Solvent-Free Microwave Extraction of Essential Oils from Litsea cubeba (Lour.) Pers. at Different Harvesting Times and Their Skin-Whitening Cosmetic Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Solvent-Free Microwave Extraction (SFME)
2.2.1. Apparatus and Procedure
2.2.2. Single-Factor Experiment
2.2.3. Process Optimization—Face-Centered Central Composite Design (FCCD)
Run | X1 Microwave Irradiation Power (W) | X2 Microwave Irradiation Time (min) | Response (Y) Essential Oil Yield (%) |
---|---|---|---|
1 | 450 (0) | 20 (0) | 1.800 |
2 | 450 (0) | 20 (0) | 1.710 |
3 | 450 (0) | 20 (0) | 1.800 |
4 | 400 (−1) | 25 (+1) | 1.710 |
5 | 400 (−1) | 15 (−1) | 0.945 |
6 | 500 (+1) | 25 (+1) | 1.620 |
7 | 500 (+1) | 20 (0) | 1.620 |
8 | 450 (0) | 20 (0) | 1.710 |
9 | 450 (0) | 15 (−1) | 1.260 |
10 | 400 (−1) | 20 (0) | 1.530 |
11 | 500 (+1) | 15 (−1) | 1.530 |
12 | 450 (0) | 25 (+1) | 1.800 |
13 | 450 (0) | 20 (0) | 1.620 |
2.3. Conventional Hydrodistillation (HD)
2.4. Kinetics of Essential Oil Extraction
2.5. Scanning Electron Microscope (SEM)
2.6. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
2.7. In Vitro Antioxidant Activity
2.7.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Assay
2.7.2. Peroxyl Radical Scavenging Capacity (PSC) Assay
2.8. Tyrosinase Inhibition Assay
2.9. Melanogenesis Inhibition Assay
2.9.1. Cell Culture
2.9.2. Cytotoxicity Assay
2.9.3. Melanin Content Measurement
2.9.4. Tyrosinase Activity Assessment
2.9.5. Tyrosinase Related Proteins-2 (TRP-2) Gene Expression
2.10. Statistical Analysis
3. Results and Discussion
3.1. The Effect of Microwave Irradiation Power and Time on SFME Yield
3.2. SFME Optimization Design
3.2.1. Model Fitting and Analysis
3.2.2. Response Surface Analysis
3.2.3. Experimental Validation of Predictive Model
3.3. Extraction Kinetics Comparison of SFME and HD
3.4. Impact of Microwave on Microstructure
3.5. Cost, Cleanliness, Up-Scaling, and Safety Considerations
3.6. Impact of Extraction Methods on Chemical Composition of L. cubeba Essential Oils at Different Harvesting Times
3.7. In Vitro Antioxidant Activities
3.8. Tyrosinase Inhibitory Activities
3.9. Melanogenesis Assay in B16-F10 Melanoma Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Irwanto, R.R.; Irsyam, A.S.D.; Yus, R.R. Litsea cubeba (Lour.) Pers. Lauraceae. In Ethnobotany of the Mountain Regions of Southeast Asia; Franco, F.M., Ed.; Springer Nature Switzerland: Berlin, Germany, 2020; pp. 1–7. [Google Scholar]
- Saikiaa, A.K.; Chetiaa, D.; D’Arrigob, M.; Smerigliob, A.; Stranoc, T.; Ruberto, G. Screening of fruit and leaf essential oils of Litsea cubeba Pers. from north-east India–chemical composition and antimicrobial activity. J. Essent. Oil Res. 2013, 25, 330–338. [Google Scholar] [CrossRef]
- Kamle, M.; Mahato, D.K.; Lee, K.E.; Bajpai, W.K.; Gajurel, P.R.; Gu, K.S.; Kumar, P. Ethnopharmacological properties and medicinal uses of Litsea cubeba. Plants 2019, 8, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thielmann, J.; Theobald, M.; Wutz, A.; Krolo, T.; Buergy, A.; Niederhofer, J.; Welle, F.; Muranyi, P. Litsea cubeba fruit essential oil and its major constituent citral as volatile agents in an antimicrobial packaging material. Food Microbiol. 2021, 96, 103725. [Google Scholar] [CrossRef] [PubMed]
- Bototová, P.; Galovičová, L.; Vukovic, N.L.; Vukic, M.; Kunová, S.; Hanus, P.; Kowalczewski, P.L.; Bakay, L.; Kačániová, M. Role of Litsea cubeba essential oil in agricultural products safety: Antioxidant and antimicrobial applications. Plants 2022, 11, 1504. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.C.; Chang, W.T.; Hseu, Y.C.; Chen, H.Y.; Chuang, H.C.; Lin, C.C.; Lee, M.S.; Lin, M.K. Immunosuppressive effect of Litsea cubeba L. essential oil on dendritic cell and contact hypersensitivity responses. Int. J. Mol. Sci. 2016, 17, 1319. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.J.; Tseng, Y.H.; Chu, F.H.; Wen, T.Y.; Cheng, W.W.; Chen, Y.T.; Tsao, N.W.; Wang, S.Y. Neuropharmacological activities of fruit essential oil from Litsea cubeba Persoon. J. Wood Sci. 2012, 58, 538–543. [Google Scholar] [CrossRef]
- Chaiyasut, C.; Sivamaruthi, B.S.; Wongwan, J.; Thiwan, K.; Rungseevijitprapa, W.; Klunklin, A.; Kunaviktikul, W. Effects of Litsea cubeba (Lour.) Persoon essential oil aromatherapy on mood states and salivary cortisol levels in healthy volunteers. Evid. -Based Complement. Altern. Med. 2020, 2020, 4389239. [Google Scholar] [CrossRef]
- Capetti, F.; Tacchini, M.; Marengo, A.; Cagliero, C.; Bicchi, C.; Rubiolo, P.; Sgorbini, B. Citral-containing essential oils as potential tyrosinase inhibitors: A bio-guided fractionation approach. Plants 2021, 10, 969. [Google Scholar] [CrossRef]
- Tawatsin, A.; Asavadachanukorn, P.; Thavara, U.; Wongsinkongman, P.; Bansidhi, J.; Boonruad, T.; Chavalittumrong, P.; Soonthornchareonnon, N.; Komalamisra, N.; Mulla, M. Repellency of essential oils extracted from plants in Thailand against four mosquito vectors (Diptera: Culicidae) and oviposition deterrent effects against Aedes aegypti (Diptera: Culicidae). Southeast Asian J. Trop. Med. 2006, 37, 915. [Google Scholar]
- Gogoi, R.; Loying, R.; Sarma, N.; Munda, S.; Pandey, S.K.; Lal, M. A comparative study on antioxidant, anti-inflammatory, genotoxicity, anti-microbial activities and chemical composition of fruit and leaf essential oils of Litsea cubeba Pers. from North-east India. Ind. Crops Prod. 2018, 125, 131–139. [Google Scholar] [CrossRef]
- She, Q.; Li, W.; Jiang, Y.; Wu, Y.; Zhou, Y.; Zhang, L. Chemical composition, antimicrobial activity and antioxidant activity of Litsea cubeba essential oils in different months. Nat. Prod. Res. 2020, 34, 3285–3288. [Google Scholar] [CrossRef]
- Choi, E.M.; Hwang, J.K. Effects of methanolic extract and fractions from Litsea cubeba bark on the production of inflammatory mediators in RAW264.7 cells. Fitoterapia 2004, 75, 141–148. [Google Scholar] [CrossRef]
- Dai, J.; Li, C.; Cui, H.; Lin, L. Unraveling the anti-bacterial mechanism of Litsea cubeba essential oil against E. coli O157:H7 and its application in vegetable juices. Int. J. Food Microbiol. 2021, 338, 108989. [Google Scholar] [CrossRef]
- Hu, W.; Li, C.; Dai, J.; Cui, H.; Lin, L. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Ind. Crops Prod. 2019, 130, 34–41. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Zhang, R.; Yao, W. Major components in Lilac and Litsea cubeba essential oils kill Penicillium roqueforti through mitochondrial apoptosis pathway. Ind. Crops Prod. 2020, 149, 112349. [Google Scholar] [CrossRef]
- Seo, S.M.; Kim, J.; Lee, S.G.; Shin, C.H.; Shin, S.C.; Park, I.K. Fumigant antitermitic activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica), caraway (Carum carvi), dill (Anethum graveolens), geranium (Pelargonium graveolens), and litsea (Litsea cubeba) oils against Japanese termite (Reticulitermes speratus Kolbe). J. Agric. Food Chem. 2009, 57, 6596–6602. [Google Scholar]
- Wu, H.; Zhang, M.; Yang, Z. Repellent activity screening of 12 essential oils against Aedes albopictus Skuse: Repellent liquid preparation of Mentha arvensis and Litsea cubeba oils and bioassay on hand skin. Ind. Crops Prod. 2019, 128, 464–470. [Google Scholar] [CrossRef]
- Ho, C.L.; Ou, J.P.; Liu, Y.C.; Hung, C.P.; Tsai, M.C.; Liao, P.C.; Wang, E.I.C.; Chen, Y.L.; Su, Y.C. Compositions and in vitro anticancer activities of the leaf and fruit oils of Litsea cubeba from Taiwan. Nat. Prod. Commun. 2010, 5, 617–620. [Google Scholar] [CrossRef] [Green Version]
- Xing, K.; You, K.; Yin, D.; Yuan, Z.; Mao, L. A simple and efficient approach for synthesis of pseudoionone from citral and acetone catalyzed by powder LiOH·H2O. Catal. Commun. 2009, 11, 236–239. [Google Scholar] [CrossRef]
- He, J.; Yu, Z.; Wu, H.; Li, H.; Yang, S. Mesoporous tin phosphate as an effective catalyst for fast cyclodehydration of bio-based citral into p-cymene. Mol. Catal. 2021, 515, 111887. [Google Scholar] [CrossRef]
- Li, Y. Essential oils: From conventional to green extraction. In Essential Oils as Reagents in Green Chemistry; Li, Y., Fabiano-Tixier, A.S., Chemat, F., Eds.; Springer International Publishing: Berlin, Germany, 2014; pp. 9–19. [Google Scholar]
- Da Silva, R.P.; Rocha-Santos, T.A.; Duarte, A.C. Supercritical fluid extraction of bioactive compounds. TrAC-Trend. Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Vian, M.A. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fabiano-Tixier, A.S.; Vian, M.A.; Chemat, F. Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC-Trend. Anal. Chem. 2013, 47, 1–11. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Fabiano-Tixier, A.S.; Nutrizio, M.; Jambrak, A.R.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef] [Green Version]
- Yingngam, B.; Navabhatra, A.; Brantner, A. Increasing the essential oil yield from Shorea roxburghii inflorescences using an eco-friendly solvent-free microwave extraction method for fragrance applications. J. Appl. Res. Med. Aromat. 2021, 24, 100332. [Google Scholar] [CrossRef]
- Filly, A.; Fernandez, X.; Minuti, M.; Visinoni, F.; Cravotto, G.; Chemat, F. Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale. Food Chem. 2014, 150, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Chouhan, K.B.S.; Tandey, R.; Sen, K.K.; Mehta, R.; Mandal, V. A unique model of gravity assisted solvent free microwave based extraction of essential oil from mentha leaves ensuring biorefinery of leftover waste biomass for extraction of nutraceuticals: Towards cleaner and greener technology. J. Clean. Prod. 2019, 225, 587–598. [Google Scholar] [CrossRef]
- Si, L.; Chen, Y.; Han, X.; Zhan, Z.; Tian, S.; Cui, Q.; Wang, Y. Chemical composition of essential oils of Litsea cubeba harvested from its distribution areas in China. Molecules 2012, 17, 7057–7066. [Google Scholar] [CrossRef]
- He, F.; Wang, W.; Wu, M.; Fang, Y.; Wang, S.; Yang, Y.; Ye, C.; Xiang, F. Antioxidant and antibacterial activities of essential oil from Atractylodes lancea rhizomes. Ind. Crops Prod. 2020, 153, 112552. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Rapid peroxyl radical scavenging capacity (PSC) assay for assessing both hydrophilic and lipophilic antioxidants. J. Agric. Food Chem. 2005, 53, 6572–6580. [Google Scholar] [CrossRef]
- Momtaz, S.; Mapunya, B.M.; Houghton, P.J.; Edgerly, C.; Hussein, A.; Naidoo, S.; Lall, N. Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening. J. Ethnopharmacol. 2008, 119, 507–512. [Google Scholar] [CrossRef]
- Cai, L.; Qin, X.; Xu, Z.; Song, Y.; Jiang, H.; Wu, Y.; Ruan, H.; Chen, J. Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method. ACS Omega 2019, 4, 12036–12042. [Google Scholar] [CrossRef]
- Chaikul, P.; Lourith, N.; Kanlayavattanakul, M. Antimelanogenesis and cellular antioxidant activities of rubber (Hevea brasiliensis) seed oil for cosmetics. Ind. Crops Prod. 2017, 108, 56–62. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Lourith, N.; Chaikul, P. Biological activity and phytochemical profiles of Dendrobium: A new source for specialty cosmetic materials. Ind. Crops Prod. 2018, 120, 61–70. [Google Scholar] [CrossRef]
- Chen, M.; Wu, H.; Chen, F.; Wang, Y.; Chou, D.; Wang, G.; Chen, Y. Characterization of Tibetan kefir grain-fermented milk whey and its suppression of melanin synthesis. J. Biosci. Bioeng. 2022, 133, 547–554. [Google Scholar] [CrossRef]
- Ferreira, D.F.; Lucas, B.N.; Voss, M.; Santos, D.; Mello, P.A.; Wagner, R.; Cravotto, G.; Barin, J.S. Solvent-free simultaneous extraction of volatile and non-volatile antioxidants from rosemary (Rosmarinus officinalis L.) by microwave hydrodiffusion and gravity. Ind. Crops Prod. 2020, 145, 112094. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, B.; Li, S.; Zou, Z. Optimization of solvent-free microwave assisted extraction of essential oil from Cinnamomum camphora leaves. Ind. Crops Prod. 2018, 124, 353–362. [Google Scholar] [CrossRef]
- Meullemiestre, A.; Petitcolas, E.; Maache-Rezzoug, Z.; Chemat, F.; Rezzoug, S.A. Impact of ultrasound on solid–liquid extraction of phenolic compounds from maritime pine sawdust waste. Kinetics, optimization and large scale experiments. Ultrason. Sonochem. 2016, 28, 230–239. [Google Scholar] [CrossRef]
- Farhat, A.; Ginies, C.; Romdhane, M.; Chemat, F. Eco-friendly and cleaner process for isolation of essential oil using microwave energy: Experimental and theoretical study. J. Chromatogr. A 2009, 1216, 5077–5085. [Google Scholar] [CrossRef]
- Vian, M.A.; Fernandez, X.; Visinoni, F.; Chemat, F. Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils. J. Chromatogr. A 2008, 1190, 14–17. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhang, Z.; Wang, Y.; Li, Y. The effect of alternative solvents to n-hexane on the green extraction of Litsea cubeba kernel oils as new oil sources. Ind. Crops Prod. 2018, 126, 340–346. [Google Scholar] [CrossRef]
- Cai, Z.; Zhuang, X.; Yang, X.; Huang, F.; Wang, Y.; Li, Y. Litsea cubeba kernel oils as a promising new medium-chain saturated fatty acid feedstock for biolubricant base oil synthesis. Ind. Crops Prod. 2021, 167, 113564. [Google Scholar] [CrossRef]
- Ko, K.; Juntarajumnong, W.; Chandrapatya, A. Repellency, fumigant and contact toxicities of Litsea cubeba (Lour.) Persoon against Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). Kasetsart J.-Nat. Sci. 2009, 43, 56–63. [Google Scholar]
- Pante, G.C.; Castro, J.C.; Lini, R.S.; Romoli, J.C.Z.; Almeida, R.T.R.; Garcia, F.P.; Nakamura, C.V.; Pilau, E.J.; Abreu Filho, B.A.; Machinski, M. Litsea cubeba essential oil: Chemical profile, antioxidant activity, cytotoxicity, effect against Fusarium verticillioides and fumonisins production. J. Environ. Sci. Health B 2021, 56, 387–395. [Google Scholar] [CrossRef]
- Dong, R.; Yu, Q.; Liao, W.; Liu, S.; He, Z.; Hu, X.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. Composition of bound polyphenols from carrot dietary fiber and its in vivo and in vitro antioxidant activity. Food Chem. 2021, 339, 127879. [Google Scholar] [CrossRef]
- Islam, S.; Alam, M.B.; Ahmed, A.; Lee, S.; Lee, S.; Kim, S. Identification of secondary metabolites in Averrhoa carambola L. bark by high-resolution mass spectrometry and evaluation for α-glucosidase, tyrosinase, elastase, and antioxidant potential. Food Chem. 2020, 332, 127377. [Google Scholar] [CrossRef]
- D’Mello, S.A.N.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef]
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 0.6713 | 5 | 0.1343 | 24.12 | 0.0003 | Highly significant |
X1 | 0.0570 | 1 | 0.0570 | 10.25 | 0.0150 | |
X2 | 0.3243 | 1 | 0.3243 | 58.26 | 0.0001 | |
X1X2 | 0.1139 | 1 | 0.1139 | 20.46 | 0.0027 | |
X12 | 0.0379 | 1 | 0.0379 | 6.81 | 0.0349 | |
X22 | 0.0726 | 1 | 0.0726 | 13.04 | 0.0086 | |
Residual | 0.0390 | 7 | 0.0056 | |||
Lack of fit | 0.0163 | 3 | 0.0054 | 0.9576 | 0.4938 | Not significant |
Pure error | 0.0227 | 4 | 0.0057 | |||
Cor total a | 0.7103 | 12 | ||||
R2 | 0.9451 | |||||
R2Adj | 0.9059 | |||||
C.V. b% | 4.70 |
Peak | RI # | Compounds | Relative Percentage (%) | |||||
---|---|---|---|---|---|---|---|---|
HD—June | HD—July | HD— August | SFME—June | SFME—July | SFME—August | |||
Monoterpenes | ||||||||
1 | 928 | 3-Thujene | 0.05 | 0.04 | 0.03 | 0.05 | 0.05 | 0.03 |
2 | 934 | 3-Carene | 0.80 | 0.58 | 0.56 | 1.68 | 1.43 | 1.09 |
3 | 948 | Camphene | 0.23 | 0.17 | 0.20 | 0.46 | 0.33 | 0.34 |
4 | 973 | β-Phellandrene | 2.51 | 1.46 | 1.56 | 1.97 | 1.30 | 1.06 |
5 | 975 | Sabinene | 0.79 | 0.58 | 0.56 | 1.34 | 1.08 | 0.87 |
6 | 994 | β-Pinene | 0.55 | 0.42 | 0.48 | 1.33 | 1.39 | 1.21 |
7 | 1020 | a-Terpinene | 0.08 | 0.08 | 0.02 | 0.05 | 0.07 | ND |
8 | 1034 | D-Limonene | 12.68 | 7.04 | 4.77 | 25.18 | 21.38 | 13.11 |
9 | 1047 | Cyclofenchene | ND | 0.01 | ND | ND | 0.01 | ND |
10 | 1058 | b-Ocimene | ND | ND | ND | ND | 0.01 | ND |
11 | 1064 | γ-Terpinene | 0.16 | 0.14 | 0.04 | 0.08 | 0.10 | 0.02 |
12 | 1090 | Terpinolene | 0.08 | 0.06 | 0.03 | 0.13 | 0.12 | 0.07 |
Oxygenated monoterpenes | ||||||||
13 | 1035 | 1,8-Cineole | ND | 3.42 | 6.19 | ND | ND | 3.11 |
14 | 1071 | cis-4-Thujanol | 0.09 | 0.07 | 0.19 | 0.17 | 0.10 | 0.17 |
15 | 1097 | trans-4-Thujanol | 0.04 | 0.03 | 0.03 | 0.04 | 0.02 | 0.02 |
16 | 1103 | Linalool | 1.12 | 1.48 | 1.23 | 1.01 | 1.29 | 1.26 |
17 | 1122 | 4-Thujanol | ND | 0.04 | ND | ND | ND | ND |
18 | 1123 | γ-Terpineol | 0.04 | ND | ND | ND | ND | ND |
19 | 1136 | cis-Chrysanthenol | ND | ND | ND | 0.03 | ND | 0.03 |
20 | 1142 | (+)-2-Bornanone | ND | ND | 0.03 | ND | ND | 0.02 |
21 | 1151 | trans-Verbenol | 0.19 | 0.21 | 0.16 | 0.25 | 0.32 | 0.31 |
22 | 1159 | Citronellal | 0.36 | 0.24 | 0.35 | 0.43 | 0.32 | 0.50 |
23 | 1166 | Borneol | 0.21 | 0.07 | 0.04 | 0.15 | 0.05 | 0.05 |
24 | 1170 | Iso-neral | 1.12 | 1.12 | 1.04 | 1.55 | 1.81 | 1.79 |
25 | 1177 | 4-Terpineol | 0.49 | 0.47 | 0.13 | 0.16 | 0.14 | 0.04 |
26 | 1187 | Iso-geranial | 1.59 | 1.63 | 1.46 | 2.09 | 2.50 | 2.29 |
27 | 1190 | α-Terpineol | 0.60 | 0.68 | 1.32 | 0.44 | 0.51 | 1.00 |
28 | 1204 | Carveol | 0.06 | 0.04 | ND | ND | 0.02 | 0.07 |
29 | 1236 | Nerol | 0.46 | 0.06 | ND | 0.41 | 0.72 | 0.28 |
30 | 1241 | Isopulegol | ND | ND | ND | 0.06 | 0.03 | ND |
31 | 1251 | β-Citral (Neral) | 32.13 | 33.25 | 34.47 | 25.10 | 25.96 | 30.58 |
32 | 1268 | Geraniol | 1.40 | 3.07 | 0.25 | 1.30 | 1.75 | 0.35 |
33 | 1282 | α-Citral (Geranial) | 40.30 | 40.60 | 43.51 | 32.18 | 34.43 | 38.34 |
34 | 1420 | Berbenone | ND | 0.06 | ND | ND | ND | ND |
35 | 1454 | Eugenol | ND | 0.01 | ND | ND | ND | ND |
Sesquiterpenes | ||||||||
36 | 1336 | Elixene | ND | ND | ND | ND | 0.04 | 0.03 |
37 | 1373 | α-Copaene | 0.02 | ND | ND | 0.17 | 0.11 | 0.08 |
38 | 1413 | β-Caryophyllene | 0.06 | 0.04 | 0.05 | 0.52 | 0.60 | 0.52 |
39 | 1448 | α-Caryophyllene | ND | ND | ND | ND | 0.05 | 0.04 |
40 | 1448 | Bicyclogermacrene | ND | ND | ND | 0.04 | ND | ND |
41 | 1462 | Isocaryophyllene | ND | ND | ND | ND | 0.03 | ND |
42 | 1482 | Aromandendrene | ND | 0.01 | ND | 0.07 | 0.10 | 0.01 |
43 | 1522 | d-Cadinene | ND | ND | ND | ND | 0.02 | 0.03 |
Oxygenated sesquiterpenes | ||||||||
44 | 1575 | Caryophyllene oxide | ND | 0.02 | 0.04 | ND | ND | 0.06 |
Others | ||||||||
45 | 989 | Sulcatone | 0.47 | 0.36 | 0.45 | 0.32 | 0.29 | 0.33 |
46 | 1194 | Methyl salicylate | 0.08 | 0.06 | ND | 0.04 | 0.01 | ND |
47 | 1287 | Bornyl acetate | 0.20 | 0.26 | 0.16 | 0.17 | 0.27 | 0.11 |
48 | 1338 | Nerol acetate | 0.08 | ND | 0.08 | 0.13 | ND | ND |
49 | 1352 | α-Terpinyl acetate | 0.59 | 1.16 | 0.28 | 0.57 | 0.85 | 0.25 |
Total oxygenated compounds | 80.18 | 86.56 | 90.44 | 65.37 | 69.98 | 80.28 | ||
Total non-oxygenated compounds | 17.99 | 10.63 | 8.30 | 33.06 | 28.22 | 18.52 | ||
Total | 99.59 | 99.03 | 99.71 | 99.67 | 99.62 | 99.50 | ||
Yield (%) * | 1.35 ± 0.02 c,d | 1.44 ± 0.06 c | 1.25 ± 0.08 d | 1.86 ± 0.04 b | 2.27 ± 0.11 a | 1.80 ± 0.06 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Wang, Y.; Li, Y. Solvent-Free Microwave Extraction of Essential Oils from Litsea cubeba (Lour.) Pers. at Different Harvesting Times and Their Skin-Whitening Cosmetic Potential. Antioxidants 2022, 11, 2389. https://doi.org/10.3390/antiox11122389
Qiu Y, Wang Y, Li Y. Solvent-Free Microwave Extraction of Essential Oils from Litsea cubeba (Lour.) Pers. at Different Harvesting Times and Their Skin-Whitening Cosmetic Potential. Antioxidants. 2022; 11(12):2389. https://doi.org/10.3390/antiox11122389
Chicago/Turabian StyleQiu, Yufei, Yong Wang, and Ying Li. 2022. "Solvent-Free Microwave Extraction of Essential Oils from Litsea cubeba (Lour.) Pers. at Different Harvesting Times and Their Skin-Whitening Cosmetic Potential" Antioxidants 11, no. 12: 2389. https://doi.org/10.3390/antiox11122389
APA StyleQiu, Y., Wang, Y., & Li, Y. (2022). Solvent-Free Microwave Extraction of Essential Oils from Litsea cubeba (Lour.) Pers. at Different Harvesting Times and Their Skin-Whitening Cosmetic Potential. Antioxidants, 11(12), 2389. https://doi.org/10.3390/antiox11122389