.C.; Maturana, G.; Campmajó, G.; Saurina, J.; Núñez, O. Determination of Bioactive Compounds in Sequential Extracts of Chia Leaf (Salvia hispanica L.) Using UHPLC-HRMS (Q-Orbitrap) and a Global Evaluation of Antioxidant In Vitro Capacity. Antioxidants 2021, 10, 1151. https://doi.org/10.3390/antiox10071151
Zúñiga-López MC, Maturana G, Campmajó G, Saurina J, Núñez O. Determination of Bioactive Compounds in Sequential Extracts of Chia Leaf (Salvia hispanica L.) Using UHPLC-HRMS (Q-Orbitrap) and a Global Evaluation of Antioxidant In Vitro Capacity. Antioxidants. 2021; 10(7):1151. https://doi.org/10.3390/antiox10071151
Chicago/Turabian StyleZúñiga-López, María Carolina, Gabriela Maturana, Guillem Campmajó, Javier Saurina, and Oscar Núñez. 2021. "Determination of Bioactive Compounds in Sequential Extracts of Chia Leaf (Salvia hispanica L.) Using UHPLC-HRMS (Q-Orbitrap) and a Global Evaluation of Antioxidant In Vitro Capacity" Antioxidants 10, no. 7: 1151. https://doi.org/10.3390/antiox10071151
APA StyleZúñiga-López, M. C., Maturana, G., Campmajó, G., Saurina, J., & Núñez, O. (2021). Determination of Bioactive Compounds in Sequential Extracts of Chia Leaf (Salvia hispanica L.) Using UHPLC-HRMS (Q-Orbitrap) and a Global Evaluation of Antioxidant In Vitro Capacity. Antioxidants, 10(7), 1151. https://doi.org/10.3390/antiox10071151