A Review on the Obtaining of Functional Beers by Addition of Non-Cereal Adjuncts Rich in Antioxidant Compounds
Abstract
:1. Introduction
2. Potential Production Steps and Addiction Mechanism for Inclusion of Brewing Adjuncts
2.1. Adjunct Addition in Wort Boiling
2.2. Adjunct Addition in Fermentation
2.3. Adjunct Addition in Maturation
2.4. Adjunct Addition after Packaging
3. Evaluation of Bioactive Compounds and Health Benefits
3.1. Phenolic Compounds
3.2. Antioxidant Activity
4. Volatile Compounds and Their Influence on the Sensory Profile of a Beer
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- 27 CFR § 25.11. eCFR—Code of Federal Regulations; United States Government, United States of America: Washington, DC, USA, 2020; p. 53. [Google Scholar]
- Colen, L.; Swinnen, J. Economic Growth, Globalisation and Beer Consumption. J. Agric. Econ. 2016, 67, 186–207. [Google Scholar] [CrossRef]
- Kirin Beer University Report. Global Beer Consumption by Country in 2018. 2019. Available online: https://www.kirinholdings.co.jp/english/news/2019/1003_01.html#anc02 (accessed on 4 March 2021).
- Mutz, Y.S.; do Rosario, D.; Silva, L.R.G.; Santos, F.D.; Santos, L.P.; Janegitz, B.C.; Filgueiras, P.R.; Romão, W.; de QFerreira, R.; Conte-Junior, C.A. Portable electronic tongue based on screen-printed electrodes coupled with chemometrics for rapid differentiation of Brazilian lager beer. Food Control 2021, 127, 108163. [Google Scholar] [CrossRef]
- Niu, C.; Han, Y.; Wang, J.; Zheng, F.; Liu, C.; Li, Y.; Li, Q. Comparative analysis of the effect of protein Z4 from barley malt and recombinant Pichia pastoris on beer foam stability: Role of N-glycosylation and glycation. Int. J. Biol. Macromol. 2018, 106, 241–247. [Google Scholar] [CrossRef]
- Mutz, Y.S.; Rosario, D.K.A.; Conte-Junior, C.A. Insights into chemical and sensorial aspects to understand and manage beer aging using chemometrics. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3774–3801. [Google Scholar] [CrossRef] [PubMed]
- Yeo, H.Q.; Liu, S.-Q. An overview of selected specialty beers: Developments, challenges and prospects. Int. J. Food Sci. Technol. 2014, 49, 1607–1618. [Google Scholar] [CrossRef]
- Filho, R.C.N.; Galvan, D.; Effting, L.; Terhaag, M.M.; Yamashita, F.; Benassi, M.D.T.; Spinosa, W.A. Effects of Adding Spices with Antioxidants Compounds in Red Ale Style Craft Beer: A Simplex-Centroid Mixture Design Approach. Food Chem. 2021, 365, 130478. [Google Scholar] [CrossRef] [PubMed]
- Sohrabvandi, S.; Mortazavian, A.; Rezaei, K. Health-Related Aspects of Beer: A Review. Int. J. Food Prop. 2012, 15, 350–373. [Google Scholar] [CrossRef]
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional Beverages: The Emerging Side of Functional Foods: Commercial Trends, Research, and Health Implications. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Deng, Y.; Lim, J.; Nguyen, T.T.H.; Mok, I.-K.; Piao, M.; Kim, D. Composition and biochemical properties of ale beer enriched with lignans from Schisandra chinensis Baillon (omija) fruits. Food Sci. Biotechnol. 2020, 29, 609–617. [Google Scholar] [CrossRef]
- Cortacero-Ramírez, S.; de Castro, M.H.-B.; Segura-Carretero, A.; Cruces-Blanco, C.; Fernández-Gutiérrez, A. Analysis of beer components by capillary electrophoretic methods. TrAC Trends Anal. Chem. 2003, 22, 440–455. [Google Scholar] [CrossRef]
- Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The chemistry of beer aging—A critical review. Food Chem. 2006, 95, 357–381. [Google Scholar] [CrossRef]
- Linko, M.; Haikara, A.; Ritala, A.; Penttilä, M. Recent advances in the malting and brewing industry. J. Biotechnol. 1998, 65, 85–98. [Google Scholar] [CrossRef]
- Buglass, A.J.; Caven-Quantrill, D.J. Applications of Natural Ingredients in Alcoholic Drinks. In Natural Food Additives, Ingredients and Flavourings; Woodhead Publishing Limited: Sawston, UK, 2012; pp. 358–416. [Google Scholar]
- De Schutter, D.P.; Saison, D.; Delvaux, F.; Derdelinckx, G.; Rock, J.-M.; Neven, H.; Delvaux, F.R. Release and Evaporation of Volatiles during Boiling of Unhopped Wort. J. Agric. Food Chem. 2008, 56, 5172–5180. [Google Scholar] [CrossRef]
- Xu, K.; Guo, M.; Du, J.; Zhang, Z. Cloudy wheat beer enriched with okra [Abelmoschus esculentus (L.) Moench]: Effects on volatile compound and sensorial attributes. Int. J. Food Prop. 2018, 21, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Vieira, C.P.; Cabral, C.C.; Lima, B.R.D.C.; Paschoalin, V.M.F.; Leandro, K.C.; Conte-Junior, C.A. Lactococcus lactis ssp. cremoris MRS47, a potential probiotic strain isolated from kefir grains, increases cis-9, trans-11-CLA and PUFA contents in fermented milk. J. Funct. Foods 2017, 31, 172–178. [Google Scholar] [CrossRef]
- Meilgaard, M.C. Flavor chemistry of beer. II. Flavor and threshold of 239 aroma volatiles. Tech. Quart. Master. Brew. Assoc. Am. 1975, 12, 151–168. [Google Scholar]
- Gemede, H.F.; Ratta, N.; Haki, G.D.; Woldegiorgis, A.Z.; Beyene, F. Nutritional Quality and Health Benefits of Okra (Abelmoschus esculentus): A Review. J. Food Process. Technol. 2015, 25, 16–25. [Google Scholar] [CrossRef]
- Hwa, S.-H.; Yeon, S.-J.; Hong, G.-E.; Cho, W.-Y.; Lee, H.-J.; Kim, J.-H.; Lee, C.-H. Evaluation of Lignan Compound Content and Bioactivity of Raw Omija and Sugared Omija in Serum of Sprague Dawley Rat. Foods 2019, 8, 373. [Google Scholar] [CrossRef] [Green Version]
- Ducruet, J.; Rébénaque, P.; Diserens, S.; Kosińska-Cagnazzo, A.; Héritier, I.; Andlauer, W. Amber ale beer enriched with goji berries—The effect on bioactive compound content and sensorial properties. Food Chem. 2017, 226, 109–118. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, W.; Zhao, J.; Xi, W. Functional constituents and antioxidant activities of eight Chinese native goji genotypes. Food Chem. 2016, 200, 230–236. [Google Scholar] [CrossRef]
- Hansen, J.; Kielland-Brandt, M. Modification of biochemical pathways in industrial yeasts. J. Biotechnol. 1996, 49, 1–12. [Google Scholar] [CrossRef]
- Jewison, T.; Knox, C.; Neveu, V.; Djoumbou, Y.; Guo, A.C.; Lee, J.; Liu, P.; Mandal, R.; Krishnamurthy, R.; Sinelnikov, I.; et al. YMDB: The Yeast Metabolome Database. Nucleic Acids Res. 2011, 40, D815–D820. [Google Scholar] [CrossRef] [Green Version]
- Krivoruchko, A.; Nielsen, J. Production of natural products through metabolic engineering of Saccharomyces cerevisiae. Curr. Opin. Biotechnol. 2015, 35, 7–15. [Google Scholar] [CrossRef]
- Cho, J.-H.; Kim, I.-D.; Dhungana, S.K.; Do, H.-M.; Shin, D.-H. Persimmon fruit enhanced quality characteristics and antioxidant potential of beer. Food Sci. Biotechnol. 2018, 27, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Araki, S.; Takashio, M.; Shinotsuka, K. A New Parameter for Determination of the Extent of Staling in Beer. J. Am. Soc. Brew. Chem. 2002, 60, 26–30. [Google Scholar] [CrossRef]
- Nardini, M.; Garaguso, I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chem. 2020, 305, 125437. [Google Scholar] [CrossRef]
- Hegazy, A.E.; Ibrahium, M.I. Antioxidant activities of orange peel extracts. World Appl. Sci. J. 2012, 18, 684–688. [Google Scholar] [CrossRef]
- Nunes, C.D.S.O.; De Carvalho, G.B.M.; Da Silva, M.L.C.; da Silva, G.; Machado, B.A.S.; Uetanabaro, A.P.T. Cocoa pulp in beer production: Applicability and fermentative process performance. PLoS ONE 2017, 12, e0175677. [Google Scholar] [CrossRef] [Green Version]
- De Melo, V.F.; Araujo, G.S.; Bispo, J.A.C.; del Bianchi, V.L.; De Carvalho, G.B.M. Effect of different concentrations of bush passion fruit pulp and temperature in the production of beer. Afr. J. Biotechnol. 2017, 16, 1150–1158. [Google Scholar] [CrossRef] [Green Version]
- Ariyajaroenwong, P.; Laopaiboon, P.; Salakkam, A.; Srinophakun, P.; Laopaiboon, L. Kinetic models for batch and continuous ethanol fermentation from sweet sorghum juice by yeast immobilized on sweet sorghum stalks. J. Taiwan Inst. Chem. Eng. 2016, 66, 210–216. [Google Scholar] [CrossRef]
- Carvalho, G.B.M.; da Silva, D.P.; Bento, C.V.; Vicente, A.; Teixeira, J.; Felipe, M.D.G.A.; Silva, J.B.D.A.E. Banana as Adjunct in Beer Production: Applicability and Performance of Fermentative Parameters. Appl. Biochem. Biotechnol. 2009, 155, 356–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masschelein, C.A. The biochemistry of maturation. J. Inst. Brew. 1986, 92, 213–219. [Google Scholar] [CrossRef]
- Soelberg, J.; Davis, O.; Jäger, A. Historical versus contemporary medicinal plant uses in the US Virgin Islands. J. Ethnopharmacol. 2016, 192, 74–89. [Google Scholar] [CrossRef]
- Bustos, L.; Soto, E.; Parra, F.; Echiburú, C.; Parra, C. Brewing of a Porter Craft Beer Enriched with the Plant Parastrephia lucida: A Promising Source of Antioxidant Compounds. J. Am. Soc. Brew. Chem. 2019, 77, 261–266. [Google Scholar] [CrossRef]
- Adadi, P.; Kovaleva, E.G.; Glukhareva, T.V.; Shatunova, S.A. Production and analysis of non-traditional beer supplemented with sea buckthorn. Agron. Res. 2017, 15, 1831–1845. [Google Scholar]
- Ferreira, J.M.; Fernandes-Silva, C.C.; Salatino, A.; Negri, G.; Message, D. New propolis type from north-east Brazil: Chemical composition, antioxidant activity and botanical origin. J. Sci. Food Agric. 2017, 97, 3552–3558. [Google Scholar] [CrossRef]
- Ulloa, P.A.; Vidal, J.; Ávila, M.I.; Labbe, M.; Cohen, S.; Salazar, F.N. Effect of the Addition of Propolis Extract on Bioactive Compounds and Antioxidant Activity of Craft Beer. J. Chem. 2017, 2017, 6716053. [Google Scholar] [CrossRef] [Green Version]
- Mohammadzadeh, S.; Shariatpanahi, M.; Hamedi, M.; Ahmadkhaniha, R.; Samadi, N.; Ostad, S.N. Chemical composition, oral toxicity and antimicrobial activity of Iranian propolis. Food Chem. 2007, 103, 1097–1103. [Google Scholar] [CrossRef]
- Vaughan, A.; O’Sullivan, T.; Van Sinderen, D. Enhancing the Microbiological Stability of Malt and Beer—A Review. J. Inst. Brew. 2005, 111, 355–371. [Google Scholar] [CrossRef]
- Djordjevic, S.; Popovic, D.; Despotovic, S.; Veljovic, M.; Atanackovic, M.; Cvejic, J.; Nedovic, V.; Leskosek-Cukalovic, I. Extracts of medicinal plants as functional beer additives. Chem. Ind. Chem. Eng. Q. 2016, 22, 301–308. [Google Scholar] [CrossRef]
- Belscak-Cvitanovic, A.; Nedovic, V.; Salevic, A.; Despotovic, S.; Komes, D.; Niksic, M.; Bugarski, B.; Leskosek-Cukalovic, I. Modification of functional quality of beer by using microencapsulated green tea (Camellia sinensis L.) and Ganoderma mushroom (Ganoderma lucidum L.) bioactive compounds. Chem. Ind. Chem. Eng. Q. 2017, 23, 457–471. [Google Scholar] [CrossRef]
- Leskosek-Cukalovic, I.; Despotovic, S.; Lakic, N.; Niksic, M.; Nedovic, V.; Tesevic, V. Ganoderma lucidum—Medical mushroom as a raw material for beer with enhanced functional properties. Food Res. Int. 2010, 43, 2262–2269. [Google Scholar] [CrossRef]
- Sharma, C.; Bhardwaj, N.; Sharma, A.; Tuli, H.S.; Batra, P.; Beniwal, V.; Gupta, G.K.; Sharma, A.K. Bioactive metabolites of Ganoderma lucidum: Factors, mechanism and broad spectrum therapeutic potential. J. Herb. Med. 2019, 17–18, 100268. [Google Scholar] [CrossRef]
- Chen, S.; Xu, J.; Liu, C.; Zhu, Y.; Nelson, D.; Zhou, S.; Li, C.; Wang, L.; Guo, X.; Sun, Y.; et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat. Commun. 2012, 3, 913. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.-S.; Guo, J.-J.; Bao, J.-L.; Li, X.-W.; Chen, X.-P.; Lu, J.-J.; Wang, Y.-T. Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum—A review. Expert Opin. Investig. Drugs 2013, 22, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.; Vegara, S.; Herranz-Lopez, M.; Martí, N.; Valero, M.; Micol, V.; Saura, D. Kinetic changes of polyphenols, anthocyanins and antioxidant capacity in forced aged hibiscus ale beer. J. Inst. Brew. 2017, 123, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.-M.; Kim, S.-Y.; Seo, E.-C.; Lee, H.-I.; Kwon, O.-H.; Kim, H.-R.; Dhungana, S.K.; Park, Y.-S.; Kim, I.-D. Influence of Peach (Prunus persica L. Batsch) Fruit Addition on Quality Characteristics and Antioxidant Activities of Beer. Int. J. Sci. 2017, 3, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Prorok, P.; Piórecki, N. Physicochemical and antioxidative properties of Cornelian cherry beer. Food Chem. 2019, 281, 147–153. [Google Scholar] [CrossRef]
- Zapata, P.J.; Martínez-Esplá, A.; Gironés-Vilaplana, A.; Santos-Lax, D.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT 2019, 103, 139–146. [Google Scholar] [CrossRef]
- Callemien, D.; Collin, S. Structure, Organoleptic Properties, Quantification Methods, and Stability of Phenolic Compounds in Beer—A Review. Food Rev. Int. 2010, 26, 1–84. [Google Scholar] [CrossRef]
- Haslam, E.; Lilley, T.H.; Warminski, E.; Liao, H.; Cai, Y.; Martin, R.; Gaffney, S.H.; Goulding, P.N.; Luck, G. Polyphenol complexation: A study in molecular recognition. Phenolic Compd. Food Eff. Health I Anal. Occur. Chem. 1992, 506, 8–50. [Google Scholar]
- Barth, R. The Chemistry of Beer. ACS Symp. Ser. 2013, 81, 37–47. [Google Scholar] [CrossRef]
- Islam, T.; Yu, X.; Xu, B. Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT Food Sci. Technol. 2016, 72, 423–431. [Google Scholar] [CrossRef]
- Blainski, A.; Lopes, G.C.; De Mello, J.C.P. Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium brasiliense L. Molecules 2013, 18, 6852–6865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-Remón, A.; Barrionuevo-González, A.; Zamora-Ros, R.; Andres-Lacueva, C.; Estruch, R.; Martinez-Gonzalez, M.A.; Diez-Espino, J.; Lamuela-Raventos, R.M. Rapid Folin–Ciocalteu method using microtiter 96-well plate cartridges for solid phase extraction to assess urinary total phenolic compounds, as a biomarker of total polyphenols intake. Anal. Chim. Acta 2009, 634, 54–60. [Google Scholar] [CrossRef]
- Montereali, M.; Della Seta, L.; Vastarella, W.; Pilloton, R. A disposable Laccase–Tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine. J. Mol. Catal. B Enzym. 2010, 64, 189–194. [Google Scholar] [CrossRef]
- Zhao, H.; Fan, W.; Dong, J.; Lu, J.; Chen, J.; Shan, L.; Lin, Y.; Kong, W. Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chem. 2008, 107, 296–304. [Google Scholar] [CrossRef]
- Kim, C.-Y.; Jang, K.-S.; Kwon, O.-H.; Jeon, S.-G.; Kwon, J.-B.; Dhungana, S.K.; Mun, J.-H.; Park, Y.-S.; Kim, I.-D. Addition of Green Pepper Enhanced Antioxidant Potential and Overall Acceptance of Beer. Int. J. Sci. 2017, 3, 49–54. [Google Scholar] [CrossRef]
- Da Costa, P.M.C.; De Almeida, I.L.M.L.; Bianchini, A.; Bianchini, M.D.G.A.; E Silva, R.E.V.; Rossignoli, P.A. Blond Ale Craft Beer Production with Addition of Pineapple Pulp. J. Exp. Agric. Int. 2019, 38, 1–5. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Sentkowska, A. Recent Developments in the HPLC Separation of Phenolic Food Compounds. Crit. Rev. Anal. Chem. 2014, 45, 41–51. [Google Scholar] [CrossRef]
- Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol. 2017, 139, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Granado-Lorencio, F.; Blanco-Navarro, I.; Pérez-Sacristán, B.; Hernández-Álvarez, E. Biomarkers of carotenoid bioavailability. Food Res. Int. 2017, 99, 902–916. [Google Scholar] [CrossRef] [PubMed]
- Musial, C.; Siedlecka-Kroplewska, K.; Kmiec, Z.; Gorska-Ponikowska, M. Modulation of Autophagy in Cancer Cells by Dietary Polyphenols. Antioxidants 2021, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Villareal, M.O.; Sasaki, K.; Margout, D.; Savry, C.; Almaksour, Z.; Larroque, M.; Isoda, H. Neuroprotective effect of Picholine virgin olive oil and its hydroxycinnamic acids component against β-amyloid-induced toxicity in SH-SY5Y neurotypic cells. Cytotechnology 2016, 68, 2567–2578. [Google Scholar] [CrossRef] [Green Version]
- Bursal, E.; Köksal, E.; Gülçin, I.; Bilsel, G.; Gören, A.C. Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC–MS/MS. Food Res. Int. 2013, 51, 66–74. [Google Scholar] [CrossRef]
- Siesjö, B.K.; Agardh, C.-D.; Bengtsson, F. Free radicals and brain damage. Cerebrovasc. Brain Metab. Rev. 1989, 1, 165–211. [Google Scholar]
- Rahman, T.; Hosen, I.; Islam, M.M.T.; Shekhar, H.U. Oxidative stress and human health. Adv. Biosci. Biotechnol. 2012, 3, 997–1019. [Google Scholar] [CrossRef] [Green Version]
- Gerhauser, C. Phenolic Beer Compounds to Prevent Cancer; Elsevier Inc.: Amsterdam, The Netherlands, 2009; ISBN 9780123738912. [Google Scholar]
- Schlesier, K.; Harwat, M.; Böhm, V.; Bitsch, R. Assessment of Antioxidant Activity by Using Different In Vitro Methods. Free Radic. Res. 2002, 36, 177–187. [Google Scholar] [CrossRef]
- Shahidi, F.; Ho, C.-T. Antioxidant Measurement and Applications: An Overview. ACS Symp. Ser. 2007, 956, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- Koehnlein, E.A.; Koehnlein, É.M.; Corrêa, R.C.G.; Nishida, V.S.; Correa, V.G.; Bracht, A.; Peralta, R.M. Analysis of a whole diet in terms of phenolic content and antioxidant capacity: Effects of a simulated gastrointestinal digestion. Int. J. Food Sci. Nutr. 2016, 67, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Humia, B.V.; Santos, K.S.; Barbosa, A.M.; Sawata, M.; Mendonça, M.D.C.; Padilha, F.F. Beer Molecules and Its Sensory and Biological Properties: A Review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef] [Green Version]
- Meilgaard, M.C. Beer flavour terminology. J. Inst. Brew. 1979, 85, 38–42. [Google Scholar] [CrossRef]
- Langstaff, B.S.A.; Lewis, M.J. The mouthfeel of beer—A review. J. Inst. Brew. 1993, 99, 31–37. [Google Scholar] [CrossRef]
- Kosiv, R.; Kharandiuk, T.; Polyuzhyn, L.; Palianytsia, L.; Berezovska, N. Effect of high gravity wort fermentation parameters on beer flavor profile. Chem. Chem. Technol. 2017, 11, 308–313. [Google Scholar] [CrossRef]
- Anderson, H.E.; Santos, I.C.; Hildenbrand, Z.L.; Schug, K.A. A review of the analytical methods used for beer ingredient and finished product analysis and quality control. Anal. Chim. Acta 2019, 1085, 1–20. [Google Scholar] [CrossRef]
- Vianna, F.S.; Canto, A.C.; da Costa-Lima, B.R.; Salim, A.P.; Costa, M.P.; Balthazar, C.F.; Oliveira, B.R.; Rachid, R.P.; Franco, R.M.; Conte-Junior, C.A.; et al. Development of new probiotic yoghurt with a mixture of cow and sheep milk: Effects on physicochemical, textural and sensory analysis. Small Rumin. Res. 2017, 149, 154–162. [Google Scholar] [CrossRef]
- Pappalardo, G.; Lusk, J.L. The role of beliefs in purchasing process of functional foods. Food Qual. Prefer. 2016, 53, 151–158. [Google Scholar] [CrossRef]
Adjunct | Classification | Production Mechanism | Addition Mechanism | Conventional Beer TPC (mg GAE/L) | Enriched Beer TPC (mg GAE/L) | Sensory Evaluation | Reference |
---|---|---|---|---|---|---|---|
Okra | fruit | wort boiling | dried powder | - | - | yes | [17] |
pulp | |||||||
Omija fruit | fruit | wort boiling | crushed and dried | 519 | 606 | yes | [11] |
fermentation | 575 | ||||||
maturation | 568 | ||||||
Goji berry | fruit | wort boiling | ground and dried | 335 | 609 | yes | [22] |
whole and dried | 623 | ||||||
fermentation | 373 | ||||||
maturation | 415 | ||||||
before packaging | ground and dried | 357 | |||||
Peach | fruit | fermentation | pieces | 500 | 506–618 | yes | [50] |
Persimmon | fruit | fermentation | pieces | 507 | 595–714 | yes | [27] |
Cherry | fruit | fermentation | pieces | 321–482 | 747–767 | no | [29] |
Raspberry | 465–536 | ||||||
Peach | 510 | ||||||
Apricot | 454 | ||||||
Grape | 631 | ||||||
Plum | 598 | ||||||
Orange | 639 | ||||||
Apple | 399 | ||||||
Green pepper | fruit | fermentation | pieces | 723 | 1009–1321 | yes | [61] |
Bush passion fruit | fruit | fermentation | pulp | - | - | no | [32] |
Banana | fruit | fermentation | pulp | - | - | no | [34] |
Cocoa | fruit | fermentation | pulp | - | - | yes | [31] |
Quince | fruit | maturation | pieces | 13.47 * | 15.90–17.55 * | yes | [52] |
Sea buckthorn berry | fruit | maturation | pieces | - | - | yes | [38] |
Pineapple | fruit | maturation | pulp | - | - | no | [62] |
P. lucida | plant | maturation | dried leaves | 413 | 480–800 | no | [37] |
Propolis | resinous mixture | maturation | extract | 242 | 253–306 | no | [40] |
Melissae folium | plant | after packaging | extract | 280 | 363 | yes | [43] |
T. herba | plant | 384 | |||||
U. radix | plant | 317 | |||||
J. fructus | fruit | 365 | |||||
L. strobuli | plant | 316 | |||||
G. lucidum L. | mushroom | after packaging | extract | - | - | yes | [45] |
G. lucidum L. | mushroom | after packaging | extract | <300 | <900 | no | [44] |
microencapsulated | <300 | ||||||
C. sinensis L. | plant | extract | <300 | <600 | |||
microencapsulated | <1200 |
Adjunct | Classification | Production Stage | Conventional Beer—DPPH Assay | Enriched Beer—DPPH Assay | Conventional Beer—FRAP Assay | Enriched Beer—FRAP Assay | Conventional Beer—ABTS Assay (mM TE) | Enriched Beer—ABTS Assay (mM TE) | Conventional Beer—ORAC Assay (mM TE) | Enriched Beer—ORAC Assay (mM TE) | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
omija fruit | fruit | wort boiling | 0.88 mM TE(1) | 2.02 mM TE(1) | 1.79 mM Fe+2(1) | 3.01 mM Fe+2(1) | - | - | - | - | [11] |
fermentation | 1.68 mM TE(1) | 2.40 mM Fe+2(1) | - | - | - | - | |||||
maturation | 0.96 mM TE(1) | 1.86 mM Fe+2(1) | - | - | - | - | |||||
goji berry | fruit | wort boiling | - | - | - | - | 2.26 | 3.82 | 8.87 | 16.81 | [22] |
- | - | 3.70 | 16.84 | ||||||||
fermentation | - | - | 2.87 | 15.04 | |||||||
maturation | - | - | 2.95 | 13.13 | |||||||
before packaging | - | - | 2.40 | 10.03 | |||||||
peach | fruit | fermentation | 86.11% inhibition | 87.53–88.90% inhibition | - | - | - | - | - | - | [50] |
persimmon | fruit | fermentation | 80.12% inhibition | 85.31–91.00% inhibition | - | - | - | - | - | - | [27] |
cherry | fruit | fermentation | - | - | 2.80–4.39 Fe2SO4 eq. mM | 8.55–9.76 Fe2SO4 eq. mM | 1.29–2.03 | 3.41–3.53 | - | - | [29] |
raspberry | - | 4.87–5.71 Fe2SO4 eq. mM | 1.98–2.35 | - | |||||||
peach | - | 4.56 Fe2SO4 eq. mM | 1.86 | - | |||||||
apricot | - | 4.20 Fe2SO4 eq. mM | 1.66 | - | [29] | ||||||
grape | - | 6.85 Fe2SO4 eq. mM | 2.81 | - | |||||||
plum | - | 5.66 Fe2SO4 eq. mM | 1.93 | - | |||||||
orange | - | 5.65 Fe2SO4 eq. mM | 1.67 | - | |||||||
apple | - | 3.08 Fe2SO4 eq. mM | 1.62 | - | |||||||
P. lucida | plant | maturation | - | - | 1.88 mM TE | 2.17–5.46 mM TE | 1.15 | 1.38–3.34 | 7.86 | 10.14–30.58 | [37] |
Propolis | resinous mixture | maturation | 0.53 mM TE | 0.49–0.57 mM TE | 1.41 mM TE | 1.55–1.89 mM TE | 0,62 | 0.68–0.80 | - | - | [40] |
M. folium | plant | after packaging | 2.54 mM TE | 3.05 mM TE | 4.15 mM TE | 4.51 mM TE | - | - | - | - | [43] |
T. herba | plant | 3.72 mM TE | 4.71 mM TE | - | - | ||||||
U. radix | plant | 2.85 mM TE | 4.25 mM TE | - | - | ||||||
J. fructus | fruit | 3.14 mM TE | 4.55 mM TE | - | - | ||||||
L. strobuli | plant | 2.83 mM TE | 4.27 mM TE | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paiva, R.A.M.; Mutz, Y.S.; Conte-Junior, C.A. A Review on the Obtaining of Functional Beers by Addition of Non-Cereal Adjuncts Rich in Antioxidant Compounds. Antioxidants 2021, 10, 1332. https://doi.org/10.3390/antiox10091332
Paiva RAM, Mutz YS, Conte-Junior CA. A Review on the Obtaining of Functional Beers by Addition of Non-Cereal Adjuncts Rich in Antioxidant Compounds. Antioxidants. 2021; 10(9):1332. https://doi.org/10.3390/antiox10091332
Chicago/Turabian StylePaiva, Rodrigo A. M., Yhan S. Mutz, and Carlos A. Conte-Junior. 2021. "A Review on the Obtaining of Functional Beers by Addition of Non-Cereal Adjuncts Rich in Antioxidant Compounds" Antioxidants 10, no. 9: 1332. https://doi.org/10.3390/antiox10091332
APA StylePaiva, R. A. M., Mutz, Y. S., & Conte-Junior, C. A. (2021). A Review on the Obtaining of Functional Beers by Addition of Non-Cereal Adjuncts Rich in Antioxidant Compounds. Antioxidants, 10(9), 1332. https://doi.org/10.3390/antiox10091332