Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = solvent-free microwave extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1265 KB  
Article
Improving the Quality of Ylang-Ylang Essential Oils [Cananga odorata (Lam.) Hook.f. &Thomson] Through Microwave-Assisted Extraction Compared to Conventional Extraction Methods
by Abacar Chakira, Christian Soria, Laura Lallemand, Gary Mares, Marc Chillet and Cyrielle Garcia
Plants 2025, 14(20), 3217; https://doi.org/10.3390/plants14203217 - 20 Oct 2025
Viewed by 526
Abstract
Solvent-free microwave extraction (SFME) is a clean and advanced method of extracting essential oils. In this study, it was compared to conventional hydrodistillation (HD) and steam-water distillation (SD), which are commonly used to extract essential oils from fresh ylang-ylang flowers. The yield and [...] Read more.
Solvent-free microwave extraction (SFME) is a clean and advanced method of extracting essential oils. In this study, it was compared to conventional hydrodistillation (HD) and steam-water distillation (SD), which are commonly used to extract essential oils from fresh ylang-ylang flowers. The yield and density of essential oils extracted via SFME within 40 min after the appearance of the first oil drop were higher than those obtained via conventional HD and SD within 3 h after the appearance of the first drop. Analysis of chemical compounds in the essential oils showed a high degree of variability in volatile compounds between the three extraction methods. Light oxygenated compounds are odor-active constituents. They comprised 81.23% of the SFME extract, whereas their levels were lower in the HD (69.94%) and SD extracts (57.98%). Total aromatic compounds were also higher in the essential oils obtained via SFME than in those obtained via HD and SD. These results support the use of SFME for ylang-ylang essential oil extraction, as it offers promising energy-/time-saving characteristics, along with higher quality. Full article
Show Figures

Figure 1

15 pages, 4964 KB  
Article
Setting Up a “Green” Extraction Protocol for Bioactive Compounds in Buckwheat Husk
by Anna R. Speranza, Francesca G. Ghidotti, Alberto Barbiroli, Alessio Scarafoni, Sara Limbo and Stefania Iametti
Int. J. Mol. Sci. 2025, 26(15), 7407; https://doi.org/10.3390/ijms26157407 - 31 Jul 2025
Viewed by 794
Abstract
Buckwheat, a gluten-free pseudocereal, is rich in dietary fiber, minerals, high-quality proteins, vitamins, and essential amino acids. Buckwheat husk, a by-product of dehulling, contains high levels of bioactive compounds such as polyphenols and dietary fibers. This study compares green extraction methods (ultrasound-assisted extraction, [...] Read more.
Buckwheat, a gluten-free pseudocereal, is rich in dietary fiber, minerals, high-quality proteins, vitamins, and essential amino acids. Buckwheat husk, a by-product of dehulling, contains high levels of bioactive compounds such as polyphenols and dietary fibers. This study compares green extraction methods (ultrasound-assisted extraction, UAE; and microwave-assisted extraction, MAE) for recovering polyphenols from buckwheat husk. MAE improved polyphenol yield by 43.6% compared to conventional acidified methanol extraction. Structural and chemical analyses of the residual husk material using SEM, FTIR, and fiber analysis revealed that MAE alters husk properties, enhancing polyphenol accessibility. Thus, MAE appears an efficient and sustainable alternative to acid- and solvent-based extraction techniques. Extracts obtained via “green” methods retained strong antioxidant activity and showed significant modulation of inflammatory markers in human Caco-2 cells, highlighting the potential use of “green” buckwheat husk extracts for food and pharma applications. This work supports the valorization of buckwheat husk within a circular economy framework, promoting buckwheat husk as a valuable raw material for bioactive compound recovery in diverse applications. Full article
Show Figures

Figure 1

12 pages, 1511 KB  
Article
Biological Activities of Glucosinolate and Its Enzymatic Product in Moringa oleifera (Lam.)
by Jinglin Wang, Saifei Yang, Sijia Shen, Chunxian Ma and Rui Chen
Int. J. Mol. Sci. 2025, 26(15), 7323; https://doi.org/10.3390/ijms26157323 - 29 Jul 2025
Viewed by 727
Abstract
In this study, using 70% anhydrous ethanol as the extraction solvent, Moringa oleifera Lam. seed powder was extracted with the microwave-assisted extraction method, followed by purification using macroporous adsorbent resin NKA-9. The purified glucosinolate was subsequently hydrolyzed with myrosinase. The glucosinolate and its [...] Read more.
In this study, using 70% anhydrous ethanol as the extraction solvent, Moringa oleifera Lam. seed powder was extracted with the microwave-assisted extraction method, followed by purification using macroporous adsorbent resin NKA-9. The purified glucosinolate was subsequently hydrolyzed with myrosinase. The glucosinolate and its enzymatic product were identified as 4-(α-L-rhamnopyranosyloxy) benzyl glucosinolate (4-RBMG) and benzyl isothiocyanate (BITC) by UV–Vis, FT-IR, NMR, and MS. The bioactivities, including anti-oxidation, anti-inflammation, and anti-tumor activities of 4-RBMG and BITC, were systematically evaluated and compared. The results show that at 5–20 mg/mL, the anti-oxidation effects of 4-RBMG on DPPH and ABTS free radicals are superior to those of BITC. However, at the same concentrations, BITC has stronger anti-inflammatory and anti-tumor activities compared to 4-RBMG. Notably, at a concentration of 6.25 μmol/L, BITC significantly inhibited NO production with an inhibitory rate of 96.67% without cytotoxicity. Additionally, at a concentration of 40 μmol/L, BITC exhibited excellent inhibitory effects on five tumor cell lines, with the cell inhibitory rates of leukemia HL-60, lung cancer A549, and hepatocellular carcinoma HepG2 exceeding 90%. This study provides some evidence that the enzymatic product, BITC, shows promise as a therapeutic agent for tumor suppression and inflammation reduction. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

25 pages, 10662 KB  
Article
Impact of Anaerobic Fermentation Liquid on Bok Choy and Mechanism of Combined Vitamin C from Bok Choy and Allicin in Treatment of DSS Colitis
by Junhui Pan, Kaitao Peng, Roger Ruan, Yuhuan Liu and Xian Cui
Foods 2025, 14(5), 785; https://doi.org/10.3390/foods14050785 - 25 Feb 2025
Cited by 2 | Viewed by 1233
Abstract
In the context of pollution-free waste treatment, anaerobic fermentation liquid (AFL), a prominent by-product of biogas engineering, has emerged as a focal point in contemporary research. Concurrently, vitamin C, an active compound abundant in fruits and vegetables, possesses extensive application potential. The development [...] Read more.
In the context of pollution-free waste treatment, anaerobic fermentation liquid (AFL), a prominent by-product of biogas engineering, has emerged as a focal point in contemporary research. Concurrently, vitamin C, an active compound abundant in fruits and vegetables, possesses extensive application potential. The development of efficient extraction processes and the utilization of its biological activities have garnered significant attention from researchers. This study investigated the impact of AFL on the growth and vitamin C content of Bok choy through field trials of varying concentrations of AFL. The results indicated that the growth characteristics of Bok choy exhibited a concentration-dependent trend with increasing AFL dosage, with the highest yield observed in the AFL-2 group (8.43 kg/m2). Additionally, with the increase in the concentration of the AFL application, the vitamin C content in Bok choy exhibited a trend of initially increasing and then decreasing, reaching its highest value (70.83 mg/100 g) in the AFL-1 group. Furthermore, response surface methodology was employed to optimize the microwave-assisted organic solvent extraction process of vitamin C, revealing that the optimal conditions for microwave-assisted extraction using a 2% citric acid solution were as follows: a microwave power of 313 W, a microwave time of 1.3 min, and a liquid-to-solid ratio of 16.4:1 v/w, achieving a vitamin C extraction rate of 90.77%. Subsequent mechanistic studies on colitis repair demonstrated that the combination of vitamin C and allicin significantly enhanced the ability of intestinal microorganisms to ferment and degrade complex carbohydrates in colitis-afflicted mice, thereby alleviating intestinal inflammation, markedly reducing bacterial invasion signals on intestinal epithelial cells, and decreasing the risk of intestinal infection. This study provides a valuable perspective for the harmless utilization of agricultural waste, and provides a theoretical basis and technical support for the high-value utilization of natural active ingredients. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

23 pages, 2043 KB  
Article
Bioactive and Biological Potential of Black Chokeberry Leaves Under the Influence of Pressurized Liquid Extraction and Microwave-Assisted Extraction
by Maja Repajić, Ivona Elez Garofulić, Ena Cegledi, Erika Dobroslavić, Sandra Pedisić, Ksenija Durgo, Ana Huđek Turković, Jasna Mrvčić, Karla Hanousek Čiča and Verica Dragović-Uzelac
Antioxidants 2024, 13(12), 1582; https://doi.org/10.3390/antiox13121582 - 23 Dec 2024
Cited by 2 | Viewed by 1437
Abstract
To determine the optimal conditions of pressurized liquid extraction (PLE) and microwave-assisted extraction (MAE) of polyphenols from black chokeberry leaves (BCL), temperature, time and sample-to-solvent ratio (SSR) were varied to obtain maximum polyphenols yield. The extracts were analyzed for total polyphenols (TP) as [...] Read more.
To determine the optimal conditions of pressurized liquid extraction (PLE) and microwave-assisted extraction (MAE) of polyphenols from black chokeberry leaves (BCL), temperature, time and sample-to-solvent ratio (SSR) were varied to obtain maximum polyphenols yield. The extracts were analyzed for total polyphenols (TP) as well as individual ones (UPLC ESI MS2) and antioxidant capacity (FRAP, DPPH and ORAC). Moreover, the biological activity of the selected extracts was additionally determined. The optimal PLE and MAE conditions were 150 °C, 5 min extraction time and SSR 1:30 g/mL (TP 80.0 mg GAE/g dm), and 70 °C, extraction time 5 min and SSR 1:30 g/mL (TP 36.4 mg GAE/g dm), respectively. Both methods yielded similar polyphenol profiles (43 compounds) but differed quantitatively. MAE extracts contained more flavonols and phenolic acids, while PLE extracts had higher procyanidins and flavan-3-ols. Furthermore, the PLE extract exhibited a superior antioxidant capacity. This BCL extract also showed that it can protect against oxidative and DNA damage and can induce free radical formation and DNA damage, albeit at different doses. Moreover, it had a moderate antimicrobial activity against S. aureus and B. subtilis, while no antimicrobial activity was observed against Gram-negative bacteria as well as yeasts, lactic acid bacteria and molds. Full article
Show Figures

Figure 1

16 pages, 3208 KB  
Article
Essential Oils from Papaver rhoeas and Their Metabolomic Profiling
by Valeria Cavalloro, Francesco Saverio Robustelli della Cuna, Alberto Malovini, Carla Villa, Cristina Sottani, Matteo Balestra, Francesco Bracco, Emanuela Martino and Simona Collina
Metabolites 2024, 14(12), 664; https://doi.org/10.3390/metabo14120664 - 1 Dec 2024
Cited by 1 | Viewed by 1190
Abstract
Background/Objectives: Essential oils (EOs) have been exploited by humans for centuries, but many sources remain poorly investigated, mainly due to the low yields associated with conventional extraction. Recently, new techniques have been developed, like solvent-free microwave extraction (SFME), able to enhance efficiency [...] Read more.
Background/Objectives: Essential oils (EOs) have been exploited by humans for centuries, but many sources remain poorly investigated, mainly due to the low yields associated with conventional extraction. Recently, new techniques have been developed, like solvent-free microwave extraction (SFME), able to enhance efficiency and sustainability. The use of Papaver rhoeas L. in traditional medicine has led researchers to investigate non-volatile fractions, but there are little data available on EOs. Methods: In the present work, we prepared EOs from the petals and leaves of P. rhoeas by SFME. GC/MS analysis of EOs revealed the presence of 106 compounds belonging to 13 different classes. Isomers of the different alkenes were identified thanks to an alkylthiolation reaction. Results: The results highlighted a predominance of saturated and unsaturated hydrocarbons, alcohols, and esters that might suggest a specific relationship with pollinators. Each population has been compared using PCA, heatmap, and barplot tools, highlighting differences in terms of composition by both comparing leaves and flowers and hill and lowland samples. Furthermore, cantharidin, a metabolite usually produced by insects, was detected in the flowers, possible present for attractiveness purposes. Conclusions: These results could contribute to ensuring a better understanding of the pollination process and of the biological activities of EOs from P. rhoeas. Full article
Show Figures

Figure 1

30 pages, 11351 KB  
Article
Rapid Immobilisation of Chemical Reactions in Alkali-Activated Materials Using Solely Microwave Irradiation
by Anže Tesovnik and Barbara Horvat
Minerals 2024, 14(12), 1219; https://doi.org/10.3390/min14121219 - 29 Nov 2024
Cited by 3 | Viewed by 2213
Abstract
Efflorescence, a time-dependent and water-driven phenomenon, is a major concern in alkali-activated materials (AAMs), impacting their practical use and preservation in a time-frozen state for post-characterisation. Although a method for stopping chemical reactions in conventional cements exists, it is time-consuming and not chemical-free. [...] Read more.
Efflorescence, a time-dependent and water-driven phenomenon, is a major concern in alkali-activated materials (AAMs), impacting their practical use and preservation in a time-frozen state for post-characterisation. Although a method for stopping chemical reactions in conventional cements exists, it is time-consuming and not chemical-free. Therefore, this study explored the effects of low-power microwave-induced dehydration on efflorescence, mechanical performance, and structural integrity in AAMs, to create an alternative and more “user-friendly” dehydration method. For this purpose, several mixtures based on secondary raw (slag, fly ash, glass wool, and rock wool) and non-waste (metakaolin) materials were activated with a commercial Na-silicate solution in ratios that promoted or prevented efflorescence. Characterisation techniques, including Fourier-transform infrared spectroscopy and X-ray diffraction, showed that microwave dehydration effectively removed water without altering crystallinity, while mercury intrusion porosimetry and compressive strength tests confirmed increased porosity. In addition to being an efficient, time-saving, and solvent-free manner of stopping the reactions in AAMs, microwave irradiation emerged as an innovative, chemical-free method for evaluating curing finalisation and engineering foams in a stage when all other existing methods fail. However, the artificially provoked efflorescence in aged dehydrated AAMs connected the slipperiness of AAM with the instant extraction of Na, which raised the need for further research into alternative alkali replacements to evaluate the practical use of AAM. Full article
(This article belongs to the Special Issue Alkali Activation of Clay-Based Materials)
Show Figures

Graphical abstract

15 pages, 5440 KB  
Article
Box-Behnken Design for DPPH Free Radical Scavenging Activity Optimization from Microwave-Assisted Extraction of Polyphenolic Compounds from Agave lechuguilla Torr. Residues
by Vianey de J. Cervantes-Güicho, Ana G. Reyes, Alberto Nuncio, Leonardo Sepúlveda-Torre, Cristina Landa-Cansigno, José A. Rodríguez-De la Garza, Miguel A. Medina-Morales, Leopoldo J. Ríos-González and Thelma K. Morales-Martínez
Processes 2024, 12(9), 2005; https://doi.org/10.3390/pr12092005 - 18 Sep 2024
Cited by 2 | Viewed by 2876
Abstract
The guishe is a by-product of the fiber extraction from Agave lechuguilla. This material has no commercial value, although it contains metabolites that could be used as a resource for producing high-value products. This study optimized the DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant activity [...] Read more.
The guishe is a by-product of the fiber extraction from Agave lechuguilla. This material has no commercial value, although it contains metabolites that could be used as a resource for producing high-value products. This study optimized the DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant activity through microwave-assisted extraction (MAE) of polyphenolic compounds from Agave lechuguilla residues. The MAE process was optimized using a Box-Behnken design, with extraction time (5–15 min), temperature (40–50 °C), and solvent: sample ratio (1:20–1:30 m/v) as independent variables. In contrast, the dependent variable was DPPH free radical scavenging activity. As a result, the highest antioxidant activity was at 8 min of irradiation, extraction temperature of 45 °C, and solvent: sample ratio 1:30 w/v, obtaining a total flavonoid content of 19.25 ± 0.60 mg QE/g DW, a total polyphenol content of 6.59 ± 0.31 mg GAE/g DW, a DPPH free radical scavenging activity of 73.35 ± 1.90%, and an ABTS+• ([2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate)]) free radical scavenging activity of 91.93 ± 0.68%. Full article
(This article belongs to the Special Issue Biorefinery Process Design, Modeling and Optimization)
Show Figures

Graphical abstract

15 pages, 1408 KB  
Article
Nutraceutical Valorization of Exhausted Olive Pomace from Olea europaea L. Using Advanced Extraction Techniques
by Vittorio Carlucci, Maria Ponticelli, Daniela Russo, Fabiana Labanca, Valeria Costantino, Germana Esposito and Luigi Milella
Plants 2024, 13(16), 2310; https://doi.org/10.3390/plants13162310 - 20 Aug 2024
Cited by 5 | Viewed by 2189
Abstract
Exhausted olive pomace (EOP) represents the principal residue of olive pomace. Several studies have optimized the extraction of specialized metabolites from the EOP of Olea europaea L., but a comparison between different extractive methods has not been made. For this reason, the present [...] Read more.
Exhausted olive pomace (EOP) represents the principal residue of olive pomace. Several studies have optimized the extraction of specialized metabolites from the EOP of Olea europaea L., but a comparison between different extractive methods has not been made. For this reason, the present investigation aims to compare four different extractive methods by using water and 15% ethanol/water as extractive solvents. Specifically, based on extract antioxidant activity, the methods compared were maceration (MAC), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), and Accelerated Solvent Extraction (ASE). Between these, the UAE and ASE hydroalcoholic EOP extracts were demonstrated to have the highest antioxidant activity. Subsequently, these extracts were investigated for their hypoglycemic and antiradical activity using in vitro cell-free and cell-based assays, respectively. ASE hydroalcoholic EOP extract demonstrated the greatest ability to inhibit the α-amylase enzyme and an in vitro antioxidant activity comparable to N-acetyl cysteine in HepG2 cells. UAE and ASE extracts’ phytochemical characterization was also performed, identifying seven phenolic compounds, including 3-hydroxytyrosol, tyrosol, and, for the first time, salidroside. The ASE hydroalcoholic EOP extract was the richest from a phytochemical point of view, thus confirming its major biological activity. Therefore, ASE and 15% ethanol/water may represent the best extractive method for EOP nutraceutical valorization. Full article
Show Figures

Figure 1

13 pages, 299 KB  
Article
Influence of the Extraction Method on the Biological Potential of Solidago virgaurea L. Essential Oil and Hydrolates
by Marko Malićanin, Ivana Karabegović, Natalija Đorđević, Stojan Mančić, Sandra Stamenković Stojanović, Duško Brković and Bojana Danilović
Plants 2024, 13(16), 2187; https://doi.org/10.3390/plants13162187 - 7 Aug 2024
Cited by 5 | Viewed by 2815
Abstract
Solidago virgaurea L., or European goldenrod, has a long tradition in folk medicine due to the wide range of its biological activity. This paper aimed to investigate the antimicrobial and antioxidative potential of S. virgaurea essential oil and hydrolates obtained by traditional and [...] Read more.
Solidago virgaurea L., or European goldenrod, has a long tradition in folk medicine due to the wide range of its biological activity. This paper aimed to investigate the antimicrobial and antioxidative potential of S. virgaurea essential oil and hydrolates obtained by traditional and novel extraction techniques. For that purpose, hydrodistillation, microwave-assisted hydrodistillation and solvent-free extraction were performed. Analysis of the composition of essential oils indicated the presence of 59 different compounds with cyclocolorenone, germacrene D and spathulenol being the dominant in all essential oil samples. Antimicrobial activity was detected in all the analyzed samples, with higher effect on Gram-positive microorganisms compared to Gram-negative. Regarding the type of performed extraction process, the introduction of microwaves induced higher antimicrobial and antioxidative potential in both essential oils and hydrolates. Hydrolates obtained in microwave-assisted processes had pronounced antioxidative activity, which creates a good basis for further investigation of this side product’s potential use in the food, cosmetic and pharmaceutical industries. Full article
27 pages, 1406 KB  
Review
Green Extraction of Phytochemicals from Fresh Vegetable Waste and Their Potential Application as Cosmeceuticals for Skin Health
by Harichandana Valisakkagari, Chandrika Chaturvedi and H. P. Vasantha Rupasinghe
Processes 2024, 12(4), 742; https://doi.org/10.3390/pr12040742 - 5 Apr 2024
Cited by 26 | Viewed by 4509
Abstract
The utilization of bioactive compounds from fresh produce waste, which is gaining attention in the agri-food and cosmetics industries, focuses on employing green extraction over conventional extraction methods. This emerging field addresses environmental concerns about food waste and the uses of bioactive phytochemicals [...] Read more.
The utilization of bioactive compounds from fresh produce waste, which is gaining attention in the agri-food and cosmetics industries, focuses on employing green extraction over conventional extraction methods. This emerging field addresses environmental concerns about food waste and the uses of bioactive phytochemicals for skin health. Modern green extraction methods aim to minimize the energy-intensive process and the use of harmful solvents. These techniques include ultrasound, microwave, and supercritical fluid extraction, pulsed electric field extraction, pressurized liquid extraction, and subcritical water extraction methods, which provide high efficacy in recovering bioactive phytochemicals from vegetable and root crops. The phytochemicals, such as carotenoids, polyphenols, glucosinolates, and betalains of fresh produce waste, exhibit various therapeutic properties for applications in skin health. These dietary antioxidants help to neutralize free radicals generated by UV radiation, thus preventing oxidative stress, DNA damage, and inflammation. The skin care formulations with these phytochemicals can serve as natural alternatives to synthetic antioxidants that may have toxic and carcinogenic effects. Therefore, this review aims to discuss different green extraction technologies, consumer-friendly solvents, and the beneficial skin health properties of selected phytochemicals. The review highlights recent research on major phytochemicals extracted from vegetables and root crops in relation to skin health. Full article
(This article belongs to the Special Issue Advances in Green Extraction Processes of Bioactive Compounds)
Show Figures

Figure 1

42 pages, 1394 KB  
Review
Alternative Assisted Extraction Methods of Phenolic Compounds Using NaDESs
by Mario Coscarella, Monica Nardi, Kalina Alipieva, Sonia Bonacci, Milena Popova, Antonio Procopio, Rosa Scarpelli and Svilen Simeonov
Antioxidants 2024, 13(1), 62; https://doi.org/10.3390/antiox13010062 - 29 Dec 2023
Cited by 25 | Viewed by 5890
Abstract
A renewed understanding of eco-friendly principles is moving the industrial sector toward a shift in the utilization of less harmful solvents as a main strategy to improve manufacturing. Green analytical chemistry (GAC) has definitely paved the way for this transition by presenting green [...] Read more.
A renewed understanding of eco-friendly principles is moving the industrial sector toward a shift in the utilization of less harmful solvents as a main strategy to improve manufacturing. Green analytical chemistry (GAC) has definitely paved the way for this transition by presenting green solvents to a larger audience. Among the most promising, surely DESs (deep eutectic solvents), NaDESs (natural deep eutectic solvents), HDESs (hydrophobic deep eutectic solvents), and HNaDESs (hydrophobic natural deep eutectic solvents), with their unique features, manifest a wide-range of applications, including their use as a means for the extraction of small bioactive compounds. In examining recent advancements, in this review, we want to focus our attention on some of the most interesting and novel ‘solvent-free‘ extraction techniques, such as microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) in relation to the possibility of better exploiting DESs and NaDESs as plausible extracting solvents of the phenolic compounds (PCs) present in different matrices from olive oil components, such as virgin olive pomace, olive leaves and twigs, virgin and extra virgin olive oil (VOO and EVOO, respectively), and olive cake and olive mill wastewaters (OMWW). Therefore, the status of DESs and NaDESs is shown in terms of their nature, efficacy and selectivity in the extraction of bioactive phytochemicals such as secoiridoids, lignans, phenolic acids and alcohols. Related studies on experimental design and processes’ optimization of the most promising DESs/NaDESs are also reviewed. In this framework, an extensive list of relevant works found in the literature is described to consider DESs/NaDESs as a suitable alternative to petrochemicals in cosmetics, pharmaceutical, or food applications. Full article
Show Figures

Graphical abstract

18 pages, 3823 KB  
Article
A Comprehensive Study of Techniques to Optimize the Extraction of Lipids from the Autotrophic Strain of the Microalgae Chlorella vulgaris
by Ian Foerster, Wayne Seames, Jasmine Oleksik, Alena Kubatova and Andrew Ross
Life 2023, 13(10), 1997; https://doi.org/10.3390/life13101997 - 30 Sep 2023
Cited by 6 | Viewed by 4626
Abstract
Microalgae represent a promising source of triglycerides and free fatty acids, synthesized in the form of lipids, for use in renewable fuels and chemicals. One challenge is the ability to efficiently recover the lipids from within the microalgae cell. Although various techniques have [...] Read more.
Microalgae represent a promising source of triglycerides and free fatty acids, synthesized in the form of lipids, for use in renewable fuels and chemicals. One challenge is the ability to efficiently recover the lipids from within the microalgae cell. Although various techniques have been studied individually, a comprehensive study of extraction techniques using consistent experimental and analytical methodology is missing. This study aims to provide this unifying comparison using the common microalgae strain Chlorella vulgaris. The factors that were surveyed and then optimized to achieve maximum extraction efficiency included the solvent type; mechanical pre-treatment using a ball mill at a variety of grinding speeds; microalgae-to-solvent ratio; extraction facilitated by microwave; extraction facilitated by sonication; extraction facilitated using increased temperature; and extraction facilitated by in situ transesterification to convert the lipids into esters prior to extraction. The optimum conditions determined during these studies were utilizing methanol as the solvent, with ball mill pretreatment at a grinding speed of 500 rpm, and a 1:9 microalgae to solvent ratio. When used in combination with microwave-assisted extraction at a temperature of 140 °C, approximately 24 wt% of the initial lipids were recovered. Recoveries of over 70 wt% were obtained without a microwave at extraction temperatures of over 200 °C. Full article
(This article belongs to the Special Issue Algae—a Step Forward in the Sustainability of Resources)
Show Figures

Figure 1

14 pages, 3823 KB  
Article
Microwave Hydrodiffusion and Gravity Extraction of Vitamin C and Antioxidant Compounds from Rosehips (Rosa canina L.)
by Eugenia Mazzara, Giovanni Caprioli, Gianmarco Simonelli, Ahmed M. Mustafa, Filippo Maggi and Marco Cespi
Foods 2023, 12(16), 3051; https://doi.org/10.3390/foods12163051 - 15 Aug 2023
Cited by 5 | Viewed by 2964
Abstract
Rosehips, Rosa canina L. (Rosaceae family), have been used for a long time for their beneficial effects on health, and they are largely exploited in the food and nutraceutical supplement sectors. The aim of this work was to apply and optimize for the [...] Read more.
Rosehips, Rosa canina L. (Rosaceae family), have been used for a long time for their beneficial effects on health, and they are largely exploited in the food and nutraceutical supplement sectors. The aim of this work was to apply and optimize for the first time the microwave hydrodiffusion and gravity (MHG) extraction of rosehips, as a novel application of solvent-free microwave extraction, previously conducted in a similar way only on mulberry, strawberry, and onion. The optimization was performed through a central composite design (CCD) by evaluating the effect of the experimental parameters on the yield; total polyphenol, flavonoid, and anthocyanin contents; radical scavenging activity; and content of vitamin C in the obtained extracts. As a result, the water moistening pretreatment was clearly revealed to possess a pivotal role in the quality of the rosehip extracts. Among the evaluated responses, the yield, the anthocyanin content, and the antioxidant activity were well described by the statistical model. Notably, the optimized MHG extract was compared with the ones obtained by conventional solvent extraction showing higher amounts of vitamin C, polyphenols, flavonoids, and anthocyanins, while the traditional extracts performed better in terms of yield. In conclusion, MHG represents a promising alternative to standard extraction methods for obtaining rosehip extracts rich in vitamin C and antioxidant compounds. In this respect, the results of our research support the employment of MHG on an industrial level for the production of rosehip-based food supplements enriched in vitamin C. Full article
Show Figures

Figure 1

18 pages, 2220 KB  
Article
Water-Based Microwave-Assisted Extraction of Pigments from Madder Optimized by a Box–Behnken Design
by Marine Chambaud, Cyril Colas and Emilie Destandau
Separations 2023, 10(8), 433; https://doi.org/10.3390/separations10080433 - 30 Jul 2023
Cited by 3 | Viewed by 2509
Abstract
Water is one of the greenest and most accessible solvents. To harness its potential, the water-based microwave-assisted extraction (MAE) of pigments from madder was optimized by the response surface methodology (RSM) using a Box–Behnken experimental design. The extract that presented both the highest [...] Read more.
Water is one of the greenest and most accessible solvents. To harness its potential, the water-based microwave-assisted extraction (MAE) of pigments from madder was optimized by the response surface methodology (RSM) using a Box–Behnken experimental design. The extract that presented both the highest extraction yield and the most intense color was obtained after a 30-s cycle at 1000 W using 100 mg of madder for 20 mL of water. This water-based MAE was more efficient than Soxhlet extraction and proved comparable to hydroalcoholic MAE. The optimized extract was further characterized using UHPLC-HRMS/MS to identify its main compounds. Glycosylated flavonoids and anthraquinones were putatively identified, as well as free anthraquinones, generally found in madder. The microwave-assisted extraction extended the range of polarity of the extracted compounds, making the water more versatile. Full article
(This article belongs to the Special Issue Separation, Extraction and Purification of Natural Products)
Show Figures

Figure 1

Back to TopTop