Phytochemical Composition and Biological Activities of Arctium minus (Hill) Bernh.: A Potential Candidate as Antioxidant, Enzyme Inhibitor, and Cytotoxic Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction Procedure
2.3. Chemical Analysis
2.3.1. Total Content of Phenolic Compounds
2.3.2. Total Content of Flavonoid Compounds
2.3.3. Analysis of Phenolic Acids and Flavonoids by HPLC
2.4. Antioxidant Activity
2.4.1. DPPH● Radical Scavenging Activity
2.4.2. ABTS●+ Radical Scavenging Activity
2.4.3. β-Carotene/Linoleic Acid Bleaching Inhibition Assay
2.5. Enzyme Inhibitory Activity
2.5.1. Lipoxygenase Inhibitory Activity
2.5.2. Tyrosinase Inhibitory Activity
2.5.3. α-Glucosidase Inhibitory Activity
2.5.4. α-Amylase Inhibitory Activity
2.6. Cytotoxic Activity
2.6.1. Cell Cultures
2.6.2. Determination of Cell Viability with MTT Cytotoxicity Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Analysis
3.2. Antioxidant Activity
3.3. Enzyme Inhibitory Activity
3.4. Cytotoxic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awan, A.A.; Akhtar, T.; Ahmed, M.J.; Murtaza, G. Quantitative ethnobotany of medicinal plants uses in the Jhelum valley, Azad Kashmir, Pakistan. Acta Ecol. Sin. 2021, 41, 88–96. [Google Scholar] [CrossRef]
- Rehman, N.U.; Shah, M.; Ullah, S.; Khan, M.; Khan, A.; Ullah, O.; Al-Harrasi, A. Enzymes Inhibition and Antioxidant Potential of Medicinal Plants Growing in Oman. Biomed. Res. Int. 2022, 2022, 7880387. [Google Scholar] [CrossRef] [PubMed]
- Lopaczynski, W.; Steven, H.Z. Antioxidants, programmed cell death, and cancer. Nutr Res. 2001, 21, 295–307. [Google Scholar] [CrossRef]
- Gautam, R.; Jachak, S.M. Recent developments in anti-inflammatory natural products. Med. Res. Rev. 2009, 29, 767–820. [Google Scholar] [CrossRef]
- Dvorakova, M.; Landa, P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol. Res. 2017, 124, 126–145. [Google Scholar] [CrossRef]
- Wisastra, R.; Dekker, F.J. Inflammation, cancer and oxidative lipoxygenase activity are intimately linked. Cancers 2014, 6, 1500–1521. [Google Scholar] [CrossRef]
- Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther. 2008, 88, 1254–1264. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Tzvetkov, N.T.; Durazzo, A.; Lucarini, M.; Souto, E.B.; Santini, A.; Horbańczuk, J.O. Natural products in diabetes research: Quantitative literature analysis. Nat. Prod. Res. 2021, 35, 5813–5827. [Google Scholar] [CrossRef]
- Piconi, L.; Quagliaro, L.; Ceriello, A. Oxidative stress in diabetes. Clin. Chem. Lab Med. 2003, 41, 1144–1149. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, M.M.; Sun, Y.; Wang, L.F.; Wang, H.; Zhang, Y.J.; Yang, Z. Synergistic promotion on tyrosinase inhibition by antioxidants. Molecules 2018, 23, 106. [Google Scholar] [CrossRef] [Green Version]
- Sepehri, N.; Iraji, A.; Yavari, A.; Asgari, M.S.; Zamani, S.; Hosseini, S.; Khoshneviszadeh, M. The natural-based optimization of kojic acid conjugated to different thio-quinazolinones as potential anti-melanogenesis agents with tyrosinase inhibitory activity. Bioorg. Med. Chem. 2021, 36, 116044. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 26. [Google Scholar] [CrossRef]
- ThePlantList. Available online: http://www.theplantlist.org/Arctium (accessed on 21 May 2022).
- Yu, J.; Ye, M.; Li, K.; Wang, F.; Shi, X.; Pan, C.; Liu, W. Fragments of a pectin from Arctium lappa L: Molecular properties and intestinal regulation activity. J. Funct. Foods. 2022, 88, 104900. [Google Scholar] [CrossRef]
- Mink, J.N.; Holmes, W.C.; Singhurst, J.R.; Treuer-Kuehn, A. Arctium minus (asteraceae) historical review, ecological consequences, and addition to Texas flora. J. Bot. Res. Inst. Tex. 2018, 12, 713–720. [Google Scholar] [CrossRef]
- Wang, D.; Bădărau, A.S.; Swamy, M.K.; Shaw, S.; Maggi, F.; Da Silva, L.E.; Atanasov, A.G. Arctium species secondary metabolites chemodiversity and bioactivities. Front. Plant Sci. 2019, 10, 834. [Google Scholar] [CrossRef]
- De Souza, G.C.; Haas, A.P.S.; Von Poser, G.L.; Schapoval, E.E.S.; Elisabetsky, E. Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. J. Ethnopharmacol. 2004, 90, 135–143. [Google Scholar] [CrossRef]
- Erdemoglu, N.; Turan, N.N.; Akkol, E.K.; Sener, B.; Abacıoglu, N. Estimation of anti-inflammatory, antinociceptive and antioxidant activities on Arctium minus (Hill) Bernh. ssp. minus. J. Ethnopharmacol. 2009, 121, 318–323. [Google Scholar] [CrossRef]
- Neves, J.M.; Matos, C.; Moutinho, C.; Queiroz, G.; Gomes, L.R. Ethnopharmacological notes about ancient uses of medicinal plants in Tras-os-Montes (northern of Portugal). J. Ethnopharmacol. 2009, 124, 270–283. [Google Scholar] [CrossRef]
- Sezik, E.; Yesilada, E.; Honda, G.; Takaishi, Y.; Takeda, Y.; Tanaka, T. Traditional medicine in Turkey X. folk medicine in central anatolia. J. Ethnopharmacol. 2001, 75, 95–115. [Google Scholar] [CrossRef]
- Mosaddegh, M.; Naghibi, F.; Moazzeni, H.; Pirani, A.; Esmaeili, S. Ethnobotanical survey of herbal remedies traditionally used in Kohghiluyeh va Boyer Ahmad province of Iran. J. Ethnopharmacol. 2012, 141, 80–95. [Google Scholar] [CrossRef]
- Tardio, J.; Pascual, H. Morales RWild food plants traditionally used in the province of Madrid, central Spain. Econ. Bot. 2005, 59, 122–136. [Google Scholar] [CrossRef]
- Stefanov, S.M.; Fetzer, D.E.; de Souza, A.R.C.; Corazza, M.L.; Hamerski, F.; Yankov, D.S.; Stateva, R.P. Valorization by compressed fluids of Arctium lappa seeds and roots as a sustainable source of valuable compounds. J. CO2 Util. 2022, 56, 101821. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar]
- ICH Expert Working Group. ICH Guideline Q2(R1) Validation of analytical procedures: Text and methodology. BMJ (Clinical research ed.) 2005.333(7574). In Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, San Diego, CA, USA, 2 June 2014. [Google Scholar]
- Çiçek, P.D.; Coskun, M. Quantitative determination by HPLC-DAD of icariin, epimedin A, epimedin B, and epimedin C in Epimedium (Berberidaceae) species growing in Turkey. NatProd Commun. 2016, 11, 1665–1666. [Google Scholar]
- Gyamfi, M.A.; Yonamine, M.; Aniya, Y. Free-radical scavenging action of medicinal herbs from Ghana, Thonningia sanguinea on experimentally ınduced liver ınjuries. Gen Pharmacol. 1999, 32, 661–667. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pizzale, L.; Bortolomeazzi, R.; Vichi, S.; Überegger, E.; Conte, L.S. Antioxidant activity of Sage (Salvia officinalis and S. fruticosa) and Oregano (Origanum onites and O. indercedens) extracts related to their phenolic compound content. J. Agr. Food Chem. 2002, 82, 645–1651. [Google Scholar]
- Chang, T.S.; Ding, H.Y.; Tai, S.S.K.; Wu, C.Y. Mushroom tyrosinase inhibitory effects of isoflavones isolated from soygerm koji fermented with Aspergillus oryzae BCRC 32288. Food Chem. 2007, 105, 1430–1438. [Google Scholar] [CrossRef]
- Liu, S.; Li, D.; Huang, B.; Chen, Y.; Lu, X.; Wang, Y. Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J. Ethnopharmacol. 2003, 149, 263–269. [Google Scholar] [CrossRef]
- Karatoprak, G.Ş.; Yücel, Ç.; Göger, F.; Sobarzo-Sánchez, E.; Küpeli, A.E. Potential Antioxidant and Enzyme Inhibitory Effects of Nanoliposomal Formulation Prepared from Salvia aramiensis Rech. f. Extract. Antioxidants 2020, 9, 293. [Google Scholar] [CrossRef]
- Yazdanian, M.; Rostamzadeh, P.; Alam, M.; Abbasi, K.; Tahmasebi, E.; Tebyaniyan, H.; Kahnamoei, M.B. Evaluation of antimicrobial and cytotoxic effects of Echinacea and Arctium extracts and Zataria essential oil. AMB Express 2022, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Jingvi, L.; Yi-Zhong, C.; Ricky, N.S.W. Comparative Analysis of Caffeoylquinic Acids and Lignans in Roots and Seeds among Various Burdock (Arctium lappa) Genotypes with High Antioxidant Activity. J. Agric. Food Chem. 2012, 60, 4067–4075. [Google Scholar]
- Chan, Y.S.; Cheng, L.N.; Wu, J.H. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 2011, 19, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Robbins, L.R. Natural Variability in Phenolic and Sesquiterpene Constituents among Burdock (Arctium lappa L. and Arctium minus L.) Leaves for Potential Medicinal Interests. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2013. [Google Scholar]
- Ömer, I.; Yildiz, I.; Genc, N. A new potentiometric PVC membrane sensor for the determination of DPPH radical scavenging activity of plant extracts. Food Chem. 2022, 373, 131420. [Google Scholar]
- Cui, J.; Zong, W.; Zhao, N.; Yuan, R. Burdock (Arctium lappa L.) leaf flavonoids rich in morin and quercetin 3-O-rhamnoside ameliorate lipopolysaccharide-induced inflammation and oxidative stress in RAW264. 7 cells. Food Sci. Nutr. 2022, 10, 2718–2726. [Google Scholar] [CrossRef]
- Petkova, N.; Hambarlyiska, I.; Tumbarski, Y.; Vrancheva, R.; Raeva, M.; Ivanov, I. Phytochemical composition and antimicrobial properties of burdock (Arctium lappa L.) roots extracts. Biointerface Res. Appl. Chem. 2022, 12, 2826–2842. [Google Scholar]
- Takatsuka, M.; Goto, S.; Kobayashi, K.; Otsuka, Y.; Shimada, Y. Evaluation of pure antioxidative capacity of antioxidants: ESR spectroscopy of stable radicals by DPPH and ABTS assays with singular value decomposition. Food Biosci. 2022, 48, 101714. [Google Scholar] [CrossRef]
- Yu-Ri, K.; Youn, K.w. Physicochemical of burdock (Arctium lappa L) tea depending on steaming and roasting treatment. Korean J. Food Preserv. 2014, 21, 646–651. [Google Scholar]
- Ferracane, R.; Graziani, G.; Gallo, M.; Fogliano, V.; Ritieni, A. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J. Pharm. Biomed. Anal. 2010, 51, 399–404. [Google Scholar] [CrossRef]
- Şeker Karatoprak, G.; İlgün, S.; Koşar, M. Phenolic Composition, Anti-Inflammatory, Antioxidant, and Antimicrobial Activities of Alchemilla mollis (Buser) Rothm. Chem. Biodivers. 2017, 14, e1700150. [Google Scholar] [CrossRef]
- Mraihi, F.; Journi, M.; Chérif, J.K.; Sokmen, M.; Sokmen, A.; Trabelsi-Ayadi, M. Phenolic contents and antioxidant potential of Crataegus fruits grown in Tunisia as determined by DPPH, FRAP, and β-carotene/linoleic acid assay. J. Chem. 2013, 2013, 378264. [Google Scholar] [CrossRef]
- Shoaib, M.; Shah, A.; Wadood, S.; Ali, N.; Shah, I.; Naveed Umar, M.; Akhtar, S. In vitro enzyme inhibition potentials and antioxidant activity of synthetic flavone derivatives. J. Chem. 2015, 2015, 516878. [Google Scholar] [CrossRef]
- Butovich, I.A.; Lukyanova, S.M. Inhibition of lipoxygenases and cyclooxygenases by linoleyl hydroxamic acid: Comparative in vitro studies. J. Lipid Res. 2008, 49, 1284–1294. [Google Scholar] [CrossRef]
- Saçan, O.; Turhan, E.Y. Lipoxygenase inhibitory activities of some plant extracts and chemical compounds. Eur. J. Biol. 2014, 73, 47–52. [Google Scholar]
- Rijken, F.; Kiekens, R.C.M.; Bruijnzeel, P.L.B. Skin-infiltrating neutrophils following exposure to solar-simulated radiation could play an important role in photoageing of human skin. Br J Dermatol. 2005, 152, 321–328. [Google Scholar] [CrossRef]
- Khan, K.M.; Maharvi, G.M.; Khan, M.T.H.; Shaikh, A.J.; Perveen, S.; Begum, S.; Choudhary, M.I. Tetraketones: A new class of tyrosinase inhibitors. Bioorg Med Chem. 2006, 14, 344–351. [Google Scholar] [CrossRef]
- Xu, Y.; Stokes, A.H.; Roskoski Jr, R.; Vrana, K.E. Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J. Neurosci. Res. 1998, 54, 691–697. [Google Scholar] [CrossRef]
- Asanuma, M.; Miyazaki, I.; Ogawa, N. Dopamine-or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox. Res. 2003, 5, 165–176. [Google Scholar] [CrossRef]
- Skowrońska, W.; Granica, S.; Dziedzic, M.; Kurkowiak, J.; Ziaja, M.; Bazylko, A. Arctium lappa and Arctium tomentosum, Sources of Arctii radix: Comparison of Anti-Lipoxygenase and Antioxidant Activity as well as the Chemical Composition of Extracts from Aerial Parts and from Roots. Plants 2021, 10, 78. [Google Scholar] [CrossRef]
- Im, D.Y.; Lee, K.I. Antioxidative activity and tyrosinase inhibitory activity of the extract and fractions from Arctium lappa roots and analysis of phenolic compounds. Korean J. Pharmacogn. 2014, 45, 141–146. [Google Scholar]
- Bakr, S.A. Screening of antidiabetic and antioxidant activities of medicinal plants. J. Integr. Med. 2015, 13, 297–305. [Google Scholar]
- Nickavar, B.; Yousefian, N. Evaluation of α-amylase inhibitory activities of selected antidiabetic medicinal plants. J. Für Verbrauch. Und Lebensm. 2011, 6, 191–195. [Google Scholar] [CrossRef]
- Miyazawa, M.; Yagi, N.; Taguchi, K. Inhibitory compounds of α-glucosidase activity from Arctium lappa L. J. Oleo Sci. 2005, 54, 589–594. [Google Scholar] [CrossRef]
- Dirir, A.M.; Daou, M.; Yousef, A.F.; Yousef, L.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev. 2022, 21, 1049–1079. [Google Scholar] [CrossRef]
- Mondal, S.C.; Eun, J.B. Mechanistic insights on burdock (Arctium lappa L.) extract effects on diabetes mellitus. Food Sci. Biotechnol. 2022, 31, 999–1008. [Google Scholar] [CrossRef]
- Cui, J.; Zeng, S.; Zhang, C. Anti-hyperglycaemic effects of Burdock (Arctium lappa L.) leaf flavonoids through inhibiting α-amylase and α-glucosidase. Int. J. Food Sci. 2022, 57, 541–551. [Google Scholar]
- Shinde, A.; Jung, H.; Lee, H.; Singh, K.; Roy, M.; Gohel, D.; Singh, R. TNF-α differentially modulates subunit levels of respiratory electron transport complexes of ER/PR+ ve/− ve breast cancer cells to regulate mitochondrial complex activity and tumorigenic potential. Cancer Metab. 2021, 9, 19. [Google Scholar] [CrossRef]
- Ghafari, F.F.; Rajabi, M.R.; Mazoochi, T.; Taghizadeh, M.; Nikzad, H.; Atlasi, M.A.; Taherian, A. Comparing apoptosis and necrosis effects of Arctium lappa root extract and doxorubicin on MCF7 and MDA-MB-231 cell lines. Asian Pac. J. Cancer Prev. 2017, 18, 795. [Google Scholar]
- Nazmi, S.A.; Nourazarian, A.; Bahhaj, R.; Khakikhatibi, F. The anticancer effect of Arctium lappa and Glycyrrhiza glabra on HT-29 colon cancer and MCF-7 breast cancer cell lines. Cancer 2018, 6, 7. [Google Scholar]
- Predes, F.S.; Ruiz, A.L.; Carvalho, J.E.; Foglio, M.A.; Dolder, H. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. BMC Complement Altern. Med. 2011, 11, 25. [Google Scholar] [CrossRef]
- He, Y.; Fan, Q.; Cai, T.; Huang, W.; Xie, X.; Wen, Y.; Shi, Z. Molecular mechanisms of the action of Arctigenin in cancer. Biomed. Pharmacother. 2018, 108, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Tabrea, I.; Pirvu, L.; Băbeanu, N.; Cornea, C.P.; Radu, N. Arctium lappa—A Potential Source of Bioactive Compounds with Pharmaceutical Applications. Sci. Bull. Ser. F. Biotechnol. 2022, 25, 158–169. [Google Scholar]
- Schuster, C.; Wolpert, N.; Moustaid-Moussa, N.; Gollahon, L.S. Combinatorial Effects of the Natural Products Arctigenin, Chlorogenic Acid, and Cinnamaldehyde Commit Oxidation Assassination on Breast Cancer Cells. Antioxidants 2022, 11, 591. [Google Scholar] [CrossRef] [PubMed]
Extracts | Total Phenol [mgGAE/gextact] | Total Flavonoid [mgCA/gextract] | Chlorogenic Acid (% ± SD *) | Caffeic Acid (% ± SD *) | Coumaric Acid (% ± SD *) | Ferulic Acid (% ± SD *) | Rutin (% ± SD *) |
---|---|---|---|---|---|---|---|
Arc L MeOH | 165.68 ± 11.22 | 44.41 ± 2.23 | 2.904 ± 0.127 | ND * | ND * | ND * | 0.241 ± 0.023 |
Arc L CH2Cl2 | 131.74 ± 4.65 | 44.32 ± 0.64 | 2.512 ± 0.005 | 0.035 ± 0.0002 | ND * | 0.002 ± 0.001 | 2.621 ± 0.076 |
Arc L EtOAc | 318.09 ± 3.25 | 128.99 ± 14.00 | 8.855 ± 0.175 | 0.095 ± 0.004 | 0.016 ± 0.004 | 0.011 ± 0.005 | 8.359 ± 0.125 |
Arc L BuOH | 208.26 ± 7.34 | 65.53 ± 8.89 | 8.608 ± 0.292 | ND * | ND * | ND * | 3.607 ± 0.059 |
Arc L Aqua | 120.01 ± 2.82 | 33.76 ± 1.29 | 1.500 ± 0.007 | ND * | ND * | ND * | ND * |
Arc F MeOH | 156.73 ± 7.42 | 43.55 ± 3.94 | 1.049 ± 0.081 | 0.029 ± 0.0005 | ND * | 0.017 ± 0.010 | ND * |
Arc F CH2Cl2 | 164.75 ± 2.44 | 47.58 ± 0.64 | 0.256 ± 0.003 | 0.052 ± 0.0002 | ND * | 0.014 ± 0.004 | ND * |
Arc F EtOAc | 240.03 ± 5.95 | 115.85 ± 16.04 | 1.858 ± 0.083 | 0.181 ± 0.007 | 0.013 ± 0.013 | 0.206 ± 0.189 | ND * |
Arc F BuOH | 194.99 ± 3.74 | 63.65 ± 7.59 | 5.001 ± 0.260 | 0.027 ± 0.001 | ND * | 0.011 ± 0.005 | ND |
Arc F Aqua | 99.65 ± 2.82 | 24.92 ± 1.57 | 0.299 ± 0.005 | ND * | ND * | ND * | ND * |
Arc R MeOH | 130.50 ± 11.26 | 30.50 ± 1.43 | 0.275 ± 0.089 | 0.023 ± 0.0001 | ND * | ND * | ND * |
Arc R CH2Cl2 | 142.54 ± 2.44 | 52.31 ± 8.63 | 0.132 ± 0.002 | 0.016 ± 0.0006 | ND * | 0.016 ± 0.002 | ND * |
Arc R EtOAc | 364.37 ± 7.18 | 158.56 ± 12.87 | 0.519±0.021 | 0.102±0.005 | ND * | 1.001±0.113 | ND * |
Arc R BuOH | 173.75± 5.95 | 50.51±5.41 | 0.506±0.015 | 0.030±0.0004 | ND * | ND * | ND * |
Arc R Aqua | 89.47±2.13 | 23.88±0.14 | 0.162±0.003 | 0.021±0.0002 | ND * | ND * | ND * |
Standards | Calibration Range (μg/mL) | Linear Equation | Correlation Factor (r2 ± SD *) | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|---|
Caffeic acid | 5–200 | y = 145.14x − 85.413 | 0.997 ± 0.003 | 0.027 | 0.091 |
Chlorogenic acid | 5–200 | y = 16.82x − 48.155 | 0.993 ± 0.004 | 0.121 | 0.403 |
Coumaric acid | 5–200 | y = 109.33x + 178.3 | 0.999 ± 0.0001 | 0.135 | 0.450 |
Ferulic acid | 5–200 | y = 87.646x + 38.14 | 0.999 ± 0.0001 | 0.068 | 0.227 |
Rutin | 5–200 | y = 9.7686x + 157.04 | 0.991 ± 0.001 | 0.076 | 0.255 |
Standards | Amount (μg/mL) | Intra-Day Precision (RSD *%) | Inter-Day Precision (RSD *%) |
---|---|---|---|
Caffeic acid | 5 50 200 | 2.017 1.798 0.514 | 2.204 1.816 0.515 |
Chlorogenic acid | 5 50 200 | 2.755 0.245 0.910 | 1.135 0.209 0.871 |
Coumaric acid | 5 50 200 | 0.443 0.861 1.048 | 0.497 0.870 1.051 |
Ferulic acid | 5 50 200 | 0.908 0.974 1.042 | 0.971 0.980 1.044 |
Rutin | 5 50 200 | 0.730 3.422 0.428 | 0.676 3.398 0.427 |
Standards | Concentration in Sample (mg/mL) | Amount Spiked (mg/mL) | Mean Amount Found in Mixture (mg/mL) | Mean Recovery (% ± SD *) |
---|---|---|---|---|
Caffeic acid | 0.003 | 0.0015 0.003 0.006 | 0.0025 0.003 0.0045 | 101.357 ± 1.498 100.613 ± 0.787 100.351 ± 0.321 |
Chlorogenic acid | 0.3 | 0.15 0.3 0.6 | 0.225 0.3 0.45 | 96.307 ± 3.589 101.337 ± 1.990 100.658 ± 1.704 |
Coumaric acid | 0.0008 | 0.0004 0.0008 0.0016 | 0.0006 0.0008 0.0012 | 99.127 ± 2.538 102.453 ± 2.826 104.788 ± 2.317 |
Ferulic acid | 0.0005 | 0.00025 0.0005 0.001 | 0.000375 0.0005 0.00075 | 103.252 ± 3.524 99.314 ± 2.409 101.117 ± 1.512 |
Rutin | 0.3 | 0.15 0.3 0.6 | 0.225 0.3 0.45 | 98.659 ± 3.617 101.840 ± 2.378 100.243 ± 0.225 |
Extracts | DPPH | ABTS | β-Carotene |
---|---|---|---|
EC50 (mg/mL) | TEAC (mmol/L Trolox) | AAC | |
Arc L MeOH | 0.060 ± 0.004 a,b | 1.546 ± 0.16 c,d,e (0.5 mg/mL) 0.923 ± 0.09 1,2 (0.25 mg/mL) | 1422,47 ± 76.85 d (30. min) 911.53 ± 50.63 4 (60. min) 667.11 ± 69.89 v (90. min) |
Arc L CH2Cl2 | 1.196 ± 0.004 c | 1.08 ± 0.07 a,b (0.5 mg/mL) 0.852 ± 0.03 1,2 (0.25 mg/mL) | 1161.86 ± 38.64 a,b,c (30. min) 571.55 ± 36.02 1,2 (60. min) 314.58 ± 49.65 ı (90 min) |
Arc L EtOAc | 0.019 ± 0.001 a | 2.041 ± 0,12 g (0.5 mg/mL) 1.425 ± 0.05 3 (0.25 mg/mL) | 1193.86 ± 91.66 a,b,c,d (30. min) 666.53 ± 67.40 1,2,3 (60. min) 538.95 ± 84.11 ıı,ııı,ıv (90. min) |
Arc L BuOH | 0.048 ± 0.001 a,b | 1.54 ± 0.1 c,d,e (0.5 mg/mL) 1.099 ± 0.08 1,2,3 (0.25 mg/mL) | 1204.12 ± 49.73 a,b,c,d (30. dk) 635.32 ± 54.49 1,2,3 (60. min) 487.95 ± 42.69 ı,ıı,ııı (90. min) |
Arc L Aqua | 0.383 ± 0.014 d | 1.526 ± 0.14 c,d,e (0.5 mg/mL) 1.131 ± 0.08 1,2,3 (0.25 mg/mL) | 1232.36 ± 101.37 a,b,c,d (30. min) 795.13 ± 46.93 3,4 (60. min) 581.38 ± 86.34 ııı,ıv,v (90. min) |
Arc F MeOH | 0.088 ± 0.004 b | 1.718 ± 0.1 e,f (0.5 mg/mL) 1.513 ± 0.06 3 (0.25 mg/mL) | 1350.89 ± 73.55 b,c,d (30. min) 807.67 ± 58.41 4 (60. min) 627.37 ± 76.94 v (90. min) |
Arc F CH2Cl2 | 1.019 ± 0.014 e | 1.641 ± 0.09 d,e,f (0.5 mg/mL) 1.469 ± 0.08 3 (0.25 mg/mL) | 1324.03 ± 88.61 b,c,d (30. min) 849.81 ± 68.04 2,3,4 (60. min) 681.21 ± 35.80 ıı,ııı,ıv (90 min) |
Arc F EtOAc | 0.005 ± 0.001 a | 2.575 ± 0.1 h (0.5 mg/mL) 2.512 ± 0.1 4 (0.25 mg/mL) | 1397.47 ± 88.61 c,d (30. min) 849.81 ± 68.04 4 (60. min) 681.21 ± 35.80 v (90. min) |
Arc F BuOH | 0.043 ± 0.003 a,b | 1.373 ± 0.05 b,c,d (0.5 mg/mL) 0.857 ± 0.02 1,2 (0.25 mg/mL) | 1223.33 ± 105.85 a,b,c,d (30. min) 648.42 ± 69.39 1,2,3 (60. min) 441.45 ± 29.94 ı,ıı (90. min) |
Arc F Aqua | 0.383 ± 0.014 d | 1.040 ± 0.06 a (0.5 mg/mL) 0.77 ± 0.02 1 (0.25 mg/mL) | 1158.45 ± 84.29 a,b,c,d (30. min) 596.40 ± 66.81 1,2 (60. min) 378.75 ± 31.43 ı (90. min) |
Arc R MeOH | 0.454 ± 0.018 f | 1.327 ± 0.08 a,b (0.5 mg/mL) 0.950 ± 0.031,2 (0.25 mg/mL) | 1076.80 ± 111.41 a,b (30. min) 562.84 ± 71.79 1 (60. min) 357.83 ± 29.98 ı (90. min) |
Arc R CH2Cl2 | 0.630 ± 0.056 g | 1.349 ± 0.07 a,b,c (0.5 mg/mL) 1.181 ± 0.06 1,2,3 (0.25 mg/mL) | 1177.45 ± 131.27 a,b,c,d (30. min) 638.01 ± 57.17 1,2,3 (60. min) 430.19 ± 84.33 ı,ıı (90. min) |
Arc R EtOAc | 0.042 ± 0.00 a,b | 2.51 ± 0.09 h (0.5 mg/mL) 2.289 ± 0.014 (0.25 mg/mL) | 1350.77 ± 138.64 b,c,d (30. min) 853.87 ± 87.73 4 (60. min) 657.57 ± 102.74 ıv,v (90. min) |
Arc R BuOH | 1.126 ± 0.019 h | 1.737 ± 0.06 f g (0.5 mg/mL) 1.249 ± 0.04 2,3(0.25 mg/mL) | 1112.40 ± 133.77 a,b,c (30. min) 592.89 ± 82.68 1,2 (60. min) 468.84 ± 69.53 ı,ıı (90. min) |
Arc R Aqua | 0.711 ± 0.049 ı | 1.199 ± 0.08 a (0.5 mg/mL) 0.845 ± 0.02 1,2 (0.25 mg/mL) | 986.98 ± 189.82 a,d (30. min) 590.26 ± 44.39 1,2 (60. min) 380.08 ± 22.10 ı (90. min) |
BHA | 0.007 ± 0.001 a | 2.34 ± 0.17 h (0.5 mg/mL) 1.23 ± 0.06 2,3 (0.25 mg/mL) | 1353.47 ± 45.57 b,c,d (30. min) 1201.41 ± 35.54 5 (60. min) 1085.59 ± 65.75 vı (90. min) |
BHT | 0.008 ± 0.001 a | 1.89 ± 0.08 f,g (0.5 mg/mL) 1.23 ± 0.06 2,3 (0.25 mg/mL) | 1479.26 ± 130.89 d (30. min) 1213.43 ± 55.55 5 (60. min) 1148.99 ± 42.38 vı (90. min) |
Test Material | α-Glucosidase | α-Amylase | Lipoxygenase | Tyrosinase | IC50 (µg/mL) ± SE. * | ||
---|---|---|---|---|---|---|---|
Inhibition % ± SE * | |||||||
1 mg/mL | 1 mg/mL | 100 µg/mL | 500 µg/mL | 100 µg/mL | 500 µg/mL | ||
Arc L MeOH | 3.32 ± 9.80 b | 12.65 ± 6.40 a | - | - | 19.61 ± 0.45 e | 99.53 ± 0.2 a | 401.67 ± 1.69 |
Arc L CH2Cl2 | 87.12 ± 8.06 a | 28.84 ± 5.57 b | - | - | 27.99 ± 0.39 c | 28.05 ± 0.3 g | |
Arc L EtOAc | - | - | - | - | 57.78 ± 0.51 a | 99.65 ± 0.3 a | 93.00 ± 1.54 |
Arc L BuOH | 24.49 ± 15.92 c | 30.50 ± 8.35 b | - | 2.92 ± 0.27 c | 19.46 ± 1.05 e | 50.76 ± 0.7 d | |
Arc L Aqua | 15.51 ± 6.96 c | 5.74 ± 5.95 a | - | 6.67 ± 0.27 a | 6.35 ± 0.59 h | 7.12 ± 0.02 i | |
Arc F MeOH | - | - | - | 13.32 ± 0.51 f,g | 20.10 ± 0.8 h | ||
Arc F CH2Cl2 | 21.68 ± 3.12 c | - | - | - | - | 29.33 ± 0.9 g | |
Arc F EtOAc | 40.69 ± 6.90 d | - | - | - | - | - | |
Arc F BuOH | 6.40 ± 4.45 b | - | - | - | 23.50 ± 1.04 d | 86.68 ± 0.0 c | 176.67 ± 0.47 |
Arc F Aqua | 13.32 ± 2.22 c | - | - | 3.59 ± 0.44 b,c | - | - | |
Arc R MeOH | - | - | 14.89 ± 0.12 f | 34.18 ± 0.5 f | |||
Arc R CH2Cl2 | 68.01 ± 7.02 a | - | - | - | 28.38 ± 1.13 c | 52.39 ± 0.5 d | |
Arc R EtOAc | 36.11 ± 10.68 d | - | - | - | 43.26 ± 0.79 b | 99.40 ± 0.3 a | 218.75 ± 0.83 |
Arc R BuOH | - | - | - | 4.77 ± 0.44 b | 10.90 ± 0.64 g | 34.08 ± 0.6 f | |
Arc R Aqua | 30.40 ± 8.50 d | - | - | - | - | - | - |
Acarbose | 79.91 ± 3.11 a (1 mg/mL) | 78.4 ± 3.67 c (0.1 mg/mL) | |||||
NDGA (20 µg/mL) | 99.19 ± 0.58 | ||||||
Kojic acid (500 µg/mL) | 95.98 ± 0.3 b | 30.00 ± 0.05 |
IC50 (µg/mL) | ||
---|---|---|
Extracts | MCF-7 | MDA-MB-217 |
Arc L MeOH | >500 | 43.87 ± 3.40 d |
Arc L CH2 Cl2 | 64.90 ± 6.83 e | 21.39 ± 2.43 b |
Arc L EtOAc | >125 | 30.05 ± 4.44 b,c |
Arc L BuOH | >500 | >125 |
Arc L Aqua | >1000 | >125 |
Arc F MeOH | >250 | 71.68 ± 3.11 f |
Arc F CH2Cl2 | 39.65 ± 3.21 c | 10.80 ± 1.26 a |
Arc F EtOAc | >125 | >125 |
Arc F BuOH | 41.67 ± 3.76 c,d | 27.75 ± 8.95 b |
Arc F Aqua | >125 | >125 |
Arc R MeOH | >1000 | >250 |
Arc R CH2Cl2 | 46.72 ± 0.98 d | 13.41 ± 2.37 a |
Arc R EtOAc | >250 | 75.69 ± 2.43 f |
Arc R BuOH | >1000 | >250 |
Arc R Aqua | >1000 | >1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
İlgün, S.; Karatoprak, G.Ş.; Polat, D.Ç.; Şafak, E.K.; Yıldız, G.; Küpeli Akkol, E.; Sobarzo-Sánchez, E. Phytochemical Composition and Biological Activities of Arctium minus (Hill) Bernh.: A Potential Candidate as Antioxidant, Enzyme Inhibitor, and Cytotoxic Agent. Antioxidants 2022, 11, 1852. https://doi.org/10.3390/antiox11101852
İlgün S, Karatoprak GŞ, Polat DÇ, Şafak EK, Yıldız G, Küpeli Akkol E, Sobarzo-Sánchez E. Phytochemical Composition and Biological Activities of Arctium minus (Hill) Bernh.: A Potential Candidate as Antioxidant, Enzyme Inhibitor, and Cytotoxic Agent. Antioxidants. 2022; 11(10):1852. https://doi.org/10.3390/antiox11101852
Chicago/Turabian Styleİlgün, Selen, Gökçe Şeker Karatoprak, Derya Çiçek Polat, Esra Köngül Şafak, Gülsüm Yıldız, Esra Küpeli Akkol, and Eduardo Sobarzo-Sánchez. 2022. "Phytochemical Composition and Biological Activities of Arctium minus (Hill) Bernh.: A Potential Candidate as Antioxidant, Enzyme Inhibitor, and Cytotoxic Agent" Antioxidants 11, no. 10: 1852. https://doi.org/10.3390/antiox11101852
APA Styleİlgün, S., Karatoprak, G. Ş., Polat, D. Ç., Şafak, E. K., Yıldız, G., Küpeli Akkol, E., & Sobarzo-Sánchez, E. (2022). Phytochemical Composition and Biological Activities of Arctium minus (Hill) Bernh.: A Potential Candidate as Antioxidant, Enzyme Inhibitor, and Cytotoxic Agent. Antioxidants, 11(10), 1852. https://doi.org/10.3390/antiox11101852