Genetic Polymorphisms of MnSOD Modify the Impacts of Environmental Melamine on Oxidative Stress and Early Kidney Injury in Calcium Urolithiasis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Collection of Clinical Data and Biological Samples
2.3. Analyses of Melamine, Biomarkers of Oxidative Stress (MDA and 8-OHdG), and Renal Tubular Injury (NAG) in Urine
2.4. Genotyping of Five SNPs
2.5. Statistical Analyses
2.6. Sensitivity Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hau, A.K.; Kwan, T.H.; Li, P.K. Melamine toxicity and the kidney. J. Am. Soc. Nephrol. 2009, 20, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, V.; Grimm, P.C.; Chertow, G.M.; Pao, A.C. Melamine nephrotoxicity: An emerging epidemic in an era of globalization. Kidney Int. 2009, 75, 774–779. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Lv, X.; Li, J.; Qi, G.; Diao, Q.; Liu, G.; Xue, M.; Wang, J.; Tong, J.; Zhang, L.; et al. Assessment of melamine contamination in crop, soil and water in China and risks of melamine accumulation in animal tissues and products. Environ. Int. 2010, 36, 446–452. [Google Scholar] [CrossRef]
- Zhu, H.; Kannan, K. Occurrence and distribution of melamine and its derivatives in surface water, drinking water, precipitation, wastewater, and swimming pool water. Environ. Pollut. 2020, 258, 113743. [Google Scholar] [CrossRef]
- Zhu, H.; Kannan, K. Melamine and cyanuric acid in foodstuffs from the United States and their implications for human exposure. Environ. Int. 2019, 130, 104950. [Google Scholar] [CrossRef]
- Panuwet, P.; Nguyen, J.V.; Wade, E.L.; D’Souza, P.E.; Ryan, P.B.; Barr, D.B. Quantification of melamine in human urine using cation-exchange based high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed Life Sci. 2012, 887–888, 48–54. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Tsai, M.-T.; Chen, Y.-L.; Cheng, C.-M.; Hung, C.-C.; Wu, C.-F.; Liu, C.-C.; Hsieh, T.-J.; Shiea, J.; Chen, B.H.; et al. Can melamine levels in 1-spot overnight urine specimens predict the total previous 24-hour melamine excretion level in school children? Clin. Chim. Acta 2013, 420, 128–133. [Google Scholar] [CrossRef]
- Sathyanarayana, S.; Flynn, J.T.; Messito, M.J.; Gross, R.; Whitlock, K.B.; Kannan, K.; Karthikraj, R.; Morrison, D.; Huie, M.; Christakis, D.; et al. Melamine and cyanuric acid exposure and kidney injury in US children. Environ. Res. 2019, 171, 18–23. [Google Scholar] [CrossRef]
- Shi, X.; Dong, R.; Chen, J.; Yuan, Y.; Long, Q.; Guo, J.; Li, S.; Chen, B. An assessment of melamine exposure in Shanghai adults and its association with food consumption. Environ. Int. 2020, 135, 105363. [Google Scholar] [CrossRef]
- Wu, C.-F.; Liu, C.-C.; Chen, B.-H.; Huang, S.-P.; Lee, H.-H.; Chou, Y.-H.; Wu, W.-J.; Wu, M.-T. Urinary melamine and adult urolithiasis in Taiwan. Clin. Chim. Acta 2010, 411, 184–189. [Google Scholar] [CrossRef]
- Liu, C.-C.; Wu, C.-F.; Chen, B.-H.; Huang, S.-P.; Goggins, W.; Lee, H.-H.; Chou, Y.-H.; Wu, W.-J.; Huang, C.-H.; Shiea, J.; et al. Low exposure to melamine increases the risk of urolithiasis in adults. Kidney Int. 2011, 80, 746–752. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.-C.; Wu, C.-F.; Liu, C.-C.; Hsieh, T.-J.; Lin, Y.-T.; Chiu, Y.-W.; Hwang, S.-J.; Chen, H.-C.; Wu, M.-T. Urinary Melamine Levels and Progression of CKD. Clin. J. Am. Soc. Nephrol. CJASN 2019, 14, 1133–1141. [Google Scholar] [CrossRef]
- Wu, C.-F.; Peng, C.-Y.; Liu, C.-C.; Lin, W.-Y.; Pan, C.-H.; Cheng, C.-M.; Hsieh, H.-M.; Hsieh, T.-J.; Chen, B.H.; Wu, M.-T. Ambient Melamine Exposure and Urinary Biomarkers of Early Renal Injury. J. Am. Soc. Nephrol. 2015, 26, 2821–2829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-C.; Hsieh, T.-J.; Wu, C.-F.; Tsai, Y.-C.; Huang, S.-P.; Lee, Y.-C.; Huang, T.-Y.; Shen, J.-T.; Chou, Y.-H.; Huang, C.-N.; et al. Urinary melamine excretion and increased markers of renal tubular injury in patients with calcium urolithiasis: A cross-sectional study. Environ. Pollut. 2017, 231, 1284–1290. [Google Scholar] [CrossRef]
- Hsieh, T.J.; Hsieh, P.C.; Tsai, Y.H.; Wu, C.; Liu, C.; Lin, M.; Wu, M. Melamine induces human renal proximal tubular cell injury via transforming growth factor-beta and oxidative stress. Toxicol. Sci. 2012, 130, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-C.; Hsieh, T.-J.; Wu, C.-F.; Lee, C.-H.; Tsai, Y.-C.; Huang, T.-Y.; Wen, S.-C.; Lee, C.-H.; Chien, T.-M.; Lee, Y.-C.; et al. Interrelationship of environmental melamine exposure, biomarkers of oxidative stress and early kidney injury. J. Hazard Mater. 2020, 396, 122726. [Google Scholar] [CrossRef] [PubMed]
- Gorin, Y. The Kidney: An Organ in the Front Line of Oxidative Stress-Associated Pathologies. Antioxid. Redox Signal. 2016, 25, 639–641. [Google Scholar] [CrossRef] [Green Version]
- Ratliff, B.B.; Abdulmahdi, W.; Pawar, R.; Wolin, M.S. Oxidant Mechanisms in Renal Injury and Disease. Antioxid. Redox Signal. 2016, 25, 119–146. [Google Scholar] [CrossRef] [Green Version]
- Crawford, A.; Fassett, R.G.; Geraghty, D.P.; Kunde, D.A.; Ball, M.J.; Robertson, I.K.; Coombes, J.S. Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene 2012, 501, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Crawford, A.; Fassett, R.G.; Coombes, J.; Kunde, D.; Ahuja, K.; Robertson, I.K.; Ball, M.J.; Geraghty, D. Glutathione peroxidase, superoxide dismutase and catalase genotypes and activities and the progression of chronic kidney disease. Nephrol. Dial. Transplant. 2011, 26, 2806–2813. [Google Scholar] [CrossRef] [Green Version]
- Kidir, V.; Uz, E.; Yigit, A.; Altuntas, A.; Yigit, B.; Inal, S.; Uz, E.; Sezer, M.T.; Yilmaz, H.R. Manganese superoxide dismutase, glutathione peroxidase and catalase gene polymorphisms and clinical outcomes in acute kidney injury. Ren. Fail. 2016, 38, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewens, K.G.; George, R.A.; Sharma, K.; Ziyadeh, F.N.; Spielman, R.S. Assessment of 115 candidate genes for diabetic nephropathy by transmission/disequilibrium test. Diabetes 2005, 54, 3305–3318. [Google Scholar] [CrossRef] [Green Version]
- Lash, L.H. Environmental and Genetic Factors Influencing Kidney Toxicity. Semin. Nephrol. 2019, 39, 132–140. [Google Scholar] [CrossRef]
- Little, J.; Higgins, J.P.T.; Ioannidis, J.P.A.; Moher, D.; Gagnon, F.; von Elm, E.; Khoury, M.J.; Cohen, B.; Davey-Smith, G.; Grimshaw, J.; et al. Strengthening the reporting of genetic association studies (STREGA): An extension of the STROBE Statement. Hum. Genet. 2009, 125, 131–151. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-C.; Huang, S.-P.; Wu, W.J.; Chou, Y.-H.; Juo, S.; Tsai, L.-Y.; Huang, C.-H.; Wu, M.-T. The impact of cigarette smoking, alcohol drinking and betel quid chewing on the risk of calcium urolithiasis. Ann. Epidemiol. 2009, 19, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.C.; Hsu, P.F.; Chen, Y.C.; Lin, H.; Chen, H.P.; Huang, Y. Oxidative stress during bacterial growth characterized through microdialysis sampling coupled with HPLC/fluorescence detection of malondialdehyde. J. Chromatogr. B Anal. Technol. Biomed Life Sci. 2016, 1019, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.W.; Chao, M.R.; Sie, C.H. Urinary analysis of 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2’-deoxyguanosine by isotope-dilution LC-MS/MS with automated solid-phase extraction: Study of 8-oxo-7,8-dihydroguanine stability. Free Radic. Biol. Med. 2010, 48, 89–97. [Google Scholar] [CrossRef]
- Liu, C.-C.; Lee, Y.-C.; Huang, S.-P.; Cheng, K.-H.; Hsieh, T.-J.; Huang, T.-Y.; Lee, C.-H.; Geng, J.-H.; Li, C.-C.; Wu, W.J. Hepatocyte Nuclear Factor-4alpha P2 Promoter Variants Are Associated With the Risk of Metabolic Syndrome and Testosterone Deficiency in Aging Taiwanese Men. J. Sex Med. 2018, 15, 1527–1536. [Google Scholar] [CrossRef]
- Liu, C.-C.; Huang, S.-P.; Tsai, L.-Y.; Wu, W.J.; Juo, S.-H.H.; Chou, Y.-H.; Huang, C.-H.; Wu, M.-T. The impact of osteopontin promoter polymorphisms on the risk of calcium urolithiasis. Clin. Chim. Acta 2010, 411, 739–743. [Google Scholar] [CrossRef]
- O’Brien, K.M.; Upson, K.; Cook, N.R.; Weinberg, C.R. Environmental Chemicals in Urine and Blood: Improving Methods for Creatinine and Lipid Adjustment. Environ. Health Perspect. 2016, 124, 220–227. [Google Scholar] [CrossRef]
- Chen, C.C.; Tsai, Y.C.; Wang, Y.H.; Wu, C.; Chiu, Y.; Hwang, S.; Liu, C.; Hsieh, T.; Wu, M. Melamine exposure threshold in early chronic kidney disease patients-A benchmark dose approach. Environ. Int. 2021, 156, 106652. [Google Scholar] [CrossRef]
- Chien, C.-Y.; Wu, C.-F.; Liu, C.-C.; Chen, B.H.; Huang, S.-P.; Chou, Y.-H.; Chang, A.-W.; Lee, H.-H.; Pan, C.-H.; Wu, W.J.; et al. High melamine migration in daily-use melamine-made tableware. J. Hazard Mater. 2011, 188, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.F.; Hsieh, T.J.; Chen, B.H.; Liu, C.C.; Wu, M.T. A Crossover Study of Noodle Soup Consumption in Melamine Bowls and Total Melamine Excretion in Urine. JAMA Intern. Med. 2013, 173, 317–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.; Yuan, H.; He, Z. Melamine causes apoptosis of rat kidney epithelial cell line (NRK-52e cells) via excessive intracellular ROS (reactive oxygen species) and the activation of p38 MAPK pathway. Cell Biol. Int. 2012, 36, 383–389. [Google Scholar] [CrossRef]
- Kuo, F.C.; Tseng, Y.T.; Wu, S.R.; Wu, M.T.; Lo, Y.C. Melamine activates NFκB/COX-2/PGE2 pathway and increases NADPH oxidase-dependent ROS production in macrophages and human embryonic kidney cells. Toxicol. In Vitro 2013, 27, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, G.; Shang, P.; Bao, J.; Lu, J.; Yue, Z. Anti-nephrolithic potential of catechin in melamine-related urolithiasis via the inhibition of ROS, apoptosis, phospho-p38, and osteopontin in male Sprague-Dawley rats. Free Radic. Res. 2015, 49, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Al-Seeni, M.N.; El Rabey, H.A.; Al-Solamy, S.M. The protective role of bee honey against the toxic effect of melamine in the male rat kidney. Toxicol. Ind. Health 2015, 31, 485–493. [Google Scholar] [CrossRef]
- Jerotic, D.; Matic, M.; Suvakov, S.; Vucicevic, K.; Damjanovic, T.; Savic-Radojevic, A.; Pljesa-Ercegovac, M.; Coric, V.; Stefanovic, A.; Ivanisevic, J.; et al. Association of Nrf2, SOD2 and GPX1 Polymorphisms with Biomarkers of Oxidative Distress and Survival in End-Stage Renal Disease Patients. Toxins 2019, 11, 431. [Google Scholar] [CrossRef] [Green Version]
- Mohammedi, K.; Bellili-Muñoz, N.; Driss, F.; Roussel, R.; Seta, N.; Fumeron, F.; Hadjadj, S.; Marre, M.; Velho, G. Manganese superoxide dismutase (SOD2) polymorphisms, plasma advanced oxidation protein products (AOPP) concentration and risk of kidney complications in subjects with type 1 diabetes. PLoS ONE 2014, 9, e96916. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.S.; Devalaraja, M.N.; St Clair, D.K. Molecular structure and organization of the human manganese superoxide dismutase gene. DNA Cell Biol. 1994, 13, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Polat, S.; Şimşek, Y. Five variants of the superoxide dismutase genes in Turkish women with polycystic ovary syndrome. Free Radic. Res. 2020, 54, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Wu, C.-F.; Liu, C.-C.; Hsieh, T.-J.; Tsai, Y.-C.; Wu, M.-T.; Chen, C.-C. A probabilistic approach for benchmark dose of melamine exposure for a marker of early renal dysfunction in patients with calcium urolithiasis. Ecotoxicol. Environ. Saf. 2020, 200, 110741. [Google Scholar] [CrossRef]
- Hsieh, D.P.; Chiang, C.F.; Chiang, P.H.; Wen, C.P. Toxicological analysis points to a lower tolerable daily intake of melamine in food. Regul. Toxicol. Pharmacol. 2009, 55, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.T.; Wu, C.F.; Chen, B.H. Behavioral Intervention and Decreased Daily Melamine Exposure from Melamine Tableware. Environ. Sci. Technol. 2015, 49, 9964–9970. [Google Scholar] [CrossRef] [PubMed]
- Elhelaly, A.E.; Albasher, G.; Alfarraj, S.; Almeer, R.; Bahbah, E.; Fouda, M.M.A.; Bungau, S.; Aleya, L.; Abdel-Daim, M.M. Protective effects of hesperidin and diosmin against acrylamide-induced liver, kidney, and brain oxidative damage in rats. Environ. Sci. Pollut. Res. Int. 2019, 26, 35151–35162. [Google Scholar] [CrossRef] [PubMed]
- Mirkov, I.; Stojković, D.; Aleksandrov, A.P.; Ivanov, M.; Kostić, M.; Glamočlija, J.; Soković, M. Plant Extracts and Isolated Compounds Reduce Parameters of Oxidative Stress Induced by Heavy Metals: An up-to-Date Review on Animal Studies. Curr. Pharm. Des. 2020, 26, 1799–1815. [Google Scholar] [CrossRef] [PubMed]
Variables | N (%) |
---|---|
Gender Male Female | 226 (74.8) 76 (25.2) |
Years of education ≤9 >9 | 143 (47.4) 159 (52.6) |
Personal habits | |
Current smokers | 104 (34.4) |
Current betel quid chewers | 21 (7.0) |
Current drinkers | 41(13.6) |
Diabetes mellitus | 52 (17.2) |
Hypertension | 105 (34.8) |
Dyslipidemia | 21 (7.0) |
Stone episodes | |
1 ≥2 | 156 (51.7) 146 (48.3) |
Stone location | |
Kidney Ureter Kidney and Ureter | 69 (22.8) 181 (59.9) 52 (17.2) |
Stone number Single Multiple | 194 (64.2) 108(35.8) |
Maximal stone diameter <1 cm | 184 (60.9) |
1–2 cm >2 cm | 55 (18.2) 63 (20.9) |
Mean ± SD (median, IQR) | |
Age (years) | 54.5 ± 12.9 (55.0, 46.8–63.0) |
BMI (kg/m2) | 26.3 ± 4.0 (25.9, 23.8–28.4) |
Urinary biomarkers | |
Melamine (ng/mL) | 12.47 ± 29.51 (4.86, 1.94–12.67) |
MDA (μmol/L) | 1.16 ± 0.86 (0.93, 0.52–1.60) |
8-OHdG (ng/mL) | 3.30 ± 2.46 (2.59, 1.55–4.46) |
NAG (IU/L) | 5.23 ± 5.62 (3.77, 1.90–6.33) |
Urine biomarkers corrected by urine creatinine | |
Melamine (μg/mmol Cr) | 3.27 ± 6.68 (1.26, 0.48–3.34) |
MDA (μmol/mmol Cr) | 0.31 ± 0.28 (0.24, 0.15–0.37) |
8-OHdG (mg/g Cr) | 7.82 ± 7.41 (5.78, 4.08–9.11) |
NAG (IU/mmol Cr) | 1.36 ± 1.52 (0.86, 0.55–1.60) |
Urinary biomarkers corrected by method of covariate-adjusted standardization plus covariate adjustment | |
Melamine (ng/mL) | 12.59 ± 26.10 (4.89, 1.94–12.76) |
MDA (μmol/L) | 1.18 ± 1.05 (0.91, 0.58–1.37) |
8-OHdG (ng/mL) | 3.37 ± 3.18 (2.57, 1.70–3.81) |
NAG (IU/L) | 5.12 ± 5.80 (3.14, 2.09–6.06) |
Alleles | N (%) | Genotypes | N (%) | |
---|---|---|---|---|
MnSOD-rs4880 | C | 80 (13.2) | CC | 8 (2.6) |
T | 524 (86.8) | TC | 64 (21.2) | |
TT | 230 (76.2) | |||
MnSOD-rs5746136 | A | 238 (39.4) | AA | 48 (15.9) |
G | 366 (60.6) | AG | 142 (47.0) | |
GG | 112 (37.1) | |||
GPX1-rs1800668 | T | 21 (3.5) | TT | 1 (0.3) |
C | 583 (96.5) | TC | 19 (6.3) | |
CC | 282 (93.4) | |||
CAT-rs1001179 | T | 17 (2.8) | TT | 1 (0.3) |
C | 587 (97.2) | TC | 15 (5.0) | |
CC | 286 (94.7) | |||
CAT-rs769217 | T | 289 (47.8) | TT | 65 (21.5) |
C | 315 (52.2) | TC | 159 (52.6) | |
CC | 78 (25.9) |
MDA, N (%) | |||||
---|---|---|---|---|---|
MnSOD-rs4880 | Low < 50% | High ≥ 50% | Crude OR (95% CI) | p Value | |
Alleles | C | 50 (16.6) | 30 (9.9) | Ref | |
T | 252 (83.4) | 272 (90.1) | 1.80 (1.11–2.92) | 0.017 | |
Genotypes | CC | 5 (3.3) | 3 (2.0) | Ref | |
CT | 40(26.5) | 24 (15.9) | 1.00 (0.22-4.56) | 1 | |
TT | 106 (70.2) | 124 (82.1) | 1.95 (0.46-8.35) | 0.368 | |
p for trend | 0.023 | ||||
MnSOD-rs5746136 | |||||
Alleles | A | 118 (39.1) | 120 (39.7) | Ref | |
G | 184 (60.9) | 182 (60.3) | 0.97 (0.73–1.35) | 0.868 | |
Genotypes | AA | 27 (17.9) | 21 (13.9) | 1 | |
AG | 64 (42.4) | 78 (51.7) | 1.57 (0.81–3.03) | 0.182 | |
GG | 60 (39.7) | 52 (34.4) | 1.11 (0.56–2.20) | 0.755 | |
p for trend | 0.869 | ||||
GPX1-rs1800668 | |||||
Alleles | T | 7 (2.3) | 14 (4.6) | Ref | |
C | 295 (97.7) | 288 (95.4) | 0.49 (0.19–1/23) | 0.127 | |
Genotypes | TT + TC | 7 (4.6) | 13 (8.6) | Ref | |
CC | 144 (95.4) | 138 (91.4) | 0.52 (0.20–1.33) | 0.171 | |
CAT-rs1001179 | |||||
Alleles | T | 7 (2.3) | 10 (3.3) | Ref | |
C | 295 (97.7) | 292 (96.7) | 0.69 (0.26–1.85) | 0.463 | |
Genotypes | TT + TC | 6 (4.0) | 10 (6.6) | Ref | |
CC | 145 (96.0) | 141 (93.4) | 0.58 (0.21–1.65) | 0.309 | |
CAT-rs769217 | |||||
Alleles | T | 146 (48.3) | 143 (47.4) | Ref | |
C | 156 (51.7) | 159 (52.6) | 1.04 (0.76–1.63) | 0.807 | |
Genotypes | TT | 35 (23.2) | 30 (19.9) | Ref | |
TC | 76 (50.3) | 83 (55.0) | 1.27 (0.71–2.27) | 0.412 | |
CC | 40 (26.5) | 38 (25.1) | 1.11 (0.57–2.14) | 0.76 | |
p for trend | 0.802 |
NAG, N (%) | |||||
---|---|---|---|---|---|
MnSOD-rs4880 | Low < 50% | High ≥ 50% | Crude OR (95% CI) | p Value | |
Alleles | C | 42 (13.9) | 38 (12.6) | Ref | |
T | 260 (86.1) | 264 (87.4) | 1.12 (0.70–1.80) | 0.631 | |
Genotypes | CC | 4 (2.6) | 4 (2.6) | Ref | |
CT | 34 (22.5) | 30 (19.9) | 0.88 (0.20–3.84) | 0.87 | |
TT | 113 (74.9) | 117 (77.5) | 1.04 (0.25–4.24) | 0.96 | |
p for trend | 0.898 | ||||
MnSOD-rs5746136 | |||||
Alleles | A | 130 (43.0) | 108 (35.8) | Ref | |
G | 172 (57.0) | 194 (64.2) | 1.36 (0.98–1.88) | 0.067 | |
Genotypes | AA | 30(19.8) | 18 (11.9) | Ref | |
AG | 70 (46.4) | 72 (47.7) | 1.71 (0.88–3.35) | 0.115 | |
GG | 51 (33.8) | 61 (40.4) | 1.99 (1.00–3.99) | 0.051 | |
p for trend | 0.07 | ||||
GPX1-rs1800668 | |||||
Alleles | T | 11 (3.6) | 10 (3.3) | Ref | |
C | 291 (96.4) | 292 (96.7) | 1.10 (0.46–2.64) | 0.824 | |
Genotypes | TT + TC | 11 (7.3) | 9 (6.0) | Ref | |
CC | 140 (92.7) | 142 (94.0) | 1.24 (0.50–3.08) | 0.64 | |
CAT-rs1001179 | |||||
Alleles | T | 9 (3.0) | 8 (2.6) | Ref | |
C | 293 (97.0) | 294 (97.4) | 1.13 (0.43–2.97) | 0.806 | |
Genotypes | TT + TC | 8 (5.3) | 8 (5.3) | Ref | |
CC | 143 (94.7) | 143 (94.7) | 1 (0.37–2.74) | 1 | |
CAT-rs769217 | |||||
Alleles | T | 137 (45.4) | 152 (50.3) | Ref | |
C | 165 (54.6) | 150 (49.7) | 0.82(0.60–1.13) | 0.222 | |
Genotypes | TT | 34 (22.5) | 31 (20.5) | Ref | |
TC | 69 (45.7) | 90 (59.6) | 1.43(0.80–2.55) | 0.225 | |
CC | 48 (31.8) | 30 (19.9) | 0.69(0.35–1.34) | 0.267 | |
p for trend | 0.21 |
MDA, N (%) | Model 1 | Model 2 | |||||||
rs4880 and Melamine | N | Low <50% | High ≥50% | Crude OR (95% CI) | p Value | Adjusted OR (95% CI) | p Value | Adjusted OR (95% CI) | p Value |
C allele + Melamine < 50% | 48 | 32 (10.6) | 16 (5.3) | 1 | 1 | 1 | |||
C allele + Melamine > 50% | 32 | 18 (6.0) | 14 (4.6) | 1.56 (0.62–3.91) | 0.347 | 1.70 (0.64–4.49) | 0.286 | 1.65 (0.62–4.38) | 0.317 |
T allele + Melamine < 50% | 254 | 156 (51.6) | 98 (32.5) | 1.26 (0.66–2.41) | 0.492 | 1.28 (0.64–2.56) | 0.484 | 1.28 (0.64–2.56) | 0.491 |
T allele + Melamine > 50% | 270 | 96 (31.8) | 174 (57.6) | 3.63 (1.89–6.94) | <0.001 | 3.64 (1.82–7.27) | <0.001 | 3.60 (1.79–7.22) | <0.001 |
p for trend | <0.001 | <0.001 | <0.001 | ||||||
MDA, N (%) | Model 1 | Model 2 | |||||||
rs4880 and Melamine | N | Low <66.6% | High ≥66.6% | Crude OR (95% CI) | p Value | Adjusted OR (95% CI) | p Value | Adjusted OR (95% CI) | p Value |
T allele + Melamine < 50% | 48 | 37 (9.2) | 11 (5.5) | 1 | 1 | 1 | |||
T allele + Melamine > 50% | 32 | 22 (5.4) | 10 (5.0) | 1.53 (0.56–4.18) | 0.408 | 1.64 (0.57–4.73) | 0.365 | 1.61 (0.55–4.68) | 0.384 |
C allele + Melamine < 50% | 254 | 185 (45.8) | 69 (34.5) | 1.26 (0.61–2.60) | 0.541 | 1.28 (0.59–2.74) | 0.534 | 1.28 (0.59–2.76) | 0.528 |
C allele + Melamine > 50% | 270 | 160 (39.6) | 110 (55.0) | 2.31 (1.13–4.73) | 0.022 | 2.19 (1.03–4.65) | 0.042 | 2.20 (1.03–4.70) | 0.042 |
p for trend | 0.002 | 0.009 | 0.01 |
NAG, N (%) | Model 1 | Model 2 | |||||||
rs5746136 and Melamine | N | Low < 50% | High ≥50% | Crude OR (95% CI) | p Value | Adjusted OR (95% CI) | p Value | Adjusted OR (95% CI) | p Value |
A allele + Melamine < 50% | 110 | 62 (20.5) | 48 (15.9) | 1 | 1 | 1 | |||
A allele + Melamine > 50% | 126 | 66 (21.9) | 60 (19.9) | 1.14 (0.68–1.90) | 0.617 | 1.07 (0.62–1.83) | 0.808 | 1.02 (0.59–1.77) | 0.931 |
G allele + Melamine < 50% | 192 | 100 (33.1) | 92 (30.4) | 1.21 (0.76–1.94) | 0.424 | 1.11 (0.68–1.82) | 0.68 | 1.11 (0.67–1.82) | 0.689 |
G allele + Melamine > 50% | 176 | 74 (24.5) | 102 (33.8) | 1.78 (1.10–2.88) | 0.019 | 1.78 (1.08–2.95) | 0.025 | 1.73 (1.04–2.89) | 0.036 |
p for trend | 0.019 | 0.024 | 0.029 | ||||||
NAG, N (%) | Model 1 | Model 2 | |||||||
rs5746136 and Melamine | N | Low < 66.6% | High ≥66.6% | Crude OR (95% CI) | p Value | Adjusted OR (95% CI) | p Value | Adjusted OR (95% CI) | p Value |
A allele + Melamine < 50% | 110 | 80 (19.9) | 30 (14.9) | 1 | 1 | 1 | |||
A allele + Melamine > 50% | 126 | 88 (21.9) | 38 (18.8) | 1.13 (0.64–1.98) | 0.681 | 1.05 (0.58–1.89) | 0.877 | 1.01 (0.55–1.82) | 0.991 |
G allele + Melamine < 50% | 192 | 132 (32.8) | 60 (29.7) | 1.23 (0.73–2.07) | 0.433 | 1.12 (0.66–1.92) | 0.67 | 1.12 (0.65–1.93) | 0.678 |
G allele + Melamine > 50% | 176 | 102 (25.4) | 74 (36.6) | 1.94 (1.16–3.24) | 0.012 | 1.86 (1.09–3.17) | 0.024 | 1.78 (1.03–3.07) | 0.038 |
p for trend | 0.008 | 0.016 | 0.023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-C.; Wu, C.-F.; Lee, Y.-C.; Huang, T.-Y.; Huang, S.-T.; Wang, H.-S.; Jhan, J.-H.; Huang, S.-P.; Li, C.-C.; Juan, Y.-S.; et al. Genetic Polymorphisms of MnSOD Modify the Impacts of Environmental Melamine on Oxidative Stress and Early Kidney Injury in Calcium Urolithiasis Patients. Antioxidants 2022, 11, 152. https://doi.org/10.3390/antiox11010152
Liu C-C, Wu C-F, Lee Y-C, Huang T-Y, Huang S-T, Wang H-S, Jhan J-H, Huang S-P, Li C-C, Juan Y-S, et al. Genetic Polymorphisms of MnSOD Modify the Impacts of Environmental Melamine on Oxidative Stress and Early Kidney Injury in Calcium Urolithiasis Patients. Antioxidants. 2022; 11(1):152. https://doi.org/10.3390/antiox11010152
Chicago/Turabian StyleLiu, Chia-Chu, Chia-Fang Wu, Yung-Chin Lee, Tsung-Yi Huang, Shih-Ting Huang, Hsun-Shuan Wang, Jhen-Hao Jhan, Shu-Pin Huang, Ching-Chia Li, Yung-Shun Juan, and et al. 2022. "Genetic Polymorphisms of MnSOD Modify the Impacts of Environmental Melamine on Oxidative Stress and Early Kidney Injury in Calcium Urolithiasis Patients" Antioxidants 11, no. 1: 152. https://doi.org/10.3390/antiox11010152
APA StyleLiu, C.-C., Wu, C.-F., Lee, Y.-C., Huang, T.-Y., Huang, S.-T., Wang, H.-S., Jhan, J.-H., Huang, S.-P., Li, C.-C., Juan, Y.-S., Hsieh, T.-J., Tsai, Y.-C., Chen, C.-C., & Wu, M.-T. (2022). Genetic Polymorphisms of MnSOD Modify the Impacts of Environmental Melamine on Oxidative Stress and Early Kidney Injury in Calcium Urolithiasis Patients. Antioxidants, 11(1), 152. https://doi.org/10.3390/antiox11010152