Advances on the Antioxidant Peptides from Nuts: A Narrow Review
Abstract
:1. Introduction
2. Composition, Structure, and Function Properties of Nut Protein
3. Production of Nut-Derived Antioxidant Peptides
4. Approaches for Measuring Antioxidant Capacity
4.1. Chemical Assays
4.2. In Vitro Models
4.3. In Vivo Models
5. Purification and Identification of Antioxidant Peptides
6. Structure-Activity Relationship of Antioxidant Peptides
6.1. Molecular Weight
6.2. Constitution and Sequence of Amino Acid
6.3. Structure of Antioxidant Peptide
7. Bioavailability of Nut-Derived Antioxidant Peptides
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
•OH | hydroxyl radical |
•ONOO | peroxynitrite |
8-OHdG | 8-hydroxy-2-deoxyguanosine |
ABTS | 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) |
Ang II | angiotensin II |
ATP | adenosinetriphosphate |
AQP | aquaporin |
BHA | butylated hydroxy-anisole |
BHT | butylated hydroxyl-toluene |
CAA | cellular antioxidant activity |
CAT | catalase |
CD | circular dichroism |
CoQ10 | coenzymeQ 10 |
D-gal | D-galactose |
DH | degree of hydrolysis |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
DNA | deoxyribonucleic acid |
ESI | electron spray ionization |
FAO | food and agriculture organization |
FRAP | ferric reducing antioxidant power |
GI | gastrointestinal |
GO | gene ontology |
GSH | glutathione |
GSH-Px | glutathione peroxidase |
H2O2 | hydrogen peroxide |
HO-1 | heme oxygenase 1 |
HOO• | peroxyl |
HT-22 | Mus musculus hippocampal neuronal cells |
HUVECs | human umbilical vein endothelial cells |
LC-MS/MS | liquid chromatography tandem mass spectrometry |
LPO | lipid peroxidation |
LPS | lipopolysaccharide |
MALDI-TOF | matrix-assisted laser desorption/ionization time of fight |
MCA | metal chelating activity |
MCF-7 | michigan cancer foundation-7 cells |
MDA | malondialdehyde |
MW | molecular weight |
NO• | nitric oxide |
NOS | nitric oxide synthase |
O2−• | superoxide anion radical |
ORAC, | oxygen radical absorbance capacity |
PC12 | rat pheochromocytoma cells |
PEF | pulsed electric field |
QE | quercetin equivalent |
REDOX | oxidation-reduction |
RNS | reactive nitrogen species |
ROS | reactive oxygen species |
RP-HPLC | reversed-phase high performance liquid chromatography |
SAR | structure-activity relationship |
SD | sprague dawley |
SEC | size-exclusion chromatography |
SH-SY5Y | neuroblastoma cells |
SIRT3 | NAD-dependent protein deacetylase sirtuin-3 |
SOD | superoxide dismutase; |
SRSA | superoxide radical scavenging assay |
UNU | United Nations University |
WHO | World Health Organization |
References
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Bioch. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Chiaradia, E.; Tancini, B.; Emiliani, C.; Delo, F.; Pellegrino, R.M.; Tognoloni, A.; Urbanelli, L.; Buratta, S. Extracellular vesicles under oxidative stress conditions: Biological properties and physiological roles. Cells 2021, 10, 1763. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Xing, L.; Fu, Q.; Zhou, G.; Zhang, W. A review of antioxidant peptides derived from meat muscle and by-products. Antioxidants 2016, 5, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou-Rjeileh, U.; Contreras, G.A. Redox regulation of lipid mobilization in adipose tissues. Antioxidants 2021, 10, 1090. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Munekata, P.E.S.; Gomez, B.; Barba, F.J.; Mora, L.; Perez-Santaescolastica, C.; Toldra, F. Bioactive peptides as natural antioxidants in food products-A review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Wong, F.; Xiao, J.; Wang, S.; Ee, K.Y.; Chai, T. Advances on the antioxidant peptides from edible plant sources. Trends Food Sci. Technol. 2020, 99, 44–57. [Google Scholar] [CrossRef]
- Sakuma, S.; Ishimura, M.; Yuba, Y.; Itoh, Y.; Fujimoto, Y. The peptide glycyl-ʟ-histidyl-ʟ-lysine is an endogemous antioxidant in living organisms, possibly by diminisheing hydroxyl and peroxyl radicals. Int. Physiol. Pathophysiol. Pharmacol. 2018, 10, 132–138. [Google Scholar]
- Indiano-Romacho, P.; Fernandez-Tome, S.; Amigo, L.; Hernandez-Ledesma, B. Multifunctionality of lunasin and peptides released during its simulated gastrointestinal digestion. Food Res. Int. 2019, 125, 108513. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, M.; Wu, S.; Liao, X.; Wang, J.; Wu, Q.; Zhuang, M.; Ding, Y. A review on mushroom-derived bioactive peptides: Preparation and biological activities. Food Res. Int. 2020, 134, 109230. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Peng, Q.; Zhong, J.; Liu, W.; Zhong, Y.; Wang, F. Molecular and functional propertied of protein fractions and isolate from cashew nut (Anacardium occidentale L.). Molecules 2018, 23, 392. [Google Scholar]
- Ren, D.; Wang, M.; Shen, M.; Liu, C.; Liu, W.; Min, W.; Liu, J. In vivo assessment of immunomodulatory activity of hydrolysed peptides from Corylus heterophylla Fisch. J. Sci. Food Agr. 2016, 96, 3508–3514. [Google Scholar] [CrossRef]
- Feng, L.; Peng, F.; Wang, X.; Li, M.; Lei, H.; Xu, H. Identification and characterization of antioxidative peptides derived from simulated in vitro gastrointestinal digestion of walnut meal proteins. Food Res. Int. 2019, 116, 518–526. [Google Scholar] [CrossRef]
- Roncero, J.M.; Alvarez-Orti, M.; Pardo-Gimenez, A.; Rabadan, A.; Pardo, J.E. Review about non-lipid components and minor fat-soluble bioactive compounds of almond kernel. Foods 2020, 9, 1646. [Google Scholar] [CrossRef] [PubMed]
- Ayo, J.; Carballo, J.; Solas, M.T.; Jimenez-Colmenero, F. Physicochemical and sensory properties of healthier frankfurthers as affected by waknut and fat content. Food Chem. 2008, 107, 1547–1552. [Google Scholar] [CrossRef]
- Cofrades, S.; Serrano, A.; Ayo, J.; Carballo, J.; Jimenezcolmenero, F. Characteristics of meat batters with added native and preheated defatted walnut. Food Chem. 2008, 107, 1506–1514. [Google Scholar] [CrossRef]
- Bisinotto, M.S.; Da Silva, D.C.; Fino, L.D.; Simabuco, F.M.; Bezerra, R.M.N.; Antunes, A.E.C.; Pacheco, M.T.B. Bioaccessibility of cashew nut kernel flour compounds released after simulated in vitro human gastrointestinal digestinal. Food Res. Int. 2021, 139, 109906. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, J.; Guo, X.; Lei, Y.; Yang, M. Effects of ultrasonic treatment on the structure, functional properties of chickpea protein isolate and its digestibility in vitro. Foods 2020, 11, 880. [Google Scholar] [CrossRef]
- Yada, S.; Lapsley, K.; Huang, G. A review of composition studies of cultivated almonds: Macronutrients and micronutrients. J. Food Compos. Anal. 2011, 24, 469–480. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, W.; Yi, J.; Liu, N.; Cao, Y.; Lu, J.; Decker, E.A.; McClements, D.J. Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Res. Int. 2018, 106, 853–861. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, J.; Li, Y.; Wang, Z.; Liang, J.; Wang, R.; Chen, Y.; Ma, W.; Qi, B.; Zhang, M. Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Res. Int. 2014, 62, 595–601. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Tang, X.; Ni, W.; Zhou, L. Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein. Ultrason. Sonochem. 2017, 38, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Jamdar, S.N.; Rajalakshmi, V.; Pednekar, M.D.; Juan, F.; Yardi, V.; Sharma, A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem. 2010, 121, 178–184. [Google Scholar] [CrossRef]
- Ye, J.; Hua, X.; Zhang, W.; Zhao, W.; Yang, R. Emulsifying capacity of peanut polysaccharide: Improving interfacial property through the co-dissolution of protein during extraction. Carbohyd. Polym. 2021, 273, 118614. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, T.; Reig, M.; Aristoy, M.C.; Mora, L. Generation of bioactive peptide during food processing. Food Chem. 2018, 267, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Liang, M.; Qi, W.; Liu, R.; Yuan, S.; He, Z. Pancreatic hydrolysis of bovine casein: Peptide release and time-dependent reaction behavior. Food Chem. 2012, 133, 851–858. [Google Scholar] [CrossRef]
- Ren, D.; Zhao, F.; Liu, C.; Wang, J.; Guo, Y.; Liu, J.; Min, W. Antioxidant hydrolyzed peptides from Manchurian walnut (Juglans mandshurica Maxim.) attenuate scopolamine-induced memory impairment in mice. J. Sci. Food Agr. 2018, 98, 5142–5152. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, L.; Zhao, T.; Zhang, Q.; Liu, Y.; Sun, B.; Su, G.; Zhao, M. Inhibitory effects of walnut (Juglans regia) peptides on neuroinflammation and oxidative stress in lipopolysaccharide-induced cognitive impairment mice. J Agr. Food Chem. 2020, 68, 2381–2392. [Google Scholar] [CrossRef]
- Wang, S.; Su, G.; Zhang, Q.; Zhao, T.; Liu, Y.; Zheng, L.; Zhao, M. Walnut (Juglans regia) peptides reverse sleep deprivation-induced memory impairment in rat via alleviating oxidative stress. J. Agr. Food Chem. 2018, 66, 10617–10627. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, M.; Lin, L.; Wang, J.; Sun-Waterhouse, D.; Dong, Y.; Zhuang, M.; Su, G. Identification of antioxidative peptides from defatted walnut meal hydrolysate with potential for improving learning and memory. Food Res. Int. 2015, 78, 216–223. [Google Scholar] [CrossRef]
- Liu, M.; Yang, S.; Hong, D.; Yang, J.; Liu, M.; Lin, Y.; Huang, C.; Wang, C. A simple and convenient method for the preparation of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Chem. Cent. J. 2016, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Jahanbani, R.; Ghaffari, S.M.; Salami, M.; Vahdati, K.; Sepehri, H.; Sarvestani, N.N.; Sheibani, N. Antioxidant and anticancer activities of walnut (Juglans regia L.) protein hydrolysates using different proteases. Plant Food Hum Nutr. 2016, 71, 402–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, M.; Chen, H.; Zhao, M.; Wang, X.; Yang, B.; Ren, J.; Su, G. Identification of antioxidant peptides released from defatted walnut (Juglans Sigillata Dode) meal proteins with pancreatin. LWT-Food Sci. Technol. 2015, 60, 213–220. [Google Scholar] [CrossRef]
- Chen, N.; Yang, H.; Sun, Y.; Niu, J.; Liu, S. Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Peptides 2012, 38, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhao, T.; Zhang, J.; Xu, J.; Sun-Waterhouse, D.; Zhao, M.; Su, G. Effect of walnut protein hydrolysate on scopolamine-induced learning and memory deficits in mice. J. Food Sci. Technol. 2017, 54, 3102–3110. [Google Scholar] [CrossRef]
- Li, Q.; Kang, X.; Shi, C.; Li, Y.; Majumder, K.; Ning, Z.; Ren, J. Moderation of hyperuricemia in rats via consuming walnut protein hydrolysate diet and identification of new antihyperuricemic peptides. Food Funct. 2017, 9, 107–116. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Li, S.; Zhou, J.; Xu, J. Physico-chemical properties, antioxidant activities and antihypertensive effects of walnut protein and its hydrolysate. J. Sci. Food Agr. 2016, 96, 2579–2587. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Lai, T.; Chen, L.; Fu, J.; Sreenivasan, S.T.; Yu, Z.; Ren, J. Synthesis and characterization of walnut peptides-zinc complex and its antiproliferative ability against human breast carcinoma cells through induction of apoptosis. J. Agr. Food Chem. 2016, 67, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Guo, Y.; Wu, P.; Wang, Y.; Golly, M.K.; Ma, H. The necessity of walnut proteolysis based on evaluation after in vitro simulated digestion: ACE inhibition and DPPH radical-scavenging activities. Food Chem. 2020, 311, 125960. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ren, D.; Li, J.; Fang, L.; Wang, J.; Liu, J.; Min, W. Cytoprotective effect and purification of novel antioxidant peptides from hazelnut (C. heterophylla Fisch) protein hydrolysates. J. Funct. Foods 2018, 42, 203–215. [Google Scholar] [CrossRef]
- Cai, L.; Xiao, L.; Liu, C.; Ying, T. Functional properties and bioactivities of pine nut (Pinus gerardiana) protein isolates and its enzymatic hydrolysates. Food Bioprocess Technol. 2013, 6, 2109–2117. [Google Scholar] [CrossRef]
- Hwang, J.; Shyu, Y.; Wang, Y.; Hsu, C.K. Antioxidative properties of protein hydrolysate from defatted peanut kernels treated with esperase. LWT-Food Sci. Technol. 2010, 43, 285–290. [Google Scholar] [CrossRef]
- Su, G.; Zheng, L.; Cui, C.; Yang, B.; Ren, J.; Zhao, M. Characterization of antioxidant activity and volatile compounds of Maillard reaction products derived from different peptide fractions of peanut hydrolysate. Food Res. Int. 2011, 44, 3250–3258. [Google Scholar] [CrossRef]
- Ye, M.; Xu, Q.; Tang, H.; Jiang, W.; Su, D.; He, S.; Zeng, Q.; Yuan, Y. Development and stability of novel selenium colloidal particles complex with peanut meal peptides. LWT-Food Sci. Technol. 2020, 126, 109280. [Google Scholar] [CrossRef]
- Dong, X.; Li, J.; Jiang, G.; Li, H.; Zhao, M.; Jiang, Y. Effects of combined high pressure and enzymatic treatments on physicochemical and antioxidant properties of peanut proteins. Food Sci. Nutr. 2019, 7, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhao, M.; Shi, J.; Yang, B.; Li, J.; Luo, D.; Jiang, G.; Jiang, Y. Effects of combined high-pressure homogenization and enzymatic treatment on extraction yield, hydrolysis and function properties of peanut proteins. Innov. Food Sci. Emerg. 2011, 12, 478–483. [Google Scholar] [CrossRef]
- Tang, L.; Sun, J.; Zhang, H.; Zhang, C.; Yu, L.; Bi, J.; Zhu, F.; Liu, S.; Yang, Q. Evaluation of physicochemical and antioxidant properties of peanut protein hydrolysate. PLoS ONE 2012, 7, 37863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, L.; Su, G.; Ren, J.; Gu, L.; You, L.; Zhao, M. Isolation and characterization of an oxygen radical absorbance activity peptide from defatted peanut meal hydrolysate and its antioxidant properties. J. Agr. Food Chem. 2012, 60, 5431–5437. [Google Scholar] [CrossRef]
- Yu, L.; Sun, J.; Liu, S.; Bi, J.; Zhang, C.; Yang, Q. Ultrasonic-assisted enzymolysis to improve the antioxidant activities of peanut (Arachin conarachin L.) antioxidant hydrolysate. Int. J. Mol. Sci. 2012, 13, 9051–9068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, N.; Sun, C.; Zhao, Y.; Xiong, L.; Sun, Q. Purification and identification of antioxidant peptides from peanut protein isolate hydrolysates using UHR-Q-TOF mass spectrometer. Food Chem. 2014, 161, 148–154. [Google Scholar] [CrossRef]
- Nyo, M.; Nguyen, L. Value-addition of defatted peanut cake by proteolysis: Effects of proteases and degree of hydrolysis on functional properties and antioxidant capacity of peptides. Waste Biomass Valori. 2019, 10, 1251–1259. [Google Scholar] [CrossRef]
- Arise, A.K.; Alashi, A.M.; Nwachukwu, I.D.; Ijabadeniyi, O.A.; Aluko, R.E.; Amonsou, E.O. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions. Food Funct. 2016, 7, 2431–2437. [Google Scholar] [CrossRef] [PubMed]
- Arise, A.K.; Alashi, A.M.; Nwachukwu, I.D.; Malomo, S.A.; Aluko, R.E.; Amonsou, E.O. Inhibitory properties of bambara groundnut protein hydrolysate and peptide fractions against angiotensin-converting enzymes, renin and free radicals. J. Sci. Food Agr. 2017, 97, 2834–2841. [Google Scholar] [CrossRef]
- Mirzapour, M.; Rezaei, K.; Sentandreu, M.A. In vitro antioxidant activities of hydrolysates obtained from Iranian wild almond (Amygdalus scoparia) protein by several enzymes. Int. J. Food Sci. Tech. 2016, 51, 609–616. [Google Scholar] [CrossRef]
- Feng, Y.; Ruan, G.; Jin, F.; Xu, J.; Wang, F. Purification, identification, and synthesis of five novel antioxidant peptides from Chinese chestnut (Castanea mollissima Blume) protein hydrolysates. LWT-Food Sci. Technol. 2018, 92, 40–46. [Google Scholar] [CrossRef]
- Hu, F.; Cim, A.; Wang, H.; Zhang, Y.; Zhang, J.; Thakur, K.; Wei, Z. Identification and hydrolysis kinetic of a novel antioxidant peptide from pecan meal using Alcalase. Food Chem. 2018, 261, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Habinshuti, I.; Chen, X.; Yu, J.; Mukeshimana, O.; Duhoranimana, E.; Karangwa, E.; Muhoza, B.; Zhang, M.; Xia, S.; Zhang, X. Antimicrobial, antioxidant and sensory properties of Maillard reaction products (MRPs) derived from sunflower, soybean and corn meal hydrolysates. LWT-Food Sci. Technol. 2019, 101, 694–702. [Google Scholar] [CrossRef]
- Huang, H.; Sun, Y.; Lou, S.; Li, H.; Ye, X. In vitro digestion combined with cellular assay to determine the antioxidant activity in Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruits: A comparison with traditional methods. Food Chem. 2014, 146, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, X.; Chen, J.; Liu, C.; Li, T.; McClements, D.J.; Liu, J. Antioxidant activity of proanthocyanidins-rich fractions from Choerospondias axillaris peels using a combination of chemical-based methods and cellular-based assay. Food Chem. 2016, 208, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Shi, C.; Wang, M.; Zhou, M.; Liang, M.; Zhang, T.; Yuan, E.; Wang, Z. Tryptophan residue enhances in vitro walnut protein-derived peptides exerting xanthine oxidase inhibition and antioxidant activities. J. Funct. Foods 2019, 53, 276–285. [Google Scholar] [CrossRef]
- Sheng, J.; Yang, X.; Chen, J.; Peng, T.; Yin, X.; Liu, W.; Liang, M.; Wan, J.; Yang, X. Antioxidative effects and mechanism study of bioactive peptides from defatted walnut (Juglans regia L.) meal hydrolysate. J. Agr. Food Chem. 2019, 67, 3305–3312. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhao, S.; Chen, C.; Ge, F.; Liu, D.; He, X. Optimization of production conditions for antioxidant peptides from walnut protein meal using solid-state fermentation. Food Sci. Biotech. 2014, 23, 1941–1949. [Google Scholar] [CrossRef]
- Xu, J.; Jin, F.; Hao, J.; Regenstein, J.M.; Wang, F. Preparation of soy sauce by walnut meal fermentation: Composition, antioxidant properties, and angiotensin converting enzyme inhibitory activities. Food Sci. Nutr. 2020, 8, 1665–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydemir, L.Y.; Gokbulut, A.A.; Baran, Y.; Yemenicioglu, A. Bioactive, functional and edible film-forming properties of isolated hazelnut (Corylus avellana L.) meal proteins. Food Hydrocolloid 2014, 36, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhang, M.; Xing, J.; Lin, S. A possible mechanism for enhancing the antioxidant activity by pulsed electric field on pine nut peptide Glutamine-Tryptophan-Phenylalanine-Histidine. J. Food Biochem. 2019, 43, 12714. [Google Scholar] [CrossRef]
- Lin, S.; Yang, R.; Cheng, S.; Wang, K.; Qin, L. Decreased quality and off-flavour compound accumulation of 3-10 kDa fraction of pine nut (Pinus koraiensis) peptide during storage. LWT-Food Sci. Technol. 2017, 84, 23–33. [Google Scholar] [CrossRef]
- Liang, R.; Zhang, Z.; Lin, S. Effects of pulsed electric field on intracellular antioxidant activity and antioxidant enzyme regulating capacities of pine nut (Pinus koraiensis) peptide QDHCH in HepG2 cells. Food Chem. 2017, 237, 793–802. [Google Scholar] [CrossRef]
- Xing, J.; Zhang, S.; Zhang, M.; Lin, S. Analysis of α-helix unfolding in the pine nut peptide Lys-Cys-His-Lys-Pro induced by pulsed electric field. J. Sci. Food Agr. 2017, 97, 4058–4065. [Google Scholar] [CrossRef]
- Lin, S.; Liang, R.; Xue, P.; Zhang, S.; Liu, Z.; Dong, X. Antioxidant activity improvement of identified pine nut peptides by pulsed electric field (PEF) and the mechanism exploration. LWT-Food Sci. Technol. 2017, 75, 366–372. [Google Scholar] [CrossRef]
- Yang, R.; Li, X.; Lin, S.; Zhang, Z.; Chen, F. Identification of novel peptides from 3 to 10 kDa pine nut (Pinus koraiensis) meal protein, with an exploration of the relationship between their antioxidant activities and secondary structure. Food Chem. 2017, 219, 311–320. [Google Scholar] [CrossRef]
- Liang, R.; Cheng, S.; Wang, X. Secondary structure changes induced by pulsed electric field affect antioxidant activity of pentapeptides from pine nut (Pinus koraiensis) protein. Food Chem. 2018, 254, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H.; Wang, L.; Guo, X.; Qi, X.; Qian, H. Influence of the degree of hydrolysis (DH) on antioxidant properties and radical-scavenging activities of peanut peptides prepared from fermented peanut meal. Eur. Food Res. Technol. 2011, 232, 941–950. [Google Scholar] [CrossRef]
- Yang, X.; Teng, D.; Wang, X.; Guan, Q.; Mao, R.; Hao, Y.; Wang, J. Enhancement of nutritional and antioxidant properties of peanut meat by bio-modification with bacillus licheniformis. Appl. Biochem. Biotech. 2016, 180, 1227–1242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, J.; Lu, X.; Zhang, H.; Wang, L.; Guo, X.; Qi, X.; Qian, H. Isolation and identification of an antioxidant peptide prepared from fermented peanut meal using bacillus subtilis fermentation. Int. J. Food Prop. 2014, 17, 1237–1253. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, J.; Zhao, H.; Zhao, X.; Xue, H.; Sun, Y.; Xue, W. Isolation and structural characterization of antioxidant peptides from degreased apricot seed kernels. J. Aoac Int. 2018, 101, 1661–1663. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agr. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef]
- Mahaseth, T.; Kuzminov, A. Potentiation of hydrogen toxicity: From catalase inhibition to stable DNA-iron complexes. Mutat. Res.-Rev. Mutat. 2017, 773, 274–281. [Google Scholar] [CrossRef]
- Katerji, M.; Filippova, M.; Duerksen-Hughes, P. Approaches and methods to measure oxidative stress in clinical samples: Research applications in the cancer field. Oxid. Med. Cell. Longev. 2019, 2019, 1279250. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, C.; Afonso, C.; Lourenco, H.; Costa, S.; Nunes, M.L. Bioaccessibility assessment methodologies and their consequences for the risk-benefit evaluation of food. Trends Food Sci. Technol. 2015, 41, 5–23. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.; Zhao, F.; Qin, H.; Lu, H.; Fang, L.; Wang, J.; Min, W. Potential mechanisms mediating the protective effects of a peptide from walnut (Juglans mandshurica Maxim.) against hydrogen peroxide induced neurotoxicity in PC12 cells. Food Funct. 2019, 1, 3351–3491. [Google Scholar]
- Zhao, F.; Wang, J.; Lu, H.; Fang, L.; Qin, H.; Liu, C.; Min, W. Neuroprotection by walnut-derived peptides through autophagy promotion via Akt/mTOR signaling pathway against oxidative stress in PC12 cells. J. Agr. Food Chem. 2020, 68, 3638–3648. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Liu, C.; Fang, L.; Lu, H.; Wang, J.; Gao, Y.; Gabbianelli, R.; Min, W. Walnut-derived peptide activates PINK1 via the NRF2/KEAP1/HO-1 pathway, promotes mitophagy, and alleviates learning and memory impairments in a mice model. J. Agr. Food Chem. 2021, 69, 2758–2772. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, T.; Fang, L.; Liu, C.; Liu, X.; Li, H.; Shi, J.; Li, M.; Min, W. Peptides from walnut (Juglans mandshurica Maxim.) protect hepatic HepG2 cells from high glucose-induced insulin resistance and oxidative stress. Food Funct. 2020, 11, 8112–8121. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yang, S.; Yang, J.; Lee, Y.; Kou, J.; Wang, C. Neuroprotective and memory-enhancing effects of antioxidant peptide from walnut (Juglans regia L.) protein hydrolysates. Nat. Prod. Commun. 2019, 14, 1934578–1986583. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Qin, H.; Wu, D.; Liu, C.; Fang, L.; Wang, J.; Liu, X.; Min, W. Walnut peptide WEKPPVSH in alleviating oxidative stress and inflammation in lipopolysaccharide-activated BV-2 microglia via the Nrf2/HO-1 and NF-kappa B/p38 MAPK pathways. J. Biosci. Bioeng. 2021, 132, 496–504. [Google Scholar] [CrossRef]
- Fang, L.; Ren, D.; Wang, Z.; Liu, C.; Wang, J.; Min, W. Protective role of hazelnut peptides on oxidative stress injury in human umbilical vein endothelial cells. J. Food Biochem. 2018, 43, 12722. [Google Scholar] [CrossRef]
- Lu, H.; Fang, L.; Wang, J.; Zhao, F.; Liu, C.; Gao, Y.; Liu, J.; Min, W. Pine nut antioxidant peptides ameliorate the memory impairment in a scopolamine-induced mouse model via SIRT3-induced synaptic plasticity. Food Funct. 2021, 12, 8026–8036. [Google Scholar] [CrossRef]
- Wang, S.; Su, G.; Zhang, X.; Song, G.; Zhang, L.; Zheng, L.; Zhao, M. Characterization and exploration of potential neuroprotective peptides in walnut (Juglans regia) protein hydrolysate against cholinergic system damage and oxidative stress in scopolamine-induced cognitive and memory impairment mice and zebrafish. J. Agr. Food Chem. 2021, 69, 2773–2783. [Google Scholar] [CrossRef]
- Zou, T.; He, T.; Li, H.; Tang, H.; Xia, E. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Chen, N.; Chen, J.; Yao, B.; Li, Z. QSAR study on antioxidant tripeptides and the antioxidant activity of the designed tripeptides in free radical systems. Molecules 2018, 23, 1407. [Google Scholar] [CrossRef] [Green Version]
- Deng, B.; Ni, X.; Zhai, Z.; Tang, T.; Tan, C.; Yan, Y.; Deng, J.; Yin, Y. New quantitative structure-activity relationship model for angiotensin-converting enzyme inhibitory dipeptides based on integrated descriptors. J. Agri. Food Chem. 2017, 65, 9774–9781. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M.; Mirdamadi, S.; Safavi, M.; Zare, D.; Hadizadeh, M.; Asadi, M.M. Synthesis, in vitro and cellular antioxidant activity evaluation of novel peptides derived from Saccharomyces cerevisiae protein hydrolysate: Structure-function relationship antioxidant activity and synthetic peptides. Amino Acids 2019, 51, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Lhor, M.; Bernier, S.C.; Horchani, H.; Bussieres, S.; Cantin, L.; Desbat, B.; Salesse, C. Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Adv. Colloid Interfac. 2014, 207, 223–239. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, Y.; Liu, H.; Jia, Q.; Liu, Q.; Tu, J. Purification and identification of pine nut (Pinus yunnanensis Franch.) protein hydrolysate and its antioxidant activity in vitro and in vivo. Chem. Biodivers. 2021, 18, e2000710. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Cheng, S.; Lin, S.; Dong, Y.; Ju, H. Validation of Steric Configuration Changes Induced by a Pulsed Electric Field Treatment as the Mechanism for the Antioxidant Activity Enhancement of a Peptide. Food Bioprocess Technol. 2021, 14, 1751–1757. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Alashi, A.M.; Zahradka, P.C.; Aluko, R.E. Transport, bioavailability, safety, and calmodulin-dependent-phosphodiesterase-inhibitory properties of flaxseed-derived bioactive peptides. J. Agri. Food Chem. 2019, 67, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Cilla, A.; Bosch, L.; Barbera, R.; Alegria, A. Effect of processing on the bioaccessibility of bioactive compounds-A review focusing on cartenoids, mineral, ascorbic acid, tocopherols and polyphenols. J. Food Compos. Anal. 2018, 68, 3–15. [Google Scholar] [CrossRef]
- Dong, X.; Sun, L.; Ma, C.; Zhang, S.; Zhong, L.; Lin, S. Characterization of a synergistic antioxidant synthetic peptide from sea cucumber and pine nut. J. Food Sci. Technol. 2021, 59, 2306–2317. [Google Scholar] [CrossRef] [PubMed]
Albumins (%) | Globulins (%) | Prolamins (%) | Glutenins (%) | Limiting Amino Acids | Crude Protein Content (%) | Defatted Protein Content (%) | Digestibility (%) | |
---|---|---|---|---|---|---|---|---|
Walnut | 6.80 | 17.60 | 5.30 | 70.10 | Met + Cys, Lys | 18.00 | 55.96 | 86.22 |
Pine nut | 52.54 | 15.16 | 7.64 | 4.95 | Met + Cys, Val | 31.10 | 47.69 | 88.50 |
Hazelnut | 67.18 | 17.62 | 3.17 | 6.53 | Lys, Leu | 15.30 | 58.80 | - |
Almond | 75.43 | 13.63 | 5.75 | 5.18 | Met + Cys, Lys | 23.70 | 40.74 | 73.52 |
Brazil nut | 17.70 | 6.00 | - | 3.00 | - | 14.50 | 46.00 | 70.31 |
Cashew nut | 7.69 | 17.30 | - | 7.80 | Lys | 20.20 | 40.74 | 69.71 |
Pistachio | 25.00 | 66.00 | 2.00 | 7.30 | - | 29.60 | 41.04 | - |
Macadamia | 2.39 | 11.62 | - | 4.45 | Met | 7.76 | 25.50 | 75.70 |
Pecan | 2.04 | 22.13 | 9.00 | 64.94 | Met + Cys, Lys | 10.00 | 34.80 | - |
Peanut | - | - | - | - | Met, Leu | 22.30 | 47.90 | 70.00 |
Protein Sources | Bioactivities | Enzymes | Hydrolysis Conditions | Reference |
---|---|---|---|---|
Defatted walnut meal | Antioxidant | Pancreatin, Pepsin | Pepsin/substrate ratio of 1:10 (w/w), pH 2.0, 37 °C, 3 h; Pancreatin/substrate ratio of 1:10 (w/w), 37 °C, pH 7.4, for another 3 h. | [12] |
Defatted peanut flour | Antioxidant, ACE-inhibitory | Alcalase | Alcalase/substrate ratio of 1:10 (w/w), 50 °C, 22 h, pH 8.0. | [22] |
Walnut (Juglansmand shurica Maxim.) protein isolate | Antioxidant, improve learning and memory | Neutrase, Alcalase | Neutrase: 9000 U/g, pH 7.0, 52.5 °C; Alcalase: 7000 U/g, pH 8.4, 55.5 °C. | [26] |
Walnut (Juglans regia) | Antioxidant, neuroinflammation | Pancreatin, Viscozyme L | Viscozyme L (protease/substrate 1.0%, w/w) and pancreatin (protease/substrate 1.0%, w/w), pH 7.0, 55 °C, 12 h. | [27] |
Walnut (Juglans regia) protein power | Antioxidant, reverse sleep deprivation | Pancreatin, complex plant hydrolase | Enzyme/substrate ratio of 1.0%, pH 7.0, 55 °C, 12 h. | [28] |
Defatted walnut meal | Antioxidant, improve learning and memory | Pancreatin | Pancreatin/substrate ratio of 20:1 (w/w), pH 8.0, 55 °C, 12 h. | [29] |
Walnut (Juglans regia L.) protein | Antioxidant | Neutrase, Papain, Bromelain, Alcalase, Pepsin, Pancreatin | Neutrase: 50 °C, pH 7.0, 4 h, ratio 1:30; Papain: 50 °C, pH 7.0, 4 h, ratio 2:30; Bromelain: 50 °C, pH 7.0, 4 h, ratio 3:30; Alcalase: 50 °C, pH 8.0, 4 h, ratio 3:30; Pepsin: 37 °C, pH 2.0, 4 h, ratio 1:30; Pancreatin: 50 °C, pH 8.0, 4 h, ratio 2:30. | [30] |
Walnut (Juglans regia L.) protein | Antioxidant, anticancer | Chymotrypsin, Trypsin, Proteinase K | Enzymes/substrate ratio of 1:100 (w/w). | [31] |
Walnut (Juglans Sigillata Dode) meal proteins | Antioxidant | Pancreatin | Pancreatin/substrate ratio of 2:100 (w/w), pH 7.5, 37 °C, 22 h. | [32] |
Walnut (Juglans regia L.) protein | Antioxidant | Neutrase, Alcalase, Pepsin | Neutrase: pH 7.0, 50 °C, 0.5 h; Alcalase: pH 8.0, 50 °C, 0.5 h; Pepsin: pH 2.0, 37 °C, 3 h. | [33] |
Defatted walnut meal | Antioxidant, improve learning and memory | Pancreatin, Viscozyme L | Enzyme mixture of pancreatin and viscozyme L/substrate ratio of 8:1000 (w/w), 55 °C, 16 h. | [34] |
Walnut (Juglans regia) | Antioxidant, hyperuricemia | Alcalase | Alcalase/substrate ratio of 1:100 (w/w), pH 7.0, 99 °C, 9 h. | [35] |
Walnut meal | Antioxidant, antihypertensive | Alcalase, Trypsin | Alcalase/substrate ratio of 6:100 (w/w), pH 9.5, 60 °C, 2.5 h; Trypsin/substrate ratio of 6:100, pH 8.0, 37 °C, 3.5 h. | [36] |
Walnut meals | Antioxidant, antiproliferative | Trypsin | Trypsin/substrate ratio of 1:100 (w/w), 55 °C, 22 h. | [37] |
Defatted walnut meal | Antioxidant, ACE inhibition | Alcalase | Alcalase/substrate ratio of 2:100 (w/w), 50 °C, pH 9.0. | [38] |
Hazelnut (Corylus heterophylla Fisch) protein | Antioxidant | Alcalase | 10,000 U/g, 54 °C, pH 8.0, 2.5 h. | [39] |
Pine nut (Pinus gerardiana) | Antioxidant, ACE-inhibitory | Alcalase | Alcalase/substrate ratio of 7:100 (w/w), pH 8.5, 55 °C, 3 h. | [40] |
Peanut kernel (Arachis hypogaea L.) | Antioxidant | Esperase, Neutrase | Esperase/substrate ratio of 1:200 (w/w), pH 8.0, 60 °C, 2 h. Neutrase/substrate ratio of 1:200 (w/w), pH 6.0, 50 °C, 24 h. | [41] |
Defatted peanut meal | Antioxidant | Protease | Protease/substrate ratio of 4:1000 (w/w), pH 6.7, 55 °C, 24 h. | [42] |
Peanut meal | Antioxidant | Alcalase, Flavourzyme, L-cysteinase, Neutral | Peanut meal (5% w/w) were preheated to optimal temperatures and pH of papain (60 °C, pH 7.0), flavourzyme (60 °C, pH 7.5), L-cysteinase (55 °C, pH 4.5), Alcalase and neutral complex protease (55 °C, pH 8.5), respectively. The temperature was maintained for 3 h to hydrolyze. | [43] |
Defatted peanut | Antioxidant | Alcalase | Alcalase/substrate ratio of 5:100 (w/w), pH 8.0, 53 °C, 8 h. | [44] |
Defatted peanut flour | Antioxidant | Alcalase | Alcalase/substrate ratio of 5:100 (w/w), pH 8.0, 50 °C, 1 h. | [45] |
Defatted peanut protein powder | Antioxidant | Papain | The papain (5000 u/g) 50 °C, 15 min, pH 8.0. | [46] |
Defatted peanut meal | Antioxidant | Protease | Protease/substrate ratio of 4:1000 (w/w), 55 °C, 12 h, pH 6.7. | [47] |
Defatted peanut cake powder | Antioxidant | Alcalase | Substrate mass fraction was 10%, enzyme dosage of 4000 U/g, pH 8.5, 60 °C, 25 min. | [48] |
Defatted peanut flour | Antioxidant | Alcalase | Alcalase/substrate ratio of 1:250 (w/w), 60 °C, 3 h, pH 8.0. | [49] |
Defatted peanut cake | Antioxidant | Alcalase, Pepsin | Alcalase/substrate ratio of 1:25 (w/w), 60 °C, pH 8.0.Pepsin/substrate ratio of 8:5 (w/w), 37 °C, pH 2.0. | [50] |
Bambara groundnut (Vigna subterranea) | Antioxidant | Alcalase, Trypsin, Pepsin | Enzymes/substrate ratio of 1:100 (w/w), 4 h for Alcalase 50 °C, pH 8.0; Trypsin 37 °C, pH 8.0; Pepsin 37 °C, pH 2.0. | [51] |
Bambara groundnut seeds | Antioxidant, ACE-inhibitory | Alcalase, Trypsin, Pepsin | Enzymes/substrate ratio of 1:100 (w/w), 4 h for Alcalase 50 °C, pH 8.0; Trypsin 37 °C, pH 8.0; Pepsin 37 °C, pH 2.0. | [52] |
Wild almond (Amygdalus scoparia) | Antioxidant | Pepsin, Chymotrypsin, Trypsin, Alcalase, Flavourzyme | Enzymes/substrate ratio of 1:100 (w/w), Pepsin, chymotrypsin and trypsin (37 °C, pH 7.8), Alcalase (50 °C, pH 8.0), flavourzyme (50 °C, pH 7.0) for 3 h. | [53] |
Chinese chestnut (Castanea mollissima Blume) | Antioxidant | Alcalase | Alcalase/substrate ratio of 3:100 (w/w), 55 °C, pH 10.0, 4 h. | [54] |
Defatted pecan seed meals | Antioxidant | Alcalase | Alcalase/substrate ratio of 1:20 (w/w), 55 °C, pH 10.0, 3 h. | [55] |
Sunflower | Antioxidant, antimicrobial | Alcalase, Flavourzyme | Alcalase/substrate ratio of 1:10 (w/w), 58 °C, pH 8.0, 3 h. Flavourzyme/substrate ratio of 3:500 (w/v), 50 °C, pH 6.5, 2 h. | [56] |
Protein Sources | Bioactivities | Chemical Assay | Reference |
---|---|---|---|
Defatted walnut meal | Antioxidant | ABTS, ORAC | [12] |
Defatted peanut flour | Antioxidant, ACE-inhibitory | Reducing power, DPPH, MCA, β-carotene bleaching assay | [22] |
Walnut (Juglansmand shurica Maxim.) protein isolate | Antioxidant, improve learning and memory | ORAC, hydroxyl radical scavenging activity, FRAP | [26] |
Defatted walnut meal | Antioxidant, improve learning and memory | Hydroxyl radical scavenging activity, ORAC | [29] |
Walnut (Juglans regia L.) protein | Antioxidant | DPPH, ABTS, SRSA | [30] |
Walnut (Juglans regia L.) protein | Antioxidant, anticancer | ABTS | [31] |
Walnut (Juglans Sigillata Dode) meal proteins | Antioxidant | DPPH, ABTS, FRAP, ORAC | [32] |
Walnut (Juglans regia L.) protein | Antioxidant | DPPH, hydroxyl radical scavenging, FRAP, reducing power, inhibition of linoleic acid peroxidation | [33] |
Defatted walnut meal | Antioxidant, improve learning and memory | Reducing power, ORAC, hydroxyl radical, radical-scavenging activity, ABTS | [34] |
Walnut meal | Antioxidant, antihypertensive | Reducing power, DPPH, lipidperoxidation | [36] |
Defatted walnut meal | Antioxidant, ACE inhibition | DPPH | [38] |
Pine nut (Pinus gerardiana) | Antioxidant, ACE-inhibitory | DPPH, reducing power | [40] |
Peanut kernel (Arachis hypogaea L.) | Antioxidant | DPPH, MCA, reducing power | [41] |
Defatted peanut meal | Antioxidant | ORAC | [42] |
Peanut meal | Antioxidant | Reducing power, DPPH | [43] |
Defatted peanut | Antioxidant | Reducing power, DPPH | [44] |
Defatted peanut flour | Antioxidant | Reducing power, DPPH, hydroxyl radical-scavenging activity | [45] |
Defatted peanut protein powder | Antioxidant | Reducing power, DPPH, hydroxyl radical-scavenging activity, antioxidative activity | [46] |
Defatted peanut meal | Antioxidant | ORAC, DPPH, reducing power, MCA, lipid peroxidation | [47] |
Defatted peanut cake powder | Antioxidant | SRSA, DPPH, hydroxyl radical scavenging activity, iron reduction capacity, FRAP, molybdenum reduction capacity, copper ion chelation, anti-lipid peroxidation activity | [48] |
Defatted peanut flour | Antioxidant | Reducing power | [49] |
Defatted peanut cake | Antioxidant | DPPH | [50] |
Bambara groundnut (Vigna subterranea) | Antioxidant | DPPH, SRSA, hydroxyl radical scavenging assay, MCA, ferric reducing power assay | [51] |
Bambara groundnut seeds | Antioxidant, ACE-inhibitory | Inhibition of linoleic acid oxidation, ABTS | [52] |
Wild almond (Amygdalus scoparia) | Antioxidant | Reducing power, ABTS | [53] |
Chinese chestnut (Castanea mollissima Blume) | Antioxidant | ABTS, DPPH, hydroxyl radical scavenging | [54] |
Defatted pecan seed meals | Antioxidant | ABTS, DPPH, hydroxyl radical scavenging, FRAP, reducing power | [55] |
Sunflower | Antioxidant, antimicrobial | Reducing power, DPPH | [56] |
Walnut protein | Antioxidant | ORAC | [60] |
Defatted walnut (Juglans regia L.) Meal | Antioxidant | Hydroxyl radical scavenging | [61] |
Walnut protein meal | Antioxidant | DPPH, free radical scavenging, FRAP | [62] |
Walnut meal | Antioxidant, ACE-inhibitory | Hydroxyl radicals scavenging, SRSA, DPPH, reducing power | [63] |
Hazelnut (Corylus avellana L.) meal | Antioxidant, antiproliferative, antihypertensive | ORAC, FRAP | [64] |
Pine nut (Pinus koraiensis) protein | Antioxidant | DPPH, ORAC | [65] |
Pine nut (Pinus koraiensis) | Antioxidant | DPPH | [66] |
Pine nut (Pinus koraiensis) | Antioxidant | DPPH, ABTS | [67] |
Pine nut (Pinus koraiensis) | Antioxidant | DPPH, ABTS | [68] |
Pine nut (Pinus koraiensis) | Antioxidant | DPPH | [69] |
Pine nut (Pinus koraiensis) meal protein | Antioxidant | DPPH, ABTS, FRAP | [70] |
Pine nut (Pinus koraiensis) | Antioxidant | Hydroxyl radical scavenging capacity, FRAP | [71] |
Peanut meal | Antioxidant | SRSA, DPPH, MCA, reducing power, inhibition of linoleic acid autoxidation | [72] |
Peanut meal | Antioxidant | Reducing power, DPPH, hydroxyl radical-scavenging activity, MCA | [73] |
Peanut meal | Antioxidant | SRSA, DPPH, ABTS, inhibition of linoleic acid autoxidation, reducing power, MCA | [74] |
Apricot seed kernels | Antioxidant | Hydroxyl radical scavenging, DPPH | [75] |
Protein Sources | Bioactivities | Cellular Model | Reference |
---|---|---|---|
Walnut (Juglansmand shurica Maxim.) protein isolate | Antioxidant, improve learning and memory | H2O2-induced PC12 cells: ROS, GSH-Px | [26] |
Walnut (Juglans regia) | Antioxidant, neuroinflammation | LPS-elicited inflammation in BV-2 cells: ROS | [27] |
Walnut (Juglans regia) protein power | Antioxidant, reverse sleep deprivation | Glutamate-induced PC12 cells: ROS, GSH-Px, SOD, MDA | [28] |
Defatted walnut meal | Antioxidant, improve learning and memory | H2O2-injured PC12 cells: ROS | [29] |
Walnut (Juglans regia L.) protein | Antioxidant, anticancer | HT-29 and MDA-MB231 tumor cells | [31] |
Walnut (Juglans Sigillata Dode) meal proteins | Antioxidant | H2O2-induced PC12 cells | [32] |
Walnut meals | Antioxidant, antiproliferative | MCF-7 cells: ROS | [37] |
Hazelnut (Corylus heterophylla Fisch) protein | Antioxidant | Ang II-treated HUVECs cells: ROS, SOD, XO-1, HO-1 | [39] |
Defatted peanut meal | Antioxidant | H2O2-induced PC12 cells | [47] |
Walnut protein | Antioxidant | H2O2-injured SH-SY5Y cells: ROS | [60] |
Defatted walnut (Juglans regia L.) meal | Antioxidant | H2O2-induced SH-SY5Y cell | [61] |
Pine nut (Pinus koraiensis) | Antioxidant | HepG2 cells: CAA | [66] |
Pine nut (Pinus koraiensis) | Antioxidant | H2O2-induced HepG2 cells: CAA, T-SOD, CAT, GSH-Px, GSH-Rx, MDA | [67] |
Pine nut (Pinus koraiensis) meal protein | Antioxidant | HepG2 cells: CAA | [70] |
Walnut (Juglansmand shurica Maxim.) protein isolate | Antioxidant, improve neurotoxicity | H2O2-induced PC12 cells: ROS, GSH-Px, SOD, CAT | [80] |
Walnut (Juglansmand shurica Maxim.) protein isolate | Antioxidant, neuroprotection | Aβ25–35-induced PC12 cells: ROS, GSH-Px, ATP, apoptosis | [81] |
Walnut (Juglansmand shurica Maxim.) protein isolate | Antioxidant, improve learning and memory | H2O2-induced HT-22 cells: ROS, apoptosis, ATP, Mito SOX | [82] |
Walnut (Juglansmand shurica Maxim.) protein | Antioxidant, antidiabetic | Glucose-induced HepG2 cells: ROS, GSH-Px, SOD, CAT | [83] |
Walnut (Juglans regia L.) protein | Antioxidant, neuroprotective | H2O2-induced PC12 cells | [84] |
Walnut (Juglansmand shurica Maxim.) protein isolate | Antioxidant, Anti-inflammation | LPS-injured BV-2 cells: ROS, SOD, CAT | [85] |
Hazelnut (Corylus heterophylla Fisch) protein | Antioxidant | Ang II-induced HUVECs cells: ROS, CAT, T-SOD, GSH-Px, MDA | [86] |
Pine nut | Antioxidant, improving memory impairment | H2O2-induced PC12 cells: SIRT3, ace-SOD2 | [87] |
Protein Sources | Bioactivities | Animal Model | Reference |
---|---|---|---|
Defatted walnut meal | Antioxidant | D-gal + AlCl3-induced mice: SOD, MDA, GSH-Px | [12] |
Walnut (Juglansmand shurica Maxim.) protein isolate | Antioxidant, improve learning and memory | Scopolamine-treated mice: SOD, GSH-Px | [26] |
Walnut (Juglans regia) | Antioxidant, neuroinflammation | LPS-treated mice: SOD, GSH-Px, CAT, MDA | [27] |
Walnut (Juglans regia) protein power | Antioxidant, reverse sleep deprivation | SD rats with sleep deprivation: SOD, GSH, GSH-Px, CAT, MDA | [28] |
Walnut (Juglansmand shurica Maxim.) protein isolate | Antioxidant, improve learning and memory | Scopolamine-induced C57BL/6 mice: apoptosis, 8-OHdG, LPO, ATP, protein carbonyl | [82] |
Walnut (Juglans regia L.) protein | Antioxidant, neuroprotective | Mycophenolate mofetil-induced zebrafish: apoptosis | [84] |
Pine nut | Antioxidant, improving memory impairment | Scopolamine-induced C57BL/6 mice: SIRT3, ace-SOD2 | [87] |
Walnut (Juglans regia) Protein | Antioxidant, neuroprotective | scopolamine-induced mice: SOD, MDA, CAT, GSH-Px | [88] |
Protein Sources | Bioactive | Peptide | MW (Da) | Reference |
---|---|---|---|---|
Defatted walnut meal | Antioxidant | Thr-Tyr Ser-Ser-Glu Thr-Arg-Asn Asn-Pro-Ala-Asn Ser-Gly-Gly-Tyr Ala-His-Ser-Val-Gly-Pro | 282.30 321.29 387.44 414.42 382.38 566.62 | [12] |
Walnut (Juglans regia) | Antioxidant, neuroinflammation | Leu-Pro-Phe Gly-Val-Tyr-Tyr Ala-Pro-Thr-Leu-Trp | 376.2234 501.2346 587.3186 | [27] |
Walnut (Juglans regia) protein power | Antioxidant, reverse sleep deprivation | Gly-Gly-Trp Val-Tyr-Tyr Leu-Leu-Pro-Phe | 319.1405 444.2132 489.3067 | [28] |
Defatted walnut meal | Antioxidant, improving learning and memory | Trp-Ser-Arg-Glu-Glu-Gln-Glu-Arg-Glu-Glu Ala-Asp-Ile-Tyr-Thr-Glu-Glu-Ala-Gly-Arg | 1377.4 1124.18 | [29] |
Walnut (Juglans regia L.) protein | Antioxidant | Ala-Asp-Ala-Phe | 423.23 | [33] |
Hazelnut (Corylus heterophylla Fisch) protein | Antioxidant | Ala-Asp-Gly-Phe Ala-Gly-Gly-Phe Ala-Trp-Asp-Pro-Glu Asp-Trp-Asp-Pro-Lys Glu-Thr-Thr-Leu Ser-Gly-Ala-Phe | 408.16 350.16 616.25 659.29 462.23 380.17 | [39] |
Defatted peanut meal | Antioxidant | Tyr-Gly-Ser | 325.3 | [47] |
Chinese chestnut (Castanea mollissima Blume) | Antioxidant | Val-Tyr-Thr-Glu Thr-Lys-Gly-Gln Met-Met-Leu-Gln-Lys Thr-Pro-Ala-Ile-Ser Val-Ser-Ala-Phe-Leu-Ala | 590.20 592.17 745.29 647.20 606.34 | [54] |
Defatted pecan seed meals | Antioxidant | Leu-Ala-Tyr-Leu-Gln-Tur-Thr-Asp-Phe-Glu-Thr-Pro | 1519.75 | [55] |
Walnut protein | Antioxidant | Trp-Pro-Pro-Lys-Asn Ala-Asp-Ile-Tyr-Thr | 640.8 710.7 | [60] |
Pine nut (Pinus koraiensis) protein | Antioxidant | Gln-Trp-Phe-His | 658.72 | [65] |
Pine nut (Pinus koraiensis) | Antioxidant | Glu-Asp-His-Cys-His | 621.7 | [67] |
Pine nut (Pinus koraiensis) | Antioxidant | Lys- Cys-His-Lys-Pro | 611.76 | [68] |
Pine nut (Pinus koraiensis) | Antioxidant | Gln-Cys-His-Lys-Pro Gln-Cys-His-Gln-Pro Lys-Cys-His-Gln-Pro Lys- Cys-His-Lys-Pro | 611.72 | [69] |
Pine nut (Pinus koraiensis) meal protein | Antioxidant | Lys-Trp-Phe-Cys-Thr Gln-Trp-Phe-Cys-Thr | 683.82 683.78 | [70] |
Pine nut (Pinus koraiensis) | Antioxidant | Gln-Cys-His-Lys-Pro Gln-Cys-His-Gln-Pro Lys-Cys-His-Gln-Pro Lys- Cys-His-Lys-Pro | 611.72 | [71] |
Walnuts (Juglans mandshurica Maxim.) protein | Antioxidant, improve neurotoxicity | Glu-Val-Ser-Gly-Pro-Gly-Leu-Ser-Pro-Asn | 955.4611 | [80] |
Walnuts (Juglans mandshurica Maxim.) protein | Antioxidant, neuroprotection | Thr-Trp-Leu-Pro-Leu-Pro-Arg Tyr-Val-Leu-Leu-Pro-Ser-Pro-Lys Lys-Val-Pro-Pro-Leu-Leu-Tyr | 882.08 916.14 829.06 | [81] |
Walnuts (Juglans mandshurica Maxim.) protein | Antioxidant, improve learning and memory | Tyr-Val-Leu-Leu-Pro-Ser-Pro-Lys | 916.14 | [82] |
Walnut (Juglansmand shurica Maxim.) protein | Antioxidant, antidiabetic | Leu-Val-Arg-Leu Leu-Arg-Tyr-Leu Val-Leu-Leu-Ala-Leu-Val-Leu-Leu-Arg | 499.35 563.34 - | [83] |
Walnut (Juglansmand shurica Maxim.) protein isolate | Antioxidant, Anti-inflammation | Trp-Glu-Lys-Pro-Pro-Val-Ser-His | 980.07 | [85] |
Hazelnut (Corylus heterophylla Fisch) | Antioxidant | Glu-Trp Asp-Trp-Asp-Pro-Lys Ala-Asp-Gly-Phe Ser-Gly-Ala-Phe Glu-Thr-Thr-Leu Ala-Gly-Gly-Phe | 333.35 659.70 408.41 380.40 462.50 350.38 | [86] |
Pine nut | Antioxidant, improving memory impairment | Trp-Tyr-Pro-Gly-Lys | - | [87] |
Walnut (Juglans regia) protein | Antioxidant, neuroprotective | Phe-Tyr Ser-Gly-Phe-Asp-Ala-Glu | 329.1490 625.2451 | [88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Liu, C.; Bordoni, L.; Petracci, I.; Wu, D.; Fang, L.; Wang, J.; Wang, X.; Gabbianelli, R.; Min, W. Advances on the Antioxidant Peptides from Nuts: A Narrow Review. Antioxidants 2022, 11, 2020. https://doi.org/10.3390/antiox11102020
Zhao F, Liu C, Bordoni L, Petracci I, Wu D, Fang L, Wang J, Wang X, Gabbianelli R, Min W. Advances on the Antioxidant Peptides from Nuts: A Narrow Review. Antioxidants. 2022; 11(10):2020. https://doi.org/10.3390/antiox11102020
Chicago/Turabian StyleZhao, Fanrui, Chunlei Liu, Laura Bordoni, Irene Petracci, Dan Wu, Li Fang, Ji Wang, Xiyan Wang, Rosita Gabbianelli, and Weihong Min. 2022. "Advances on the Antioxidant Peptides from Nuts: A Narrow Review" Antioxidants 11, no. 10: 2020. https://doi.org/10.3390/antiox11102020
APA StyleZhao, F., Liu, C., Bordoni, L., Petracci, I., Wu, D., Fang, L., Wang, J., Wang, X., Gabbianelli, R., & Min, W. (2022). Advances on the Antioxidant Peptides from Nuts: A Narrow Review. Antioxidants, 11(10), 2020. https://doi.org/10.3390/antiox11102020