Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,233)

Search Parameters:
Keywords = functional food

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1037 KiB  
Review
Evolution and Functional Diversity of GATA Transcription Factors in Filamentous Fungi: Structural Characteristics, Metabolic Regulation and Environmental Response
by Danni Hu, Ruoyu Zhao, Yingxu Lin and Chunmiao Jiang
Microbiol. Res. 2025, 16(6), 120; https://doi.org/10.3390/microbiolres16060120 (registering DOI) - 6 Jun 2025
Abstract
Filamentous fungi hold critical industrial value for their ability to produce enzymes, antibiotics, organic acids, and food fermentation. GATA transcription factors (TFs) serve as central regulators of nitrogen metabolism, synthesis of secondary metabolites, stress adaptation, and directly influence fungal development and pathogenicity in [...] Read more.
Filamentous fungi hold critical industrial value for their ability to produce enzymes, antibiotics, organic acids, and food fermentation. GATA transcription factors (TFs) serve as central regulators of nitrogen metabolism, synthesis of secondary metabolites, stress adaptation, and directly influence fungal development and pathogenicity in filamentous fungi. In this review, we primarily discuss the structural characterization, different types, and phylogenetic analysis of filamentous fungi GATA TFs in filamentous fungi. Subsequently, we systematically summarize the multifunctions of GATA TFs in the mycelial growth, morphological differentiation, and conidial development of filamentous fungi. In addition, we explore their functions in the synthesis of secondary metabolites such as antibiotics (e.g., cephalosporins, penicillins) and organic acids (e.g., ganoderic acid, fumaric acid) in filamentous fungi. Furthermore, we focus on the key roles of GATA TFs AreA and AreB in nitrogen and carbon metabolism in filamentous fungi and their potential synergistic regulatory relationships. Finally, we review the important roles of GATA TFs in the adaptation of filamentous fungi to environmental changes. This review provides research ideas for the development of genetically engineered strains with optimized growth characteristics, increased target metabolites in the fermentation production process, and enhanced environmental adaptability. Full article
Show Figures

Figure 1

43 pages, 3957 KiB  
Review
Advances in Hydrogel-Integrated SERS Platforms: Innovations, Applications, Challenges, and Future Prospects in Food Safety Detection
by Xorlali Nunekpeku, Huanhuan Li, Ayesha Zahid, Chenhui Li and Wei Zhang
Biosensors 2025, 15(6), 363; https://doi.org/10.3390/bios15060363 (registering DOI) - 5 Jun 2025
Abstract
Background: Food safety remains a global concern due to biological and chemical contaminants, including adulterants, pathogens, antibiotic residues, and pesticides. Traditional detection methods are accurate but limited by time requirements, complex sample preparation, high costs, and poor field applicability. Surface-Enhanced Raman Spectroscopy [...] Read more.
Background: Food safety remains a global concern due to biological and chemical contaminants, including adulterants, pathogens, antibiotic residues, and pesticides. Traditional detection methods are accurate but limited by time requirements, complex sample preparation, high costs, and poor field applicability. Surface-Enhanced Raman Spectroscopy (SERS) offers non-destructive analysis with low detection limits and high specificity, yet conventional SERS substrates face challenges with reproducibility, nanoparticle aggregation, and sensitivity in food matrices. Hydrogels have emerged as supporting materials for SERS due to their water content, tunable porosity, flexibility, and ability to entrap plasmonic nanostructures. Scope and Approach: This review examines recent advances in hydrogel-integrated SERS platforms for food safety applications. The three-dimensional structure of hydrogels enables homogeneous distribution of metal nanoparticles, prevents aggregation, and offers analyte enrichment. We analyze material design, functionalization strategies, and how hydrogel properties—crosslinking density, porosity, surface charge, and nanoparticle distribution—influence SERS performance in food matrices. Key Findings and Conclusions: Hydrogel-integrated SERS platforms demonstrate superior performance in detecting various food contaminants—including pesticides, adulterants, and additives—in real food matrices, often achieving detection limits in the nanomolar to picomolar range, depending on the analyte and substrate design. Current limitations include storage stability concerns, batch-to-batch variability, and regulatory acceptance hurdles. Future research directions should focus on multiplex detection capabilities, integration with smart sensing technologies, and industrial scalability to facilitate practical deployment in global food safety monitoring across diverse supply chains. Full article
(This article belongs to the Special Issue Advanced SERS Biosensors for Detection and Analysis)
11 pages, 2001 KiB  
Communication
The Engineered Synthesis and Enhancement of Nitrogen and Chlorine Co-Doped Fluorescent Carbon Dots for the Sensitive Detection of Quercetin
by Yuan Jiao, Xuewen Miao, Lizhang Wang, Shasha Hong, Yifang Gao and Xin Wang
Materials 2025, 18(11), 2669; https://doi.org/10.3390/ma18112669 (registering DOI) - 5 Jun 2025
Abstract
Flavonoid alcohols, particularly quercetin, as emerging antioxidants, demand advanced detection methodologies to comprehensively explore and evaluate their potential environmental and health risks. In this study, nitrogen–chlorine co-doped carbon dots (N, Cl-CDs), featuring an extended wavelength emission at 625 nm, were synthesized via the [...] Read more.
Flavonoid alcohols, particularly quercetin, as emerging antioxidants, demand advanced detection methodologies to comprehensively explore and evaluate their potential environmental and health risks. In this study, nitrogen–chlorine co-doped carbon dots (N, Cl-CDs), featuring an extended wavelength emission at 625 nm, were synthesized via the reaction of 4-chloro-1,2-phenylenediamine with polyethyleneimine. The engineered N, Cl-CDs exhibit superior photostability, exceptional aqueous dispersibility, and anti-interference capability in complex matrices. Leveraging static electron transfer mechanisms, the N, Cl-CDs demonstrate selective fluorescence quenching toward quercetin with an ultralow detection limit of 60.42 nM. Validation through rigorous spiked recovery assays in apple peel and red wine has been proficiently performed with satisfactory accuracy, highlighting the significant prospect of the constructed N, Cl-CDs for quercetin identification in real samples. This study provides valuable insights into the analytical determination of flavonoid compounds in complex environmental matrices, highlighting the potential of N, Cl-CDs for environmental and food safety monitoring. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Figure 1

15 pages, 1259 KiB  
Article
Effects of Oral Nutrition Supplementation with or Without Multi-Domain Intervention Program on Cognitive Function and Overall Health in Older Adults: A Randomized Controlled Trial
by Hae-Jin Kang, Eun-Hye Lee, Seong-Hye Choi, So-Young Moon, Jee-Hyang Jeong and Yoo-Kyoung Park
Nutrients 2025, 17(11), 1941; https://doi.org/10.3390/nu17111941 - 5 Jun 2025
Abstract
Objectives: The global rise in dementia prevalence is escalating the socioeconomic burden, prompting efforts in prevention and treatment. This study aimed to evaluate the effects of an 8-week oral nutrition supplement (ONS) program with or without a multi-domain intervention program (MIP) in patients [...] Read more.
Objectives: The global rise in dementia prevalence is escalating the socioeconomic burden, prompting efforts in prevention and treatment. This study aimed to evaluate the effects of an 8-week oral nutrition supplement (ONS) program with or without a multi-domain intervention program (MIP) in patients with mild cognitive impairment. Methods: Forty-nine patients with mild cognitive impairment were divided into three groups: (1) ONS (ONS), (2) ONS+MIP (ONS+MIP), and (3) control (CON). Korean-style dementia prevention MIP was used in the ONS+MIP group. Two packs of ONS per day were provided to the ONS group during the intervention period. Cognitive function , nutritional evaluation, body composition analysis, and physical performance were measured. The paired t-test and one-way analysis of variance were used for statistical analyses. Results: A final analysis was performed on the final 46 participants. After intervention, the cognitive function test (Repeatable Battery for the Assessment of Neuropsychological Status, RBANS) scores of the ONS+MIP group were significantly increased compared to the baseline scores. However, no significant changes were observed in the ONS and CON groups. Eating behavior and food quality also improved in the ONS+MIP group, with a significant difference among the three groups. There was no significant change in body composition in all groups; however, grip strength (left hand), muscular endurance, and the total SPPB score improved in the ONS+MIP group. The total SPPB score decreased in the CON group. Conclusions: Along with ONS intake, intensive education and continuous monitoring through multi-domain interventions are important to improve cognitive function. Trial registration: Clinical Research Information Service identifier: KCT0007253. Full article
(This article belongs to the Special Issue Nutritional Interventions for Age-Related Diseases)
17 pages, 1975 KiB  
Article
Enhancing Oxidative Stability and Nutritional Quality of Flaxseed Oil Using Apricot, Sesame, and Black Cumin Oil Blends
by Dino Muhović, Gorica Cvijanović, Marija Bajagić, Lato Pezo, Lazar Pejić and Biljana Rabrenović
Foods 2025, 14(11), 2000; https://doi.org/10.3390/foods14112000 - 5 Jun 2025
Abstract
There is an unmet need for an affordable, high-quality, and non-thermally processed source of omega-3 fatty acids. Cold-pressed flaxseed oil comes closest to meeting these criteria. Flaxseed oil is also subject to rapid oxidative degradation. Sesame, black cumin, and apricot kernel oils are [...] Read more.
There is an unmet need for an affordable, high-quality, and non-thermally processed source of omega-3 fatty acids. Cold-pressed flaxseed oil comes closest to meeting these criteria. Flaxseed oil is also subject to rapid oxidative degradation. Sesame, black cumin, and apricot kernel oils are already used as functional foods and are more resistant to oxidative degradation. GC, HPLC, DPPH, the Folin−Ciocalteu method, and OXITEST were applied to the four cold-pressed oils and their binary blends with flaxseed oil. The fatty acid profile showed that the dominant fatty acid in flaxseed oil was linolenic acid with a content of 52.27 ± 0.17%, while oleic acid dominated in apricot kernel oil (69.45 ± 0.18%) and linoleic acid (58.80 ± 0.07%) in black cumin oil, while sesame oil was characterized by approximately equal proportions of oleic (42.21 ± 0.20%) and linoleic acids (43.37 ± 0.07%). The content of oleic acid showed a moderate, statistically significant correlation with the oxidative stability of oils and blends. The antioxidant capacity of flaxseed oil (25 ± 1.4 μmol TE/g) was most strongly influenced by the addition of black cumin oil (75 ± 3.5 μmol TE/g), so that the highest antioxidant capacity was achieved by the blend with an addition of 50% of this oil (57.5 ± 2.4 μmol TE/g). Oxidative stability tests show that apricot kernel oil stabilizes flaxseed oil the most and increases the oxidative stability of the blend by up to 60%. Full article
Show Figures

Figure 1

30 pages, 2788 KiB  
Review
Rethinking Packaging for Food Waste Prevention: A Scoping Review of Consumer Behavior and Design Opportunities
by Monireh Mahmoudi, Mina Mashayekhian, Bradley Bunch and Amin Joodaky
Sustainability 2025, 17(11), 5213; https://doi.org/10.3390/su17115213 - 5 Jun 2025
Abstract
Food waste poses critical environmental, economic, and social challenges, with consumer behavior recognized as a key leverage point for intervention. Packaging plays a vital role in preserving food quality and reducing waste, yet its behavioral influence on household food waste (HFW) remains underexplored. [...] Read more.
Food waste poses critical environmental, economic, and social challenges, with consumer behavior recognized as a key leverage point for intervention. Packaging plays a vital role in preserving food quality and reducing waste, yet its behavioral influence on household food waste (HFW) remains underexplored. This review systematically examines 52 studies investigating the impact of food packaging—excluding storage/date labeling—on consumer food waste (CFW) behaviors. Using a structured methodology, we classified studies by methodological design, geographic coverage, food types, and focal packaging features. The analysis reveals a dominant reliance on consumer surveys and short-duration diaries, with limited application of rigorous experimental methods. Geographically, the English-language literature is skewed toward high-income countries, particularly Australia and Europe, with notable gaps in regions such as Asia and Africa. Moreover, despite U.S. households discarding approximately 40% of their food, research coverage remains limited. The findings also expose a misalignment between research focus and consumer-perceived importance of packaging features; attributes such as transparency, grip/shape, and dispensing mechanisms are frequently rated as important by consumers but are under-represented in the literature. This review contributes by identifying these gaps, synthesizing behavioral evidence, and offering a roadmap for future research and design innovation. By better aligning packaging functionalities with real-world behaviors, this work supports the development of consumer-informed solutions to mitigate HFW and promote sustainable food systems. Full article
(This article belongs to the Special Issue Consumer Behavior, Food Waste and Sustainable Food Systems)
Show Figures

Figure 1

14 pages, 1001 KiB  
Article
Assessing the Functional and Structural Properties of Peanut Meals Modified by Transglutaminase-Coupled Glycation
by Yan Liu, Tingwei Zhu, Fusheng Chen, Xingfeng Guo, Chenxian Yang, Yu Chen and Lifen Zhang
Foods 2025, 14(11), 1999; https://doi.org/10.3390/foods14111999 - 5 Jun 2025
Abstract
To increase the added value of peanut meal (PM, protein content of 46.17%) and expand its application in food processing, cold-pressed PM was modified via transglutaminase (TGase)-coupled glycation to enhance its functional properties. The effects of the modification conditions (i.e., PM concentration, PM/glucose [...] Read more.
To increase the added value of peanut meal (PM, protein content of 46.17%) and expand its application in food processing, cold-pressed PM was modified via transglutaminase (TGase)-coupled glycation to enhance its functional properties. The effects of the modification conditions (i.e., PM concentration, PM/glucose mass ratio, temperature, and time) on the functional properties of PM were investigated, and its structural properties were evaluated using water contact angle measurements, fluorescence spectroscopy, and Fourier-transform infrared spectroscopy. It was found that TGase-coupled glycation modification altered the secondary structure of PM and increased both the water contact angle and the surface hydrophobicity, thereby significantly affecting its functional properties. Additionally, superior emulsification, foaming, and oil-absorbing properties were achieved for the modified PM, which were named EPM, FPM, and OPM, respectively (specimens under different modification conditions). Notably, the emulsification activity of the EPM sample was enhanced by 69.8% (i.e., from 18.48 to 31.38 m2/g); the foaming capacity of the FPM specimen was increased by 84.00% (i.e., from 21.00 to 46.00%); and the oil-absorbing capacity of the OPM sample was enhanced by 359.57% (i.e., from 1.41 to 6.48 g/g protein). Full article
(This article belongs to the Section Food Biotechnology)
20 pages, 9749 KiB  
Article
Sustainable Strategy for Microplastic Mitigation: Fe3O4 Acid-Functionalized Magnetic Nanoparticles for Microplastics Removal
by Ivanilson da Silva de Aquino, Ester de Araújo Freire, Alisson Mendes Rodrigues, Otilie Eichler Vercillo, Mauro Francisco Pinheiro da Silva, Mateus Faustino Salazar da Rocha, Míriam Cristina Santos Amaral and Ariuska Karla Barbosa Amorim
Sustainability 2025, 17(11), 5203; https://doi.org/10.3390/su17115203 - 5 Jun 2025
Abstract
Microplastic (MPs) pollution has emerged as a critical environmental issue due to its persistent accumulation in ecosystems, posing risks to aquatic life, food safety, and human health. In this study, magnetic Fe3O4 nanoparticles functionalized with citric acid (Fe3O [...] Read more.
Microplastic (MPs) pollution has emerged as a critical environmental issue due to its persistent accumulation in ecosystems, posing risks to aquatic life, food safety, and human health. In this study, magnetic Fe3O4 nanoparticles functionalized with citric acid (Fe3O4@AC) were used to remove high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) MPs from an aqueous medium. Fe3O4@AC was synthesized via the coprecipitation method and characterized by morphology (SEM), crystalline phases (XRD), chemical aspects (FTIR), and surface area (nitrogen sorption isotherms). The MPs removal efficiency of Fe3O4@AC was evaluated based on the initial concentration, contact time, and pH. The adsorption isotherm and kinetics data were best described by the Sips and pseudo-second-order models, respectively. Fe3O4@AC removed 80% of the MPs at a pH of 6. Based on experimental observations (zeta potential, porosity, and SEM) and theoretical insights, it was concluded that hydrogen bonding, pore filling, and van der Waals forces governed the adsorption mechanism. Reusability tests showed that Fe3O4@AC could be reused up to five times, with a removal efficiency above 50%. These findings suggest that Fe3O4@AC is a sustainable and promising material for the efficient removal of microplastics from wastewater, offering a reusable and low-impact alternative that contributes to environmentally responsible wastewater treatment strategies. Full article
(This article belongs to the Special Issue Resource Sustainability: Sustainable Materials and Green Engineering)
Show Figures

Graphical abstract

20 pages, 1370 KiB  
Article
Valorization of Grape Seed By-Products Using Subcritical Water Extraction: A Sustainable Approach for Bioactive Compound Recovery
by Marion Breniaux, Benjamin Poulain, Sandra Mariño-Cortegoso, Letricia Barbosa-Pereira, Claudia Nioi and Rémy Ghidossi
Processes 2025, 13(6), 1788; https://doi.org/10.3390/pr13061788 - 5 Jun 2025
Abstract
Grape seeds are a major by-product of the winemaking industry and a great source of bioactive compounds such as polyphenols and proteins. These compounds have a wide range of applications including those in nutraceutical products and cosmetics and within the wine industry itself. [...] Read more.
Grape seeds are a major by-product of the winemaking industry and a great source of bioactive compounds such as polyphenols and proteins. These compounds have a wide range of applications including those in nutraceutical products and cosmetics and within the wine industry itself. Subcritical water extraction (SWE) was explored as a global method to valorize grape seed by-products for their different bioactive compounds in the context of waste valorization, green chemistry (solvent-free extraction), and circular economy. A Box–Behnken design was applied to generate mathematical responses and the ANOVA analysis determined the optimal extraction conditions (pressure, temperature, and time of extraction) for different responses such as total polyphenol content (TPC), antioxidant activity (AA), and total protein (Tprot). Extraction temperature was found to be the most significant factor influencing all responses while pressure had no significant impact on them. Optimal conditions were derived from the mathematical models for each response. For polyphenol extraction, the optimal conditions were as follows: 170 °C and 20 bar for 39 min with 288 mg GAE/g DM. To achieve the highest AA, SWE parameters should be set at 165 °C and 20 bar for 51 min with 332 mg TROLOX/g DM. For the extraction of proteins, it is necessary to work at 105 °C and 20 bar for 10 min (78 mg BSA/g DM) to preserve protein functionality. In comparison, conventional solvent extraction was unable to outperform SWE with values under the SWE results. Given the high content of polyphenols found in the extracts, an HPLC analysis was conducted. The following compounds were detected and quantified: protocatechuic acid (7.75 mg/g extract), gallic acid (6.63 mg/g extract), delphinidin chloride (1.44 mg/g extract), catechin (0.36 mg/g extract), gentisic acid (0.197 mg/g extract), and some epicatechin (0.07 mg/g extract). Additionally, Maillard reaction products (MRPs) were detected at high temperatures, with 5-hydroxymethylfurfural (5-HMF) appearing in extracts processed at 165 °C and above. The presence of MRPs, known for their antioxidant and bioactive properties, may have contributed to the increased AA observed in these extracts. These findings are significant because a solvent-free extraction process like SWE offers a sustainable approach to repurposing winemaking by-products, with potential applications in the wine and food industries. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

23 pages, 6844 KiB  
Article
A Hydrolyzed Soybean Protein Enhances Oxidative Stress Resistance in C. elegans and Modulates Gut–Immune Axis in BALB/c Mice
by Jun Liu, Yansheng Zhao, Fei Leng, Xiang Xiao, Weibo Jiang and Shuntang Guo
Antioxidants 2025, 14(6), 689; https://doi.org/10.3390/antiox14060689 - 5 Jun 2025
Abstract
Soy protein isolate (SPI) is a high-purity protein from defatted soybeans, providing emulsifying and gelling functions for plant-based foods and supplements. Hydrolysis can facilitate the production of bioactive small-molecule proteins or peptides with potential functional applications. In this study, 20% hydrolyzed soy protein [...] Read more.
Soy protein isolate (SPI) is a high-purity protein from defatted soybeans, providing emulsifying and gelling functions for plant-based foods and supplements. Hydrolysis can facilitate the production of bioactive small-molecule proteins or peptides with potential functional applications. In this study, 20% hydrolyzed soy protein (20% HSP) was prepared from SPI, and the effects of 20% HSP and SPI on alleviating oxidative stress in Caenorhabditis elegans (C. elegans) and regulating immune–gut microbiota in cyclophosphamide (CTX)-induced immunocompromised BALB/c mice were investigated. In C. elegans, both SPI and 20% HSP (300 μg/mL) enhanced locomotive activities, including body bending and head thrashing, and improved oxidative stress resistance under high glucose conditions. This improvement was mediated by increased antioxidant enzyme activities (SOD, CAT, and GSH-Px), while malondialdehyde (MDA) content was reduced by 60.15% and 82.28%, respectively. Both of them can also significantly extend the lifespan of normal C. elegans and paraquat-induced oxidative stress models by inhibiting lipofuscin accumulation. This effect was mediated through upregulation of daf-16 and suppression of daf-2 and akt-1 expression. In immunocompromised mice, 20% HSP alleviated CTX-induced immune dysfunction by increasing peripheral white blood cells and lymphocytes, attenuating thymic atrophy, and reducing hepatic oxidative stress via MDA inhibition. Gut microbiota analysis revealed that 20% HSP restored microbial balance by suppressing Escherichia-Shigella and enriching beneficial genera, like Psychrobacter. These findings highlight 20% HSP and SPI’s conserved anti-aging mechanisms via daf-16 activation in C. elegans and immune–gut modulation in mice, positioning them as plant-derived nutraceuticals targeting oxidative stress and immune dysregulation. Full article
(This article belongs to the Special Issue The Interaction Between Gut Microbiota and Host Oxidative Stress)
Show Figures

Figure 1

20 pages, 2030 KiB  
Article
Characterization of Coffee Waste-Based Biopolymer Composite Blends for Packaging Development
by Gonzalo Hernández-López, Laura Leticia Barrera-Necha, Silvia Bautista-Baños, Mónica Hernández-López, Odilia Pérez-Camacho, José Jesús Benítez-Jiménez, José Luis Acosta-Rodríguez and Zormy Nacary Correa-Pacheco
Foods 2025, 14(11), 1991; https://doi.org/10.3390/foods14111991 - 5 Jun 2025
Abstract
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. [...] Read more.
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. Extracted green coffee bean oil (CO) was used as a plasticizer, and CP was used as a filler with and without functionalization. A solution of chitosan nanoparticles (ChNp) as a coating was applied to the ribbons. For the raw material, proximal analysis of the CP showed cellulose and lignin contents of 53.09 ± 3.42% and 23.60 ± 1.74%, respectively. The morphology of the blends was observed via scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) showed an increase in the ribbons’ thermal stability with the functionalization. The results of differential scanning calorimetry (DSC) revealed better miscibility for the functionalized samples. The mechanical properties showed that with CP incorporation into the blends and with the ChNp coating, the Young’s modulus and the tensile strength decreased with no significant changes in the elongation at break. This work highlights the potential of reusing different by-products from the coffee industry, such as coffee oil from green beans and coffee parchment as a filler, and incorporating them into PLA PBAT biodegradable polymer blend ribbons with a nanostructured antimicrobial coating based on chitosan for future applications in food packaging. Full article
Show Figures

Figure 1

4 pages, 159 KiB  
Editorial
Insights on the Health Benefits and Functional Potential of Food Bioactive Compounds
by Diego Morales
Foods 2025, 14(11), 1984; https://doi.org/10.3390/foods14111984 - 4 Jun 2025
Abstract
In recent decades, the global scientific community has shown a growing interest in the field of functional foods and bioactive compounds, spurred by a confluence of public health challenges and emerging nutritional strategies. [...] Full article
19 pages, 1197 KiB  
Article
Comparative Characterization of Phenolic Profile and Antioxidant Activity in Homemade and Commercial Jujube Vinegar
by Ana-Maria Stoenescu and Florin Stănică
Beverages 2025, 11(3), 83; https://doi.org/10.3390/beverages11030083 - 4 Jun 2025
Abstract
The growing interest in functional foods has led to a heightened focus on the bioactive properties of different types of vinegar, including jujube vinegar, which has traditionally been valued for its health benefits. This study provides a comparative analysis of the chemical composition [...] Read more.
The growing interest in functional foods has led to a heightened focus on the bioactive properties of different types of vinegar, including jujube vinegar, which has traditionally been valued for its health benefits. This study provides a comparative analysis of the chemical composition and bioactive properties of homemade and commercial jujube vinegar, particularly emphasizing their phenolic profiles and antioxidant activities. Both vinegar samples were analyzed for their physico-chemical properties, phenolic compounds content, and organic acids using high-performance liquid chromatography coupled with mass spectrometry. The results indicated that homemade jujube vinegar contained significantly higher levels of key bioactive compounds, including protocatechuic aldehyde > syringaldehyde > vanillic acid > caffeic acid > gallic acid > protocatechuic acid > chlorogenic acid > p-coumaric and quercetin, compared to the commercial vinegar. Such compounds are widely acknowledged for their antioxidant capacity, anti-inflammatory effects, and overall contributions to human health. The findings suggest that traditional production methods, raw material selection, and fermentation conditions enhance the nutritional potential of jujube vinegar. Full article
Show Figures

Graphical abstract

21 pages, 9234 KiB  
Article
Effects of Aqueous Extracts from Wheat Bran Layers on the Functional Properties of Wheat Starch and Gluten
by Bingbing Wu, Chunlei Yu, Zhongwei Chen and Bin Xu
Foods 2025, 14(11), 1988; https://doi.org/10.3390/foods14111988 - 4 Jun 2025
Abstract
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour [...] Read more.
Wheat bran (WB) is rich in bioactive compounds, but its incorporation into food products often negatively affects dough properties. The soluble components in WB, including polysaccharides, minerals, and proteins, exhibit significant variations across different bran layers and may dissolve and interact with flour components during food processing, affecting dough properties. This study aims to investigate the influence of aqueous extracts from different WB layers (aleurone layer, AL; non-aleurone layer, NAL) and their components on the functional properties of wheat starch and gluten. The results indicate that the AL-rich fraction yielded a higher extract content (30.6%) compared to the NAL-rich fraction (15.1%), attributable to the higher cellular content in the AL. Both the extracts and residues from AL and NAL significantly lowered the denaturation temperature of wheat gluten. The aqueous extracts reduced the storage (G′) and loss (G″) moduli of wheat gluten, primarily attributed to the effect of polysaccharide components, whereas the protein and ash fractions elevated the G′ and G″ at suitable dosages. The extracts elevated the gelatinization temperature of starch, but reduced enthalpy (ΔH). Moreover, the pasting viscosity of starch with WB extract decreased due to the combined effects of protein and ash fractions. These findings provide insights into the roles of water extracts from different WB layers and their components in modulating wheat-based product quality. This study also offers a theoretical basis for optimizing WB utilization in foods, thus providing a theoretical foundation for promoting whole-wheat foods or foods containing WB. Full article
Show Figures

Graphical abstract

27 pages, 2615 KiB  
Article
Multivariate Evaluation of Biofunctional Metabolites in Korean Soybean Cultivars by Use Categories: Assessment of Antioxidant and Enzyme Inhibition Activities
by Kye Man Cho, Se Hyeon Jeon, Eun Jeong Ko, Dong Hyun Park, Ye Ri Jeong, Du Yong Cho, Jeong Ho Kim and Jin Hwan Lee
Antioxidants 2025, 14(6), 683; https://doi.org/10.3390/antiox14060683 - 4 Jun 2025
Abstract
This research investigates the metabolite composition and biofunctional activiteies of 41 Korean soybeans, categorized by application: bean sprout, bean paste, vegetable, and cooked-with-rice. Isoflavones were identified via UPLC-Q-TOF-MS/MS and quantified using HPLC, revealing malonylgenistin as the predominant composition (average 743.4 μg/g, 42.3% of [...] Read more.
This research investigates the metabolite composition and biofunctional activiteies of 41 Korean soybeans, categorized by application: bean sprout, bean paste, vegetable, and cooked-with-rice. Isoflavones were identified via UPLC-Q-TOF-MS/MS and quantified using HPLC, revealing malonylgenistin as the predominant composition (average 743.4 μg/g, 42.3% of total isoflavones). Bean sprout showed the highest average isoflavone (2780.6 μg/g), followed by bean paste (1837.8 μg/g), cooked-with-rice (1448.2 μg/g), and vegetable (883.2 μg/g), with significant differences in individual cultivars. Protein ranged from 36.8 to 46.6% and oil from 17.0 to 22.3%, with vegetable soybeans exhibiting the highest average protein (44.9%) and lowest average oil (18.6%). Moreover, PLS-DA and hierarchical clustering revealed distinct metabolic patterns in usage groups. Antioxidant activities (radical scavenging; DNA protection) and enzyme inhibition (tyrosinase; α-glucosidase) also varied significantly, correlating with isoflavone distributions. Particularly, Sorog exhibited the highest isoflavone (3722.7 μg/g) and strong antioxidant activity (DPPH: 72.2%; ABTS: 93.8%, 500 μg/mL), DNA protection (92.8%, 200 μg/mL), and inhibition of tyrosinase and α-glucosidase by 78.4% and 84.2% (500 μg/mL). These findings suggest that isoflavone-rich bean sprout soybeans, especially Sorog, are promising candidates for health-promoting foods and functional cultivar development. This is the first systematic study comparing the metabolites and health-related properties of soybeans based on Korean usage categories. Full article
(This article belongs to the Special Issue Antioxidant Capacity of Natural Products—2nd Edition)
Back to TopTop