The Antioxidant Effect of Colombian Berry (Vaccinium meridionale Sw.) Extracts to Prevent Lipid Oxidation during Pork Patties Shelf-Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Colombian Berry (V. meridionale Sw.) Extraction Procedures—Preparation of Ethanolic Extract from Colombian Berry (CBE)
2.2.1. In Vitro Antioxidant Activity of CBE
2.2.2. Characterization of Colombian Berry (V. meridionale Sw.) Extracts: Total Phenolic Content (TPC), Total Anthocyanin Content (TAC), and Phenolic Profile
2.3. Sensory Analysis
2.4. Experimental Design and Manufacture of the Pork Patties
2.5. Physical Parameters (pH, Colour, and Lipid Oxidation) of the Pork Patties
2.6. Statistical Analysis
3. Results
3.1. Total Phenolic Content (TPC), Total Anthocyanin Content (TAC), and Phenolic Profile of Colombian Berry (V. meridionale Sw.) Extract (CBE)
3.2. Antioxidant Activity of Colombian Berry (V. meridionale Sw.) Extract (CBE)
3.3. Evaluation of pH and Colour of Pork Patties during Storage
3.4. Evaluation of Lipid Oxidation (TBARS) and ΔEt of Pork Patties during Storage
3.5. Sensory Analysis
3.5.1. Sensory Acceptance
3.5.2. Visual Attributes Evaluation during Shelf-Life: Red Colour Intensity (RCI) and Surface Discolouration Intensity (SDI)
3.5.3. Correlations between Colour Parameters and Visual Attributes of Pork Patties
4. Discussion
4.1. Total Phenolic Content (TPC), Total Anthocyanin (TAC), and Phenolic Profile of Colombian Berry (V. meridionale Sw.) Extract (CBE)
4.2. In Vitro Antioxidant Activity of Colombian Berry (V. meridionale Sw.) Extract (CBE)
4.3. Evaluation of pH and Colour of Pork Patties during Storage
4.4. Evaluation of Lipid Oxidation and ΔEt of Pork Patties during Storage
4.5. Sensory Analysis
4.5.1. Sensory Acceptance
4.5.2. Visual Attributes Evaluation during Shelf-Life: Red Colour Intensity (RCI) and Surface Discolouration Intensity (SDI)
4.5.3. Correlations between Colour Measurements and Visual Attributes of Pork Patties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agregán, R.; Barba, F.J.; Gavahian, M.; Franco, D.; Khaneghah, A.M.; Carballo, J.; Ferreira, I.C.F.R.; da Silva Barretto, A.C.; Lorenzo, J.M. Fucus vesiculosus extracts as natural antioxidants for improvement of physicochemical properties and shelf life of pork patties formulated with oleogels. J. Sci. Food Agric. 2019, 99, 4561–4570. [Google Scholar] [CrossRef] [Green Version]
- Šojić, B.; Tomović, V.; Kocić-Tanackov, S.; Kovačević, D.B.; Putnik, P.; Mrkonjić, Ž.; Đurović, S.; Jokanović, M.; Ivić, M.; Škaljac, S.; et al. Supercritical extracts of wild thyme (Thymus serpyllum L.) by-product as natural antioxidants in ground pork patties. LWT 2020, 130, 109661. [Google Scholar] [CrossRef]
- Kumar, P.; Mehta, N.; Malav, O.P.; Kumar Chatli, M.; Rathour, M.; Kumar Verma, A. Antioxidant and antimicrobial efficacy of watermelon rind extract (WMRE) in aerobically packaged pork patties stored under refrigeration temperature (4 ± 1 °C). J. Food Process. Preserv. 2018, 42, jfpp.13757. [Google Scholar] [CrossRef]
- Agregán, R.; Lorenzo, J.M.; Munekata, P.E.S.; Dominguez, R.; Carballo, J.; Franco, D. Assessment of the antioxidant activity of Bifurcaria bifurcata aqueous extract on canola oil. Effect of extract concentration on the oxidation stability and volatile compound generation during oil storage. Food Res. Int. 2017, 99, 1095–1102. [Google Scholar] [CrossRef]
- Bellucci, E.R.B.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M.; da Silva Barretto, A.C. Red pitaya extract as natural antioxidant in pork patties with total replacement of animal fat. Meat Sci. 2021, 171, 108284. [Google Scholar] [CrossRef]
- Tomasevic, I.; Tomovic, V.; Milovanovic, B.; Lorenzo, J.; Đorđević, V.; Karabasil, N.; Djekic, I. Comparison of a computer vision system vs. traditional colorimeter for color evaluation of meat products with various physical properties. Meat Sci. 2019, 148, 5–12. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; González-Rodríguez, R.M.; Sánchez, M.; Amado, I.R.; Franco, D. Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (buthylatedhydroxytoluene, BHT) on the physical, chemical, microbiological and sensory characteristics of dry cured sausage “chorizo”. Food Res. Int. 2013, 54, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Rojo, M.I.; Vargas-Sánchez, R.D.; del Mar Torres-Martínez, B.; Torrescano-Urrutia, G.R.; Lorenzo, J.M.; Sánchez-Escalante, A. Inclusion of ethanol extract of mesquite leaves to enhance the oxidative stability of pork patties. Foods 2019, 8, 631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, L.C.M.; Monteiro, M.L.G.; da Costa-Lima, B.R.C.; Guedes-Oliveira, J.M.; Rodrigues, B.L.; Fortunato, A.R.; Baltar, J.D.; Tonon, R.V.; Koutchma, T.; Conte-Junior, C.A. Effect of microencapsulated extract of pitaya (Hylocereus costaricensis) peel on oxidative quality parameters of refrigerated ground pork patties subjected to UV-C radiation. J. Food Process. Preserv. 2021, 45, 15272. [Google Scholar] [CrossRef]
- Varvara, M.; Bozzo, G.; Celano, G.; Disanto, C.; Pagliarone, C.N.; Celano, G.V. The use of ascorbic acid as a food additive: Technical-legal issues. Ital. J. food Saf. 2016, 5, 7–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Pateiro, M.; Gavahian, M.; Franco, D.; Zhang, W.; Mousavi Khaneghah, A.; Guerrero-Sánchez, Y.; Lorenzo, J.M. Impact of pulsed light processing technology on phenolic compounds of fruits and vegetables. Trends Food Sci. Technol. 2021, 115, 1–11. [Google Scholar] [CrossRef]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Pateiro, M.; Barba, F.J.; Domínguez, R.; Sant’Ana, A.S.; Mousavi Khaneghah, A.; Gavahian, M.; Gómez, B.; Lorenzo, J.M. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res. Int. 2018, 113, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.; Pateiro, M.; Rodríguez Amado, I.; López Pedrouso, M.; Zapata, C.; Vázquez, J.A.; Lorenzo, J.M. Antioxidant ability of potato (Solanum tuberosum) peel extracts to inhibit soybean oil oxidation. Eur. J. Lipid Sci. Technol. 2016, 118, 1891–1902. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Shpigelman, A.; Granato, D.; Franco, D. Berries extracts as natural antioxidants in meat products: A review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Garzón, G.A.; Narváez, C.E.; Riedl, K.M.; Schwartz, S.J. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 2010, 122, 980–986. [Google Scholar] [CrossRef]
- Garzón, G.A.; Soto, C.Y.; López, R.M.; Riedl, K.M.; Browmiller, C.R.; Howard, L. Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale Swartz pomace. Heliyon 2020, 6, e03845. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Quiroz, J.; Galvis-Pérez, Y.; Galeano-Vásquez, S.; Marín-Echeverri, C.; Franco-Escobar, C.; Ciro-Gómez, G.; Núñez-Rangel, V.; Aristizábal-Rivera, J.C.; Barona-Acevedo, J. Physico-chemical characterization and antioxidant capacity of the colombian berry (Vaccinium meridionale Swartz) with a high-polyphenol content: Potential effects in people with metabolic syndrome. Food Sci. Technol. 2019, 39, 573–582. [Google Scholar] [CrossRef] [Green Version]
- López-Padilla, A.; Martín, D.; Villanueva Bermejo, D.; Jaime, L.; Ruiz-Rodriguez, A.; Restrepo Flórez, C.E.; Rivero Barrios, D.M.; Fornari, T. Vaccinium meridionale Swartz extracts and their addition in beef burgers as antioxidant ingredient. J. Sci. Food Agric. 2018, 98, 377–383. [Google Scholar] [CrossRef] [PubMed]
- FAO Sources of Meat. Available online: http://www.fao.org/ag/againfo/themes/es/meat/backgr_sources.html (accessed on 15 May 2021).
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Portu, J.; López, R.; Baroja, E.; Santamaría, P.; Garde-Cerdán, T. Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chem. 2016, 201, 213–221. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem. 2007, 55, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- ISO. UNE-EN ISO 8589:2010/A1: 2014. Sensory Analysis—General Guidance for the Design of Test Rooms; UNE: Madrid, Spain, 2014. [Google Scholar]
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 4th ed.; Taylor and Francis Group: Boca Raton, FL, USA, 2007. [Google Scholar]
- Pateiro, M.; Lorenzo, J.M.; Diaz, S.; Gende, J.A.; Fernandez, M.; Gonzalez, J.; Garcia, L.; Rial, F.J.; Franco, D. Meat quality of veal: Discriminatory ability of weaning status. Spanish J. Agric. Res. 2013, 11, 1044–1056. [Google Scholar] [CrossRef] [Green Version]
- AMSA Meat Color Measurement Guidelines. Available online: https://meatscience.org/publications-resources/printed-publications/amsa-meat-color-measurement-guidelines (accessed on 15 May 2021).
- Yudd, D.B.; Wyszcki, G. Color in Business, Science and Industry; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Ripoll García, G.; Panea Doblado, B.; Albertí Lasalle, P. Apreciación visual de la carne bovina y su relación con el espacio de color CIELab. ITEA 2012, 108, 222–232. [Google Scholar]
- Pateiro, M.; Gómez-Salazar, J.A.; Jaime-Patlán, M.; Sosa-Morales, M.E.; Lorenzo, J.M. Plant extracts obtained with green solvents as natural antioxidants in fresh meat products. Antioxidants 2021, 10, 181. [Google Scholar] [CrossRef]
- Contreras-Calderón, J.; Calderón-Jaimes, L.; Guerra-Hernández, E.; García-Villanova, B. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res. Int. 2011, 44, 2047–2053. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Sci. 2014, 96, 526–534. [Google Scholar] [CrossRef]
- Pateiro, M.; Vargas, F.C.; Chincha, A.A.I.A.; Sant’Ana, A.S.; Strozzi, I.; Rocchetti, G.; Barba, F.J.; Domínguez, R.; Lucini, L.; do Amaral Sobral, P.J.; et al. Guarana seed extracts as a useful strategy to extend the shelf life of pork patties: UHPLC-ESI/QTOF phenolic profile and impact on microbial inactivation, lipid and protein oxidation and antioxidant capacity. Food Res. Int. 2018, 114, 55–63. [Google Scholar] [CrossRef]
- Maldonado-Celis, M.E.; Arango-Varela, S.S.; Rojano, B.A. Free radical scavenging capacity and cytotoxic and antiproliferative effects of Vaccinium meridionale Sw. agains colon cancer cell lines. Rev. Cuba. Plantas Med. 2014, 19, 172–184. [Google Scholar]
- Prior, R.L.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, G.; et al. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Kalt, W.; Dufour, D. Health functionality of blueberries. Horttechnology 1997, 7, 216–221. [Google Scholar] [CrossRef]
- Capocasa, F.; Scalzo, J.; Mezzetti, B.; Battino, M. Combining quality and antioxidant attributes in the strawberry: The role of genotype. Food Chem. 2008, 111, 872–878. [Google Scholar] [CrossRef]
- Wang, S.Y.; Ballington, J.R. Free radical scavenging capacity and antioxidant enzyme activity in deerberry (Vaccinium stamineum L.). LWT Food Sci. Technol. 2007, 40, 1352–1361. [Google Scholar] [CrossRef]
- Vasco, C.; Riihinen, K.; Ruales, J.; Kamal-Eldin, A. Chemical composition and phenolic compound profile of mortiño (Vaccinium floribundum Kunth). J. Agric. Food Chem. 2009, 57, 8274–8281. [Google Scholar] [CrossRef]
- Ivanovic, J.; Tadic, V.; Dimitrijevic, S.; Stamenic, M.; Petrovic, S.; Zizovic, I. Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar “Čačanska Bestrna”. Ind. Crops Prod. 2014, 53, 274–281. [Google Scholar] [CrossRef]
- Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törronen, A.R. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric. Food Chem. 1999, 47, 2274–2279. [Google Scholar] [CrossRef] [PubMed]
- Milivojević, J.; Rakonjac, V.; Akšić, M.F.; Pristov, J.B.; Maksimović, V. Classification and fingerprinting of different berries based on biochemical profiling and antioxidant capacity. Pesqui. Agropecu. Bras. 2013, 48, 1285–1294. [Google Scholar] [CrossRef] [Green Version]
- Ek, S.; Kartimo, H.; Mattila, S.; Tolonen, A. Characterization of phenolic compounds from lingonberry (Vaccinium vitis-idaea). J. Agric. Food Chem. 2006, 54, 9834–9842. [Google Scholar] [CrossRef] [PubMed]
- Formica, J.V.; Regelson, W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 1995, 33, 1061–1080. [Google Scholar] [CrossRef]
- Sakkiadi, A.V.; Stavrakakis, M.N.; Haroutounian, S.A. Direct HPLC assay of five biologically interesting phenolic antioxidants in varietal Greek red wines. LWT Food Sci. Technol. 2001, 34, 410–413. [Google Scholar] [CrossRef]
- Ren, J.; Lu, Y.; Qian, Y.; Chen, B.; Wu, T.; Ji, G. Recent progress regarding kaempferol for the treatment of various diseases (Review). Exp. Ther. Med. 2019, 18, 2759–2776. [Google Scholar] [CrossRef] [Green Version]
- Taruscio, T.G.; Barney, D.L.; Exon, J. Content and profile of flavanoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of Northwest Vaccinium Berries. J. Agric. Food Chem. 2004, 52, 3169–3176. [Google Scholar] [CrossRef] [PubMed]
- Määttä-Riihinen, K.R.; Kamal-Eldin, A.; Mattila, P.H.; González-Paramás, A.M.; Törrönen, R. Distribution and contents of phenolic compounds in eighteen scandinavian berry species. J. Agric. Food Chem. 2004, 52, 4477–4486. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Lima, C.G.; Pugine, S.M.P.; Munekata, P.E.S.; Lorenzo, J.M.; de Melo, M.P. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. J. Food Sci. Technol. 2016, 53, 451–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Tang, M.; Li, Y.; Liu, F.; Li, X.; Dai, R. Antioxidant properties of du-zhong (Eucommia ulmoides Oliv.) extracts and their effects on color stability and lipid oxidation of raw pork patties. J. Agric. Food Chem. 2010, 58, 7289–7296. [Google Scholar] [CrossRef]
- Zamuz, S.; López-Pedrouso, M.; Barba, F.J.; Lorenzo, J.M.; Domínguez, H.; Franco, D. Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 2018, 112, 263–273. [Google Scholar] [CrossRef]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Gaviria Montoya, C.; Ochoa Ospina, C.; Sánchez Mesa, N.; Medina Cano, C.; Lobo Arias, M.; Galeano García, P.; Mosquera Martínez, A.; Tamayo Tenorio, A.; Lopera Pérez, Y.; Rojano, B. Actividad antioxidante e inhibición de la peroxidación lipídica de extractos de frutos de mortiño (Vaccinium meridionale SW). Boletín Latinoam. Caribe Plantas Med. Aromáticas 2009, 8, 519–528. [Google Scholar]
- Zapata Acosta, K.; Piedrahita, A.M.; Alzate, A.F.; Cortés, F.B.; Rojano, B.A. Oxidative stabilization of Sacha Inchi (Plukenetia Volubilis Linneo) oil with Mortiño (Vaccinium Meridionale SW) suspensions addition. Cienc. Desarro. 2015, 6, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Antonini, E.; Torri, L.; Piochi, M.; Cabrino, G.; Meli, M.A.; De Bellis, R. Nutritional, antioxidant and sensory properties of functional beef burgers formulated with chia seeds and goji puree, before and after in vitro digestion. Meat Sci. 2020, 161, 108021. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Gai, F.; Zorzi, M.; Aigotti, R.; Medana, C. The effect of blueberry pomace on the oxidative stability and cooking properties of pork patties during chilled storage. J. Food Process. Preserv. 2020, 44, e14520. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Vargas, F.C.; Strozzi, I.; Pateiro, M.; Furtado, M.M.; Sant’Ana, A.S.; Rocchetti, G.; Barba, F.J.; Dominguez, R.; Lucini, L.; et al. Influence of pitanga leaf extracts on lipid and protein oxidation of pork burger during shelf-life. Food Res. Int. 2018, 114, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Bernardo, L.; Pateiro, M.; Barba, F.J.; Munekata, P.E.S.; Trevisan, M.; Lorenzo, J.M.; Lucini, L. Impact of a pitanga leaf extract to prevent lipid oxidation processes during shelf life of packaged pork burgers: An untargeted metabolomic approach. Foods 2020, 9, 1668. [Google Scholar] [CrossRef] [PubMed]
- Selani, M.M.; Contreras-Castillo, C.J.; Shirahigue, L.D.; Gallo, C.R.; Plata-Oviedo, M.; Montes-Villanueva, N.D. Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Sci. 2011, 88, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Sadeghinejad, N.; Amini Sarteshnizi, R.; Ahmadi Gavlighi, H.; Barzegar, M. Pistachio green hull extract as a natural antioxidant in beef patties: Effect on lipid and protein oxidation, color deterioration, and microbial stability during chilled storage. LWT 2019, 102, 393–402. [Google Scholar] [CrossRef]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelska, E.; Godziszewska, J.; Brodowska, M.; Wierzbicka, A. Antioxidant potential of Haematococcus pluvialis extract rich in astaxanthin on colour and oxidative stability of raw ground pork meat during refrigerated storage. Meat Sci. 2018, 135, 54–61. [Google Scholar] [CrossRef]
- Holman, B.W.B.; van de Ven, R.J.; Mao, Y.; Coombs, C.E.O.; Hopkins, D.L. Using instrumental (CIE and reflectance) measures to predict consumers’ acceptance of beef colour. Meat Sci. 2017, 127, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, G.; Joy, M.; Muñoz, F.; Albertí, P. Meat and fat colour as a tool to trace grass-feeding systems in light lamb production. Meat Sci. 2008, 80, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Nassu, R.T.; Gonçalves, L.A.G.; Da Silva, M.A.A.P.; Beserra, F.J. Oxidative stability of fermented goat meat sausage with different levels of natural antioxidant. Meat Sci. 2003, 63, 43–49. [Google Scholar] [CrossRef]
- Jin, S.K.; Choi, J.S.; Yang, H.S.; Park, T.S.; Yim, D.G. Natural curing agents as nitrite alternatives and their effects on the physicochemical, microbiological properties and sensory evaluation of sausages during storage. Meat Sci. 2018, 146, 34–40. [Google Scholar] [CrossRef]
- Albertos, I.; Martin-Diana, A.B.; Cullen, P.J.; Tiwari, B.K.; Ojha, K.S.; Bourke, P.; Rico, D. Shelf-life extension of herring (Clupea harengus) using in-package atmospheric plasma technology. Innov. Food Sci. Emerg. Technol. 2019, 53, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, Z.; Zhuang, H.; Nasiru, M.M.; Yuan, Y.; Zhang, J.; Yan, W. Changes in color, myoglobin, and lipid oxidation in beef patties treated by dielectric barrier discharge cold plasma during storage. Meat Sci. 2021, 176, 108456. [Google Scholar] [CrossRef]
- de Carvalho, F.A.L.; Lorenzo, J.M.; Pateiro, M.; Bermúdez, R.; Purriños, L.; Trindade, M.A. Effect of guarana (Paullinia cupana) seed and pitanga (Eugenia uniflora L.) leaf extracts on lamb burgers with fat replacement by chia oil emulsion during shelf life storage at 2 °C. Food Res. Int. 2019, 125, 108554. [Google Scholar] [CrossRef]
- Tomasevic, I.; Djekic, I.; Font-i-Furnols, M.; Terjung, N.; Lorenzo, J.M. Recent advances in meat color research. Curr. Opin. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- GoÑi, V.; Indurain, G.; Hernandez, B.; Beriain, M.J. Measuring muscle color in beef using an instrumental method versus visual color scales. J. Muscle Foods 2008, 19, 209–221. [Google Scholar] [CrossRef]
- Mello, R.; Vaz, F.N.; Pacheco, P.S.; Pascoal, L.L.; Prestes, R.C.; Costa, P.B.; Kipper, D.K. Predictive efficiency of distinct color image segmentation methods for measuring intramuscular fat in beef. Ciência Rural 2015, 45, 1865–1871. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Holman, B.W.B.; Zhang, Y.; Luo, X.; Mao, Y.; Hopkins, D.L. Investigation of colour requirements of frozen beef rolls by Chinese consumers for hot pot. Meat Sci. 2020, 162, 108038. [Google Scholar] [CrossRef]
Substance | Content (mg/kg of Berry) 1 | ||
---|---|---|---|
CBE | Raw Material | Fresh Fruit | |
Total polyphenolic | 83,976.25 ± 167.90 | 3081.60 ± 6.16 | 1151.65 ± 2.30 |
Total anthocyanin | 29,077.50 ± 747.77 | 1067.03 ± 27.44 | 398.77 ± 10.30 |
Individual polyphenolic compounds | |||
Cyanidin derivatives | 7729.38 ± 52.15 | 283.64 ± 1.90 | 106 ± 0.70 |
Quercetin-3-glucuronide | 982.50 ±11.30 | 36.05 ± 0.40 | 13.47 ± 0.20 |
Quercetin-3-glucoside | 66.50 ± 3.20 | 2.44 ± 0.10 | 0.91 ±0.0 |
Syringic acid | 60.13 ±1.59 | 2.21 ±0.0 | 0.82 ±0.0 |
p-Coumaric acid | 37.96 ±1.78 | 1.39 ±0.0 | 0.52 ±0.0 |
Σ Kaempferol derivatives (3-glucoside + rutinoside) | 4460.13 ± 44.7 | 163.67 ± 1.6 | 61.17 ± 0.6 |
DPPH 1,* | IC50 2,* | ABTS●+ 3,* | ORAC 4,* | FRAP 5,* |
---|---|---|---|---|
143.68 ± 3.87 | 1.55 ± 0.01 | 253.27 ± 12.57 | 472.25 ± 6.08 | 1.98 ± 0.02 |
Parameters | Day | Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
CON | ASC | CBE250 | CBE500 | CBE750 | ||||
pH | 1 | 5.58 a,B | 5.57 a,B | 5.57 a,B | 5.67 a,A | 5.68 a,A | 0.014 | <0.001 |
3 | 5.46 b,D | 5.53 b,B,C | 5.54 a,A,B | 5.49 c,C,D | 5.57 b,A | 0.012 | 0.002 | |
6 | 5.32 c,C | 5.41 c,A,B | 5.37 c,B,C | 5.42 d,A,B | 5.47 c,A | 0.016 | 0.014 | |
9 | 5.49 b,B | 5.42 c,C | 5.43 b,C | 5.61 b,A | 5.53 b,c,B | 0.020 | <0.001 | |
SEM | 0.029 | 0.022 | 0.025 | 0.030 | 0.026 | |||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | |||
L* | 1 | 48.90 b,A | 46.93 b,A,B | 43.32 c,B,C | 42.96 c,C | 39.75 b,C | 0.963 | 0.002 |
3 | 46.84 b,A | 48.06 b,A | 46.81 b,A | 42.69 c,B | 42.28 a,b,B | 0.694 | 0.001 | |
6 | 53.98 a,A | 50.34 b,B | 48.15 b,B,C | 45.30 b,C,D | 42.15 a,b,D | 1.156 | <0.001 | |
9 | 55.75 a,A | 55.50 a,A | 54.18 a,A | 49.40 a,B | 44.86 a,C | 1.158 | <0.001 | |
SEM | 1.264 | 1.084 | 1.204 | 0.821 | 0.648 | |||
p-value | 0.009 | 0.002 | <0.001 | <0.001 | 0.016 | |||
a* | 1 | 14.45 a,A,B | 11.76 a,C | 13.13 a,B,C | 13.25 b,B,C | 15.67 a,A | 0.433 | 0.019 |
3 | 13.59 a | 13.08 a | 13.20 a | 15.20 a | 13.55 b | 0.284 | 0.095 | |
6 | 4.42 b,C | 8.25 b,A,B | 7.58 b,B | 8.67 c,A,B | 9.06 c,A | 0.466 | <0.001 | |
9 | 2.03 c,B | 2.69 c,B | 2.42 c,B | 3.85 d,A | 4.44 d,A | 0.261 | <0.001 | |
SEM | 1.678 | 1.227 | 1.359 | 1.328 | 1.316 | |||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||
b* | 1 | 18.65 A | 16.47 B | 15.78 B,C | 14.61 b,C,D | 14.30 a,D | 0.444 | <0.001 |
3 | 17.39 A | 17.10 A,B | 16.28 A,B | 15.60 a,B | 13.60 b,C | 0.402 | 0.001 | |
6 | 17.21 A | 16.69 A | 14.79 B | 14.29 b,B | 12.57 c,C | 0.463 | <0.001 | |
9 | 18.12 A | 16.24 B | 16.75 A,B | 16.08 a,B | 14.21 a,b,C | 0.386 | 0.004 | |
SEM | 0.289 | 0.233 | 0.305 | 0.250 | 0.222 | |||
p-value | 0.288 | 0.662 | 0.105 | 0.007 | 0.001 | |||
C* | 1 | 23.63 a,A | 20.25 a,b,B | 20.53 a,B | 19.73 b,B | 21.21 a,B | 0.431 | 0.008 |
3 | 22.08 a | 21.53 a | 20.96 a | 21.78 a | 19.20 b | 0.363 | 0.058 | |
6 | 17.77 b,A | 18.62 b,A | 16.64 b,B | 16.72 c,B | 15.50 c,C | 0.304 | <0.001 | |
9 | 18.23 b,A | 16.46 c,B,C | 16.93 b,A,B | 16.54 c,B,C | 14.89 c,C | 0.343 | 0.012 | |
SEM | 0.814 | 0.621 | 0.641 | 0.674 | 0.801 | |||
p-value | 0.001 | 0.001 | 0.001 | <0.001 | <0.001 | |||
h* | 1 | 52.40 c,A | 54.38 c,A | 50.24 c,A,B | 47.78 c,B | 42.40 c,C | 1.207 | <0.001 |
3 | 51.96 c,A | 52.64 c,A | 50.96 c,A | 45.76 c,B | 45.13 c,B | 0.909 | <0.001 | |
6 | 75.56 b,A | 63.71 b,B | 62.85 b,B,C | 58.75 b,C | 54.21 b,D | 1.967 | <0.001 | |
9 | 83.60 a,A | 80.59 a,B | 81.74 a,A,B | 76.53 a,C | 72.69 a,D | 1.100 | <0.001 | |
SEM | 4.254 | 3.370 | 3.874 | 3.692 | 3.607 | |||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||
ΔEs | 1 | 6.590 | 7.633 | 10.360 | 0.960 | 0.284 | ||
3 | 2.9800 | 4.9100 | 6.0400 | 0.698 | 0.206 | |||
6 | 7.147 | 10.230 | 13.557 | 1.212 | 0.072 | |||
9 | 2.490 C | 7.013 B | 11.837 A | 1.452 | 0.003 |
L* | C* | h* | RCI | SDI | RCA | |
---|---|---|---|---|---|---|
L* | 1 | −0.264 | 0.851 *** | −0.839 *** | 0.707 *** | −0.660 *** |
C* | 1 | −0.662 ** | 0.522 ** | −0.735 *** | 0.837 *** | |
h* | 1 | −0.947 *** | 0.958 *** | −0.932 *** | ||
RCI | 1 | −0.909 *** | 0.851 *** | |||
SDI | 1 | −0.967 *** | ||||
RCA | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Ramella, M.; Lorenzo, J.M.; Zamuz, S.; Valdés, M.E.; Moreno, D.; Balcázar, M.C.G.; Fernández-Arias, J.M.; Reyes, J.F.; Franco, D. The Antioxidant Effect of Colombian Berry (Vaccinium meridionale Sw.) Extracts to Prevent Lipid Oxidation during Pork Patties Shelf-Life. Antioxidants 2021, 10, 1290. https://doi.org/10.3390/antiox10081290
Vargas-Ramella M, Lorenzo JM, Zamuz S, Valdés ME, Moreno D, Balcázar MCG, Fernández-Arias JM, Reyes JF, Franco D. The Antioxidant Effect of Colombian Berry (Vaccinium meridionale Sw.) Extracts to Prevent Lipid Oxidation during Pork Patties Shelf-Life. Antioxidants. 2021; 10(8):1290. https://doi.org/10.3390/antiox10081290
Chicago/Turabian StyleVargas-Ramella, Márcio, José M. Lorenzo, Sol Zamuz, María Esperanza Valdés, Daniel Moreno, María C. Guamán Balcázar, José M. Fernández-Arias, Jorge F. Reyes, and Daniel Franco. 2021. "The Antioxidant Effect of Colombian Berry (Vaccinium meridionale Sw.) Extracts to Prevent Lipid Oxidation during Pork Patties Shelf-Life" Antioxidants 10, no. 8: 1290. https://doi.org/10.3390/antiox10081290
APA StyleVargas-Ramella, M., Lorenzo, J. M., Zamuz, S., Valdés, M. E., Moreno, D., Balcázar, M. C. G., Fernández-Arias, J. M., Reyes, J. F., & Franco, D. (2021). The Antioxidant Effect of Colombian Berry (Vaccinium meridionale Sw.) Extracts to Prevent Lipid Oxidation during Pork Patties Shelf-Life. Antioxidants, 10(8), 1290. https://doi.org/10.3390/antiox10081290