The Role of By-Products of Fruit and Vegetable Processing for the Dietary Treatment of Cardiovascular Risk Factors: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Anti-Diabetic Activity
Study | Species | Food | Bioactive Compounds | Intervention | Sample | Primary Outcome |
---|---|---|---|---|---|---|
Amin et al. [14] | Citrullus colocynthis | Bitter apple | Amino acids, complex B vitamins, flavonoids, phenols, alkaloids, tannins, glycosides, triterpenoids and saponins | Seed or control 1 and 2 mL/kg/day 14 days | N = 48; Rats (males); 6–8 weeks old | ↓ BG † |
Andrade et al. [22] | Myrciaria cauliflora | Jaboticaba | Ellagic acid | Peel or control 0.012; 0.12; 0.24; 0.48 and 0.96 mg/kg | N = 6, Rats (male) | ↑ AVC ↔ HR ↓ MAP ↑ Relaxation endothelial † |
Araújo et al. [23] | Myrciaria cauliflora | Jaboticaba | Fibers and anthocyanins | Peel or control 7%, 10% and 15%/meal 4 weeks | N = 35; Rats (male) | ↓ BG ↑ HDL-c ↓ TC ↓ TG † |
Bajerska et al. [24] | Vaccinium macrocarpon | Cranberry | Tocochromanols, flavonols, anthocyanins and fiber. | Pomace or control 3%/meal 8 weeks | N = 40; Rats(male); 56 days old | ↑ FRAP ↑ GSH ↓ TBARS ↓ TG ↓TC † |
Benítez et al. [25] | Allium cepa L. | Onion | Fiber, xylose, galactose, rhamnose, arabinose and mannose | Pomace or control 10%/meal 4 weeks | N = 10; Rats (female); 6 weeks old | ↑ HDL-c ↓ TC ↓ TG † |
Chang et al. [16] | Pyrus L. | Pear | Phenolic acid, flavonoids, stilbenes, tannins, carotenes and xanthophylls. | Pomace 8%/meal 5 weeks | N = 32; Rats (male); 8 weeks old | ↓ BW ↓ HOMA-IR ↓ LDL-c ↓ OGTT ↓ TC † |
Cherrad et al. [26] | Olea europaea | Olive | Coumaric acid, caffeic acid, ferulic acid, oleuropein and hydroxytyrosol. | Pomace or placebo 7.5%/meal 4 weeks (28 days) | N = 12; Rats (male); diabetics | ↓ BG ↑ CAT ↑ GSH ↑ GSH-Px ↓ HbA1c ↑ SOD ↓ TBARS ↓ TC ↓ TG † |
Del Pino-García et al. [27] | Vitis Vinifera L. | Grape | Anthocyanin, proanthocyanin and catechin | Pomace or control 300 mg/kg/day 4 weeks | N = 20; Rats; hypertensive and normotensive; 12 week old | ↑ eNOS ↓ MDA ↑ NO ↓ SBP ↑ SOD † |
Dragano et al. [28] | Myrciaria Jaboticaba (Vell.) Berg | Jaboticaba | Cyanidin-3-O-glucoside Delphinidin-3-O-glucoside | Peel or control 1, 2 and 4%/meal 6 weeks | N = 40; Rats (male); 21 days old | ↔ BW ↔ HDL ↑ iTT ↔ TC † |
Gerardi et al. [29] | Vitis vinifera L. cv. Tempranillo | Grape | Phenolic acids, stilbenes, flavanols and flavonols | Pomace or control 300 mg/kg/day 4 weeks | N = 30; Rats (male); hypertensives and diabetics | ↑ eNOS ↓ ROS † |
John et al. [30] | Garcinia mangostana | Purple mangosteen | Xanthones, procyanidins, anthocyanins and hydroxycitric acid | Rind or control 5%/meal 8 weeks | N = 48; Rats (male); 8–9 weeks old | ↓ AC ↓ BW ↓ Diastolic stiffness constant ↓ Inflammatory cells ↑ Relaxation endothelial ↓ SBP ↓ TC ↓ WBFM †,¥ |
Khanal et al. [31] | Vaccinium angustifolium Ait. | Blueberry | Procyanidins, anthocyanins, phenolic acids and flavonols. | Pomace or control 1.5% and 3%/meal 8 weeks | N =36; Rats (male); metabolic syndrome; 46 days old | ↔ BG ↔ Insulin ↓ TC ↓ TG ↓ TWF † |
Kukongviriyapan et al. [32] | Antidesma thwaitesianum | Mamao | Anthocyanins and catechin | Pomace or control 100 and 300 mg/kg/day 3 weeks | N = 10; Rats (males) | ↑ ACH ↓ DBP ↑ eNOS ↓ MAP ↓ MDA ↑ NO ↓ SBP † |
Lenquiste et al. [15] | Myrciaria Jaboticaba (Vell.) Berg | Jaboticaba | Cyanidin, gallic acid, ellagic acid and glucoside | Peel or control 2%/meal 12 weeks | N = 36; Rats (male); obese | ↓ AA ↓ AT ↑ iTT ↑ HDL-c ↔ TC † |
Lima et al. [33] | Platonia insignis Mart. | Bacuri | - | Seed 25 and 50 mg/kg/day 28 days | N =36; hamsters (male); dyslipidemic | ↑ HDL-c ↓ LDL-c † |
Osforw et al. [34] | Citrus aurantium L. | Orange | Fiber, flavonoids, flavanone glycosides, phenolic acids and terpenes | Albedo or control 10% and 20%/meal 2 weeks | N = 32; Rats (male) | ↓ BG ↓ BW ↑ HDL-c ↓ LDL-c ↓ TC ↓ TG ↓ TL † |
Randriamboavonjy et al. [35] | Moringa oleifera | Acácia-branca | Polyphenolic, glucosinolates and isothiocyanates | Seed or control 750 mg/kg/day 4 weeks | N = 46; Rats (male); 16/50-week-old | ↑ eNOS † |
Rodríguez-González et al. [17] | Prunus persica L. | Peach | Phenolic acids, lignans, flavanols and flavonols | Peel and pulp or control 230.83 mg/kg/day 18 weeks | N = 32; Rats (male); obese | ↓ BG ↓ BW ↓ HOMA-IR ↔ Insulin ↓ TG ↓ TyG † |
4. Anti-Obesity Activity
5. Antihypertensive Activity
6. Hypolipidemic Activity
7. Vascular Effect
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Islam, S.M.S.; Purnat, T.D.; Phuong, N.T.A.; Mwingira, U.; Schacht, K.; Fröschl, G. Non-Communicable Diseases (NCDs) in Developing Countries: A Symposium Report. Glob. Health 2014, 10, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pullar, J.; Allen, L.; Townsend, N.; Williams, J.; Foster, C.; Roberts, N.; Rayner, M.; Mikkelsen, B.; Branca, F.; Wickramasinghe, K. The Impact of Poverty Reduction and Development Interventions on Non-Communicable Diseases and Their Behavioural Risk Factors in Low and Lower-Middle Income Countries: A Systematic Review. PLoS ONE 2018, 13, e0193378. [Google Scholar] [CrossRef] [Green Version]
- Man, A.W.C.; Li, H.; Xia, N. Impact of Lifestyles (Diet and Exercise) on Vascular Health: Oxidative Stress and Endothelial Function. Oxid Med. Cell. Longev. 2020, 2020, 1496462. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, Y.; Li, S.; Zhang, P.; Zhou, T.; Xu, D.-P.; Li, H.-B. Effects and Mechanisms of Fruit and Vegetable Juices on Cardiovascular Diseases. Int. J. Mol. Sci. 2017, 18, 555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batista, K.S.; Alves, A.F.; Lima, M.D.S.; da Silva, L.A.; Lins, P.P.; de Sousa Gomes, J.A.; Silva, A.S.; Toscano, L.T.; de Albuquerque Meireles, B.R.L.; de Magalhães Cordeiro, A.M.T.; et al. Beneficial Effects of Consumption of Acerola, Cashew or Guava Processing by-Products on Intestinal Health and Lipid Metabolism in Dyslipidaemic Female Wistar Rats. Br. J. Nutr. 2018, 119, 30–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, G.; Volino-Souza, M.; Conte-Júnior, C.A.; Alvares, T.S. Food-Derived Polyphenol Compounds and Cardiovascular Health: A Nano-Technological Perspective. Food Biosci. 2021, 41, 101033. [Google Scholar] [CrossRef]
- Volino-Souza, M.; Oliveira, G.V.D.; Conte-Junior, C.A.; Figueroa, A.; Alvares, T.S. Current Evidence of Watermelon (Citrullus Lanatus) Ingestion on Vascular Health: A Food Science and Technology Perspective. Nutrients 2022, 14, 2913. [Google Scholar] [CrossRef]
- Difonzo, G.; Gennaro, G.; Pasqualone, A.; Caponio, F. Potential Use of Plant-based By-products and Waste to Improve the Quality of Gluten-free Foods. J. Sci. Food Agric. 2022, 102, 2199–2211. [Google Scholar] [CrossRef]
- Bahia, L.; Araújo, D.V. Impacto Econômico Da Obesidade No Brasil. Rev. Hosp. Univ. Pedro Ernesto 2014, 13, 13–17. [Google Scholar] [CrossRef]
- Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of Diabetes Mellitus and Cardiovascular Disease. Curr. Cardiol. Rep. 2019, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Merlotti, C.; Morabito, A.; Ceriani, V.; Pontiroli, A.E. Prevention of Type 2 Diabetes in Obese At-Risk Subjects: A Systematic Review and Meta-Analysis. Acta Diabetol. 2014, 51, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Glechner, A.; Harreiter, J.; Gartlehner, G.; Rohleder, S.; Kautzky, A.; Tuomilehto, J.; van Noord, M.; Kaminski-Hartenthaler, A.; Kautzky-Willer, A. Sex-Specific Differences in Diabetes Prevention: A Systematic Review and Meta-Analysis. Diabetologia 2015, 58, 242–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, A.; Tahir, M.; Lone, K.P. Effect of Citrullus Colocynthis Aqueous Seed Extract on Beta Cell Regeneration and Intra-Islet Vasculature in Alloxan Induced Diabetic Male Albino Rats. J. Pak. Med. Assoc. 2017, 67, 715–721. [Google Scholar]
- Lenquiste, S.A.; de Almeida Lamas, C.; da Silva Marineli, R.; Moraes, É.A.; Borck, P.C.; Camargo, R.L.; Quitete, V.H.A.C.; Carneiro, E.M.; Junior, M.R.M. Jaboticaba Peel Powder and Jaboticaba Peel Aqueous Extract Reduces Obesity, Insulin Resistance and Hepatic Fat Accumulation in Rats. Food Res. Int. 2019, 120, 880–887. [Google Scholar] [CrossRef]
- Chang, S.; Cui, X.; Guo, M.; Tian, Y.; Xu, W.; Huang, K.; Zhang, Y. Insoluble Dietary Fiber from Pear Pomace Can Prevent High-Fat Diet-Induced Obesity in Rats Mainly by Improving the Structure of the Gut Microbiota. J. Microbiol. Biotechnol. 2017, 27, 856–867. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-González, S.; Pérez-Ramírez, I.F.; Amaya-Cruz, D.M.; Gallegos-Corona, M.A.; Ramos-Gomez, M.; Mora, O.; Reynoso-Camacho, R. Polyphenol-Rich Peach (Prunus persica L.) by-Product Exerts a Greater Beneficial Effect than Dietary Fiber-Rich by-Product on Insulin Resistance and Hepatic Steatosis in Obese Rats. J. Funct. Foods 2018, 45, 58–66. [Google Scholar] [CrossRef]
- Plaza, M.; Batista, Â.G.; Cazarin, C.B.B.; Sandahl, M.; Turner, C.; Östman, E.; Maróstica Júnior, M.R. Characterization of Antioxidant Polyphenols from Myrciaria Jaboticaba Peel and Their Effects on Glucose Metabolism and Antioxidant Status: A Pilot Clinical Study. Food Chem. 2016, 211, 185–197. [Google Scholar] [CrossRef]
- Ramos-Romero, S.; Martínez-Maqueda, D.; Hereu, M.; Amézqueta, S.; Torres, J.L.; Pérez-Jiménez, J. Modifications of Gut Microbiota after Grape Pomace Supplementation in Subjects at Cardiometabolic Risk: A Randomized Cross-Over Controlled Clinical Trial. Foods 2020, 9, 1279. [Google Scholar] [CrossRef]
- Kitada, M.; Ogura, Y.; Maruki-Uchida, H.; Sai, M.; Suzuki, T.; Kanasaki, K.; Hara, Y.; Seto, H.; Kuroshima, Y.; Monno, I.; et al. The Effect of Piceatannol from Passion Fruit (Passiflora Edulis) Seeds on Metabolic Health in Humans. Nutrients 2017, 9, 1142. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Ramírez, I.F.; de Diego, E.H.; Riomoros-Arranz, M.; Reynoso-Camacho, R.; Saura-Calixto, F.; Pérez-Jiménez, J. Effects of Acute Intake of Grape/Pomegranate Pomace Dietary Supplement on Glucose Metabolism and Oxidative Stress in Adults with Abdominal Obesity. Int. J. Food Sci. Nutr. 2020, 71, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.M.L.; Reis, C.F.; Castro, P.F.S.; Borges, L.L.; Amaral, N.O.; Torres, I.M.S.; Rezende, S.G.; Gil, E.S.; Conceição, E.C.; Pedrino, G.R.; et al. Vasorelaxant and Hypotensive Effects of Jaboticaba Fruit (Myrciaria Cauliflora) Extract in Rats. Evid. -Based Complement. Altern. Med. 2015, 2015, 696135. [Google Scholar] [CrossRef] [Green Version]
- Araújo, C.R.R.; Esteves, E.A.; Dessimoni-Pinto, N.A.V.; Batista, Â.G. Myrciaria Cauliflora Peel Flour Had a Hypolipidemic Effect in Rats Fed a Moderately High-Fat Diet. J. Med. Food 2014, 17, 262–267. [Google Scholar] [CrossRef]
- Bajerska, J.; Chmurzynska, A.; Mildner-Szkudlarz, S.; Drzymała-Czyż, S.; Górnaś, P.; Waśkiewicz, A.; Muzsik, A.; Podgórski, T.; Nowaczyk, P.; Woźniewicz, M. Effects of Unextruded and Extruded Cranberry Pomace on Selected Metabolic Parameters in High-Fat Diet Fed Rats. Acta Sci. Pol. Technol. Aliment. 2018, 17, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Esteban, R.M. Onion (Allium Cepa L.) by-Products as Source of Dietary Fiber: Physicochemical Properties and Effect on Serum Lipid Levels in High-Fat Fed Rats. Eur. Food Res. Technol. 2012, 234, 617–625. [Google Scholar] [CrossRef]
- Cherrad, H.; Bouderbala, S.; Zidan, Y.; Krouf, D. Olive Cake Reduces Glycaemia and Lipemia and Increases Antioxidant Enzymes in STZ-Induced Diabetes in Rat Erythrocytes and Tissues. Nutr. Food Sci. 2019, 50, 360–372. [Google Scholar] [CrossRef]
- Del Pino-García, R.; Rivero-Pérez, M.D.; González-SanJosé, M.L.; Croft, K.D.; Muñiz, P. Antihypertensive and Antioxidant Effects of Supplementation with Red Wine Pomace in Spontaneously Hypertensive Rats. Food Funct. 2017, 8, 2444–2454. [Google Scholar] [CrossRef]
- Dragano, N.R.V.; Marques, A.Y.C.; Cintra, D.E.C.; Solon, C.; Morari, J.; Leite-Legatti, A.V.; Velloso, L.A.; Maróstica-Júnior, M.R. Freeze-Dried Jaboticaba Peel Powder Improves Insulin Sensitivity in High-Fat-Fed Mice. Br. J. Nutr. 2013, 110, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Gerardi, G.; Cavia-Saiz, M.; del Pino-García, R.; Rivero-Pérez, M.D.; González-SanJosé, M.L.; Muñiz, P. Wine Pomace Product Ameliorates Hypertensive and Diabetic Aorta Vascular Remodeling through Antioxidant and Anti-Inflammatory Actions. J. Funct. Foods 2020, 66, 103794. [Google Scholar] [CrossRef]
- John, O.D.; Mouatt, P.; Panchal, S.K.; Brown, L. Rind from Purple Mangosteen (Garcinia Mangostana) Attenuates Diet-Induced Physiological and Metabolic Changes in Obese Rats. Nutrients 2021, 13, 319. [Google Scholar] [CrossRef]
- Khanal, R.C.; Howard, L.R.; Wilkes, S.E.; Rogers, T.J.; Prior, R.L. Effect of Dietary Blueberry Pomace on Selected Metabolic Factors Associated with High Fructose Feeding in Growing Sprague–Dawley Rats. J. Med. Food 2012, 15, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Kukongviriyapan, U.; Kukongviriyapan, V.; Pannangpetch, P.; Donpunha, W.; Sripui, J.; Sae-Eaw, A.; Boonla, O. Mamao Pomace Extract Alleviates Hypertension and Oxidative Stress in Nitric Oxide Deficient Rats. Nutrients 2015, 7, 6179–6194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, G.D.M.; Brito, A.K.D.S.; Farias, L.M.D.; Rodrigues, L.A.R.L.; Pereira, C.F.D.C.; Lima, S.K.R.; Frota, K.D.M.G.; Rizzo, M.D.S.; Nunes, P.H.M.; Lucarini, M.; et al. Effects of “Bacuri” Seed Butter (Platonia Insignis Mart.) on Metabolic Parameters in Hamsters with Diet-Induced Hypercholesterolemia. Evid. Based Complement. Altern. Med. 2021, 2021, 5584965. [Google Scholar] [CrossRef] [PubMed]
- Osforw, M.M.H.; Hegazy, A.; El-moaty, M.A.; Elmadbouly, M.A.; Afify, A.M.R.; Elbahnasawy, A.S.M. Hypo-Cholesterolemic and Hypoglycemic Effects of Orange Albedo Powder (Citrus aurantium L.) on Male Albino Rats. Int. J. Nutr. Food Sci. 2013, 2, 70. [Google Scholar] [CrossRef] [Green Version]
- Randriamboavonjy, J.I.; Heurtebise, S.; Pacaud, P.; Loirand, G.; Tesse, A. Moringa Oleifera Seeds Improve Aging-Related Endothelial Dysfunction in Wistar Rats. Oxid Med. Cell. Longev. 2019, 2019, 2567198. [Google Scholar] [CrossRef] [Green Version]
- Annunziata, G.; Ciampaglia, R.; Maisto, M.; D’avino, M.; Caruso, D.; Tenore, G.C.; Novellino, E. Taurisolo®, a Grape Pomace Polyphenol Nutraceutical Reducing the Levels of Serum Biomarkers Associated with Atherosclerosis. Front. Cardiovasc. Med. 2021, 8, 732. [Google Scholar] [CrossRef]
- Argani, H.; Ghorbanihaghjo, A.; Vatankhahan, H.; Rashtchizadeh, N.; Raeisi, S.; Ilghami, H. The Effect of Red Grape Seed Extract on Serum Paraoxonase Activity in Patients with Mild to Moderate Hyperlipidemia. Sao Paulo Med. J. 2016, 134, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Corban, M.T.; Widmer, R.J.; Cilluffo, R.; Kazeck, M.A.; Lennon, R.J.; Lerman, L.O.; Lerman, A. The Effect of Polyphenol-Rich Chardonnay Seed Supplements on Peripheral Endothelial Function. Eur. J. Nutr. 2020, 59, 3723–3734. [Google Scholar] [CrossRef]
- Fan, J.; Park, E.; Zhang, L.; Edirisinghe, I.; Burton-Freeman, B.; Sandhu, A.K. Pharmacokinetic Parameters of Watermelon (Rind, Flesh, and Seeds) Bioactive Components in Human Plasma: A Pilot Study to Investigate the Relationship to Endothelial Function. J. Agric. Food Chem. 2020, 68, 7393–7403. [Google Scholar] [CrossRef]
- Han, H.J.; Jung, U.J.; Kim, H.J.; Cho, S.J.; Kim, A.H.; Han, Y.; Choi, M.S. Combined Supplementation with Grape Pomace and Omija Fruit Ethanol Extracts Dose-Dependently Improves Body Composition, Plasma Lipid Profiles, Inflammatory Status, and Antioxidant Capacity in Overweight and Obese Subjects. J. Med. Food 2016, 19, 170–180. [Google Scholar] [CrossRef]
- Kopčeková, J.; Kolesárová, A.; Kováčik, A.; Kováčiková, E.; Gažarová, M.; Chlebo, P.; Valuch, J.; Kolesárová, A. Influence of Long-Term Consumption of Bitter Apricot Seeds on Risk Factors for Cardiovascular Diseases. J. Environ. Sci. Health Part B 2018, 53, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Kopčeková, J.; Kolesárová, A.; Schwarzová, M.; Kováčik, A.; Mrázová, J.; Gažarová, M.; Lenártová, P.; Chlebo, P.; Kolesárová, A. Phytonutrients of Bitter Apricot Seeds Modulate Human Lipid Profile and LDL Subfractions in Adults with Elevated Cholesterol Levels. Int. J. Environ. Res. Public Health 2022, 19, 857. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.C.; Gomes, A.P.O.; Rodrigues, L.C.; Cunha, R.D.S.; Serra, T.M.; Schincaglia, R.M.; Silva, M.A.C.; Horst, M.A.; Rostagno, M.A.; Magalhães, K.G.; et al. Organic Beet Leaves and Stalk Juice Attenuates the Glutathione Peroxidase Increase Induced by High-Fat Meal in Dyslipidemic Patients: A Pilot Double-Blind, Randomized, Controlled Trial. Appl. Sci. 2022, 12, 1973. [Google Scholar] [CrossRef]
- Razavi, S.M.; Gholamin, S.; Eskandari, A.; Mohsenian, N.; Ghorbanihaghjo, A.; Delazar, A.; Rashtchizadeh, N.; Keshtkar-Jahromi, M.; Argani, H. Red Grape Seed Extract Improves Lipid Profiles and Decreases Oxidized Low-Density Lipoprotein in Patients with Mild Hyperlipidemia. J. Med. Food 2013, 16, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Soltani, R.; Hashemi, M.; Farazmand, A.; Asghari, G.; Heshmat-Ghahdarijani, K.; Kharazmkia, A.; Ghanadian, S.M. Evaluation of the Effects of Cucumis Sativus Seed Extract on Serum Lipids in Adult Hyperlipidemic Patients: A Randomized Double-Blind Placebo-Controlled Clinical Trial. J. Food Sci. 2017, 82, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12. [Google Scholar] [CrossRef]
- Drozdz, D.; Alvarez-Pitti, J.; Wójcik, M.; Borghi, C.; Gabbianelli, R.; Mazur, A.; Herceg-Čavrak, V.; Lopez-Valcarcel, B.G.; Brzeziński, M.; Lurbe, E.; et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021, 13, 4176. [Google Scholar] [CrossRef]
- Oliveira, G.V.; Volino-Souza, M.; Leitão, R.; Pinheiro, V.; Alvares, T.S. Is Flow-Mediated Dilatation Associated with near-Infrared Spectroscopy-Derived Magnitude of Muscle O2 Desaturation in Healthy Young and Individuals at Risk for Cardiovascular Disease? Microvasc. Res. 2020, 129, 103967. [Google Scholar] [CrossRef]
- Gayda, M.; Juneau, M.; Tardif, J.C.; Harel, F.; Levesque, S.; Nigam, A. Cardiometabolic and Traditional Cardiovascular Risk Factors and Their Potential Impact on Macrovascular and Microvascular Function: Preliminary Data. Clin. Hemorheol. Microcirc. 2015, 59, 53–65. [Google Scholar] [CrossRef]
- Ghiadoni, L.; Taddei, S.; Virdis, A. Hypertension and Endothelial Dysfunction: Therapeutic Approach. Curr. Vasc. Pharmacol. 2011, 10, 42–60. [Google Scholar] [CrossRef]
- Pirillo, A.; Casula, M.; Olmastroni, E.; Norata, G.D.; Catapano, A.L. Global Epidemiology of Dyslipidaemias. Nat. Rev. Cardiol. 2021, 18, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Barkas, F.; Nomikos, T.; Liberopoulos, E.; Panagiotakos, D. Diet and Cardiovascular Disease Risk among Individuals with Familial Hypercholesterolemia: Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2436. [Google Scholar] [CrossRef] [PubMed]
- Faludi, A.; Izar, M.; Saraiva, J.; Chacra, A.; Bianco, H.; Afiune Neto, A.; Bertolami, A.; Pereira, A.; Lottenberg, A.; Sposito, A.; et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose—2017. Arq. Bras. Cardiol. 2017, 109, 1–76. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1046–e1081. [Google Scholar] [CrossRef]
- Kopin, L.; Lowenstein, C. In the Clinic® Dyslipidemia. Ann. Intern. Med. 2017, 167, ITC81–ITC95. [Google Scholar] [CrossRef]
- Banach, M.; Patti, A.M.; Giglio, R.V.; Cicero, A.F.G.; Atanasov, A.G.; Bajraktari, G.; Bruckert, E.; Descamps, O.; Djuric, D.M.; Ezhov, M.; et al. The Role of Nutraceuticals in Statin Intolerant Patients. J. Am. Coll. Cardiol. 2018, 72, 96–118. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, P.; Ragusky, K.; Phuthong, S.; Ruvira, S.; Ramiro-Cortijo, D.; Cañas, S.; Rebollo-Hernanz, M.; Morales, M.D.; de Pablo, Á.L.L.; Martín-Cabrejas, M.A.; et al. Vasoactive Properties of a Cocoa Shell Extract: Mechanism of Action and Effect on Endothelial Dysfunction in Aged Rats. Antioxidants 2022, 11, 429. [Google Scholar] [CrossRef]
Study | Species | Food | Bioactive Compounds | Intervention | Sample | Primary Outcome |
---|---|---|---|---|---|---|
Annunziata et al. [36] | Vitis Vinifera Aglianico | Grape | Stilbenes, phenolic acids, flavanols, favonols, and anthocyanins | Pomace (Taurisolo®) or placebo 400 mg/twice day 8 week | N = 216; age: 18–75 years; with BMI ≥ 18.5 kg/m² | ↓ D-ROMs ↓ oxLDL ↓ TMAO ¥ |
Argani et al. [37] | Vitis vinifera L. | Red Grape | Proanthocyanidin | Seed extract or placebo 200 mg/day 8 weeks | N = 70; age: 21–64 years; with hyperlipidemia | ↑ HDL-c ↓ LDL-c ↓ TC ↓ TG ↓ PON † |
Corban et al. [38] | Vitis Vinifera Chardonnay | Grape | Polyphenols, fibers and oil. | Seed extract or placebo 4.8 g/day 8 weeks | N = 89; age: ≥18 years; with cardiovascular risk factors | ↔ RH-PAT ↓ TG †,¥ |
Fan et al. [39] | Citrullus lanatus | Watermelon | L-citrulline and arginine | Rind, flesh, seeds or control 100 kcal/meal acute | N = 6; age: ≥18 years; with a overweight/obese (BMI ≥ 25 kg/m²) | ↔ FMD |
Han et al. [40] | Vitis Vinifera and S. chinensis Baillon | Grape and Omija fruit | Resveratrol, schizandrin and flavonoids. | Pomace and extract or placebo 342.5 + 57.5 mg (low dose) or 685 + 115 mg (high dose)/twice day 10 weeks | N = 76; age: 30–70 years; with BMI ≥ 23 kg/m² | ↑ apo A1 ↓ GR ↓ GSH-Px ↓ H2O2 ↓ IL-1b ↓ LDL-c ↓ Lpa ↓ nonHDL-c ↓ SOD ↓ TBARS ↓ TC †,¥ |
Kitada et al. [20] | Passiflora edulis | Passion fruit | Piceatannol | Seed extract or placebo 20 mg/day 8 weeks | N = 39; age: 20–70 years old; group with BMI < 25 or ≥ 25 kg/m² | ↓ BP ↓ insulin ↓ HOMA-IR ↓ HR ↔ FMD †,¥ |
Kopčeková et al. [41] | Prunus armeniaca L. | Bitter apricot | Fiber, fatty acids- oleic, linoleic | Seeds or control 60 mg/kg 12 week | N = 12; age: 20–60 years; healthy adult | ↓ LDL-c ↓ TC ↓ TG ¥ |
Kopčeková et al. [42] | Prunus armeniaca L. | Bitter apricot | Fiber, fatty acids- oleic, linoleic | Seeds or control 60 mg/kg 6 weeks (42 days) | N = 34; age: 20–60 years, with hyperlipidemic | ↓ BMI ↓ BW ↓ LDL-c ↓ TC ¥ |
Oliveira et al. [43] | Beta Bulgaris | Beetroot | Vitexin-2-O-rhamnoside | Leaves and stalk juice or placebo 32 mg (low dose) and 77.5 mg (high dose)/dose acute | N = 13; age: 20–59 years; with dyslipidemia | ↓ GPx ↓ MDA ¥ |
Pérez-Ramírez et al. [21] | Vitis Vinifera L. and Punica granatum L. | Grape and Pomegranate | Hydrolyzable polyphenols and proanthocyanidins | Pomace or control 10 g (1:1) in 250 mL of a commercial beverage 2 weeks | N = 20; age: 40–60 years; abdominal obesity | ↔ BG ↔ HOMA-beta ↔ HOMA-IR |
Ramos-Romero et al. [19] | Vitis vinifera L. cv. Tempranillo | Grape | Insoluble fiber and proanthocyanidins | Pomace or placebo 8 g/day 6 weeks | N = 49; age: 18–70 years; with cardiometabolic risk | ↓ Insulin ↓ HOMA-IR ¥ |
Razavi et al. [44] | Vitis vinifera L. | Red Grape | Proanthocyanidins | Seed extract or placebo 200 mg/day 8 weeks | N = 42; age: 21–64 years; with dyslipidemia. | ↓ LDL-C ↓ ox-LDL ↓ TC ¥ |
Soltani et al. [45] | Cucumis sativus | Cucumber | Polyphenols, carotenes, alkaloids, steroids, amino acids, fibers, saponins and oil. | Seed extract or placebo 500 mg/day 6 weeks | N = 47; age: ≥18 years; with hyperlipidemic | ↓ BMI ↓ TC ↓ TG ↑ HDL-c ↓ LDL-c †,¥ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, I.R.G.; Pinheiro, V.d.S.; de Castro, P.M.L.A.; Reis, I.B.; de Oliveira, G.V.; Alvares, T.S. The Role of By-Products of Fruit and Vegetable Processing for the Dietary Treatment of Cardiovascular Risk Factors: A Narrative Review. Antioxidants 2022, 11, 2170. https://doi.org/10.3390/antiox11112170
Tavares IRG, Pinheiro VdS, de Castro PMLA, Reis IB, de Oliveira GV, Alvares TS. The Role of By-Products of Fruit and Vegetable Processing for the Dietary Treatment of Cardiovascular Risk Factors: A Narrative Review. Antioxidants. 2022; 11(11):2170. https://doi.org/10.3390/antiox11112170
Chicago/Turabian StyleTavares, Isabela Ribeiro Grangeira, Vivian dos Santos Pinheiro, Patrícia Marques Lisboa Aroso de Castro, Isabelle Barbosa Reis, Gustavo Vieira de Oliveira, and Thiago Silveira Alvares. 2022. "The Role of By-Products of Fruit and Vegetable Processing for the Dietary Treatment of Cardiovascular Risk Factors: A Narrative Review" Antioxidants 11, no. 11: 2170. https://doi.org/10.3390/antiox11112170
APA StyleTavares, I. R. G., Pinheiro, V. d. S., de Castro, P. M. L. A., Reis, I. B., de Oliveira, G. V., & Alvares, T. S. (2022). The Role of By-Products of Fruit and Vegetable Processing for the Dietary Treatment of Cardiovascular Risk Factors: A Narrative Review. Antioxidants, 11(11), 2170. https://doi.org/10.3390/antiox11112170