First Report on the Chemical Composition, Antioxidant Capacity, and Preliminary Toxicity to Artemia salina L. of Croton campinarensis Secco, A. Rosário & PE Berry (Euphorbiaceae) Essential Oil, and In Silico Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Processing of Botanical Material
2.2. Distillation of Essential Oil
2.3. Analysis of the Chemical Composition of the Essential Oil
2.4. Determination of the Trolox Equivalent Antioxidant Capacity (TEAC) of the Essential Oil
2.4.1. DPPH Method
2.4.2. ABTS Method
2.5. Determination of Preliminary Toxicity against Artemia salina Leach
2.6. Statistical Analysis
2.7. Molecular Docking
3. Results and Discussion
3.1. Yield and Chemical Composition of the Essential Oil
3.2. Antioxidant Capacity and Preliminary Toxicity of the Essential Oil
3.3. Analysis of the Interactions of Major Compounds with AChE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rout, S.; Tambe, S.; Deshmukh, R.K.; Mali, S.; Cruz, J.; Srivastav, P.P.; Amin, P.D.; Gaikwad, K.K.; de Aguiar Andrade, E.H.; de Oliveira, M.S. Recent Trends in the Application of Essential Oils: The next Generation of Food Preservation and Food Packaging. Trends Food Sci. Technol. 2022, 129, 421–439. [Google Scholar] [CrossRef]
- de Oliveira, M.S. Essential Oils, 1st ed.; de Oliveira, M.S., Ed.; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-030-99475-4. [Google Scholar]
- Cascaes, M.M.; Silva, S.G.; Cruz, J.N.; De Oliveira, S.; Oliveira, J.; Antonio, A.; Moraes, B.D.; Augusto, F.; Santana, K.; Diniz, L.; et al. First Report on the Annona exsucca DC. Essential Oil and in silico Identification of Potential Biological Targets of Its Major Compounds. Nat. Prod. Res. 2021, 36, 4009–4012. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, F.W.F.; de Oliveira, M.S.; Bezerra, P.N.; Cunha, V.M.B.; Silva, M.P.; da Costa, W.A.; Pinto, R.H.H.; Cordeiro, R.M.; da Cruz, J.N.; Chaves Neto, A.M.J.; et al. Extraction of Bioactive Compounds. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, R.M., Boddula, R., Asiri, A.M., Eds.; Elsevier: Amisterdan, The Netherlands, 2020; pp. 149–167. ISBN 9780128173886. [Google Scholar]
- Rodrigues, T.L.M.; Castro, G.L.S.; Viana, R.G.; Gurgel, E.S.C.; Silva, S.G.; de Oliveira, M.S.; de Aguiar Andrade, E.H. Physiological Performance and Chemical Compositions of the Eryngium foetidum L. (Apiaceae) Essential Oil Cultivated with Different Fertilizer Sources. Nat. Prod. Res. 2020, 35, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gontijo, D.C.; do Nascimento, M.F.A.; Brandão, G.C.; de Oliveira, A.B. Phytochemistry and Antiplasmodial Activity of Xylopia Sericea Leaves. Nat. Prod. Res. 2019, 34, 3526–3530. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.N.; de Oliveira, M.S.; de Aguiar Andrade, E.H.; Rodrigues Lima, R. Molecular Modeling Approaches Can Reveal the Molecular Interactions Established between a Biofilm and the Bioactive Compounds of the Essential Oil of Piper divaricatum. Molecules 2022, 27, 4199. [Google Scholar] [CrossRef]
- Maia, O.G.S.; Andrade, L.H.A. Database of the Amazon Aromatic Plants and Their Essential Oils. Quim. Nova 2009, 32, 595–622. [Google Scholar] [CrossRef] [Green Version]
- Cascaes, M.M.; Carneiro, O.D.S.; do Nascimento, L.D.; de Moraes, Â.A.B.; de Oliveira, M.S.; Cruz, J.N.; Guilhon, G.M.S.P.; Andrade, E.H.D.A. Essential Oils from Annonaceae Species from Brazil: A Systematic Review of Their Phytochemistry, and Biological Activities. Int. J. Mol. Sci. 2021, 22, 12140. [Google Scholar] [CrossRef]
- Silva, S.G.; de Oliveira, M.S.; Cruz, J.N.; da Costa, W.A.; da Silva, S.H.M.; Barreto Maia, A.A.; de Sousa, R.L.; Carvalho Junior, R.N.; de Aguiar Andrade, E.H. Supercritical CO2 Extraction to Obtain Lippia thymoides Mart. & Schauer (Verbenaceae) Essential Oil Rich in Thymol and Evaluation of Its Antimicrobial Activity. J. Supercrit. Fluids 2021, 168, 105064. [Google Scholar] [CrossRef]
- Ferreira, O.O.; da Cruz, J.N.; Franco, C.D.J.P.; Silva, S.G.; da Costa, W.A.; de Oliveira, M.S.; Andrade, E.H.D.A. First Report on Yield and Chemical Composition of Essential Oil Extracted from Myrcia eximia DC (Myrtaceae) from the Brazilian Amazon. Molecules 2020, 25, 783. [Google Scholar] [CrossRef] [Green Version]
- Da Cruz, E.D.N.S.; Peixoto, L.D.S.; da Costa, J.S.; Mourão, R.H.V.; do Nascimento, W.M.O.; Maia, J.G.S.; Setzer, W.N.; da Silva, J.K.; Figueiredo, P.L.B. Seasonal Variability of a Caryophyllane Chemotype Essential Oil of Eugenia patrisii Vahl Occurring in the Brazilian Amazon. Molecules 2022, 27, 2417. [Google Scholar] [CrossRef] [PubMed]
- de Lima, E.J.S.P.; Alves, R.G.; D’elia, G.M.A.; da Anunciação, T.A.; Silva, V.R.; Santos, L.D.S.; Soares, M.B.P.; Cardozo, N.M.D.; Costa, E.V.; da Silva, F.M.A.; et al. Antitumor Effect of the Essential Oil from the Leaves of Croton matourensis Aubl. (Euphorbiaceae). Molecules 2018, 23, 2974. [Google Scholar] [CrossRef] [Green Version]
- Cucho-Medrano, J.L.L.; Mendoza-Beingolea, S.W.; Fuertes-Ruitón, C.M.; Salazar-Salvatierra, M.E.; Herrera-Calderon, O. Chemical Profile of the Volatile Constituents and Antimicrobial Activity of the Essential Oils from Croton adipatus, Croton thurifer, and Croton collinus. Antibiotics 2021, 10, 1387. [Google Scholar] [CrossRef] [PubMed]
- Caruzo, M.B.R.; Secco, R.S.; Medeiros, D.; Riina, R.; Torres, D.S.C.; Santos, R.F.D.; Pereira, A.P.N.; Rossine, Y.; Lima, L.R.; Muniz Filho, E.; et al. Croton in Flora e Funga Do Brasil. Available online: https://floradobrasil.jbrj.gov.br/FB17497 (accessed on 10 July 2022).
- Guerra Júnior, J.I.; Ferreira, M.R.A.; de Oliveira, A.M.; Soares, L.A.L. Croton Sp.: A Review about Popular Uses, Biological Activities and Chemical Composition. Res. Soc. Dev. 2022, 11, e57311225306. [Google Scholar] [CrossRef]
- Silva, P.M.D.S.; Fiaschitello, T.R.; de Queiroz, R.S.; Freeman, H.S.; da Costa, S.A.; Leo, P.; Montemor, A.F.; da Costa, S.M. Natural Dye from Croton urucurana Baill. Bark: Extraction, Physicochemical Characterization, Textile Dyeing and Color Fastness Properties. Dye. Pigment. 2020, 173, 107953. [Google Scholar] [CrossRef]
- Ferreira, O.O.; Cruz, J.N.; de Moraes, Â.A.B.; de Jesus Pereira Franco, C.; Lima, R.R.; dos Anjos, T.O.; Siqueira, G.M.; do Nascimento, L.D.; Cascaes, M.M.; de Oliveira, M.S.; et al. Essential Oil of the Plants Growing in the Brazilian Amazon: Chemical Composition, Antioxidants, and Biological Applications. Molecules 2022, 27, 4373. [Google Scholar] [CrossRef] [PubMed]
- Sá Firmino, N.C.; Alexandre, F.S.O.; de Vasconcelos, M.A.; Pinheiro, A.A.; Arruda, F.V.S.; Guedes, M.L.S.; Silveira, E.R.; Teixeira, E.H. Diterpenes Isolated from Croton blanchetianus Baill: Potential Compounds in Prevention and Control of the Oral Streptococci Biofilms. Ind. Crops Prod. 2019, 131, 371–377. [Google Scholar] [CrossRef]
- Da Silva Brito, S.S.; Silva, F.; Malheiro, R.; Baptista, P.; Pereira, J.A. Croton argyrophyllus Kunth and Croton heliotropiifolius Kunth: Phytochemical Characterization and Bioactive Properties. Ind. Crops Prod. 2018, 113, 308–315. [Google Scholar] [CrossRef] [Green Version]
- de Alencar Filho, J.M.T.; Araújo, L.D.C.; Oliveira, A.P.; Guimarães, A.L.; Pacheco, A.G.M.; Silva, F.S.; Cavalcanti, L.S.; Lucchese, A.M.; Almeida, J.R.G.D.S.; Araújo, E.C.D.C. Chemical Composition and Antibacterial Activity of Essential Oil from Leaves of Croton heliotropiifolius in Different Seasons of the Year. Rev. Bras. Farmacogn. 2017, 27, 440–444. [Google Scholar] [CrossRef]
- Sousa, A.; Oliveira, G.; Fonseca, L.; Rocha, M.; Rai, M.; Santos, F.; de Lima, S. Antioxidant Properties of Croton zehntneri Pax et Hoffm. Essential Oil and Its Inclusion Complex with β-Cyclodextrin Prepared by Spray Drying. J. Braz. Chem. Soc. 2022, 593, 30–35. [Google Scholar] [CrossRef]
- Coelho-de-Souza, A.N.; Rocha, M.V.A.P.; Oliveira, K.A.; Vasconcelos, Y.A.G.; Santos, E.C.; Silva-Alves, K.S.; Diniz, L.R.L.; Ferreira-da-Silva, F.W.; Oliveira, A.C.; Ponte, E.L.; et al. Volatile Oil of Croton zehntneri per Oral Sub-Acute Treatment Offers Small Toxicity: Perspective of Therapeutic Use. Rev. Bras. Farmacogn. 2019, 29, 228–233. [Google Scholar] [CrossRef]
- de Souza, G.S.; Bonilla, O.H.; de Lucena, E.M.P.; Barbosa, Y.P. Rendimento e Composição Química Do Óleo Essencial de Três Espécies de Croton. Cienc. Rural 2017, 47, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lima, C.C.; de Holanda-Angelin-Alves, C.M.; Pereira-Gonçalves, Á.; Kennedy-Feitosa, E.; Evangelista-Costa, E.; Bezerra, M.A.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H. Antispasmodic Effects of the Essential Oil of Croton zehnteneri, Anethole, and Estragole, on Tracheal Smooth Muscle. Heliyon 2020, 6, e05445. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.R.; Matos, M.N.C.; Guerrero, J.A.P.; Cavalcante, R.M.B.; Melo, R.S.; Azevedo, Á.M.A.; Pereira, A.M.G.; Lopes, P.H.R.; Rodrigues, T.H.S.; Bandeira, P.N.; et al. Comparative Study of the Chemical Composition, Antibacterial Activity and Synergic Effects of the Essential Oils of Croton tetradenius Baill. And C. pulegiodorus Baill. Against Staphylococcus aureus Isolates. Microb. Pathog. 2021, 156, 104934. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.; Souza, A.V.; Oliveira, A.P.; Santos, U.; Souza, M.; Bispo, L.; Turatti, Z.C.; Lopes, N. Chemical Composition of Essential Oils from Croton conduplicatus (Euphorbiaceae) in Two Different Seasons. J. Essent. Oil Bear. Plants 2014, 17, 1137–1145. [Google Scholar] [CrossRef]
- Azevedo, M.M.B.; Chaves, F.C.M.; Almeida, C.A.; Bizzo, H.R.; Duarte, R.S.; Campos-Takaki, G.M.; Alviano, C.S.; Alviano, D.S. Antioxidant and Antimicrobial Activities of 7-Hydroxycalamenene-Rich Essential Oils from Croton cajucara Benth. Molecules 2013, 18, 1128–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donati, M.; Mondin, A.; Chen, Z.; Miranda, F.M.; Do Nascimento, B.B.; Schirato, G.; Pastore, P.; Froldi, G. Radical Scavenging and Antimicrobial Activities of Croton zehntneri, Pterodon emarginatus and Schinopsis brasiliensis Essential Oils and Their Major Constituents: Estragole, Trans -Anethole, β-Caryophyllene and Myrcene. Nat. Prod. Res. 2015, 29, 939–946. [Google Scholar] [CrossRef]
- Souto, E.B.; Severino, P.; Marques, C.; Andrade, L.N.; Durazzo, A.; Lucarini, M.; Atanasov, A.G.; El Maimouni, S.; Novellino, E.; Santini, A. Croton argyrophyllus Kunth Essential Oil-Loaded Solid Lipid Nanoparticles: Evaluation of Release Profile, Antioxidant Activity and Cytotoxicity in a Neuroblastoma Cell Line. Sustainability 2020, 12, 7697. [Google Scholar] [CrossRef]
- Simionatto, E.; Bonani, V.F.L.; Morel, A.F.; Poppi, N.R.; Raposo Júnior, J.L.; Stuker, C.Z.; Peruzzo, G.M.; Peres, M.T.L.P.; Hess, S.C. Chemical Composition and Evaluation of Antibacterial and Antioxidant Activities of the Essential Oil of Croton urucurana Baillon (Euphorbiaceae) Stem Bark. J. Braz. Chem. Soc. 2007, 18, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Ramos da Silva, L.R.; Ferreira, O.O.; Cruz, J.N.; de Jesus Pereira Franco, C.; dos Anjos, T.O.; Cascaes, M.M.; Almeida da Costa, W.; Helena de Aguiar Andrade, E.; Santana de Oliveira, M. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid. Based Complement. Altern. Med. 2021, 2021, 6748052. [Google Scholar] [CrossRef]
- Franco, C.D.J.P.; Ferreira, O.O.; de Moraes, Â.A.B.; Varela, E.L.P.; do Nascimento, L.D.; Percário, S.; de Oliveira, M.S.; Andrade, E.H.D.A. Chemical Composition and Antioxidant Activity of Essential Oils from Eugenia patrisii Vahl, E. punicifolia (Kunth) DC., and Myrcia tomentosa (Aubl.) DC., Leaf of Family Myrtaceae. Molecules 2021, 26, 3292. [Google Scholar] [CrossRef]
- Diniz Do Nascimento, L.; De Moraes, A.A.B.; Da Costa, K.S.; Marcos, J.; Galúcio, P.; Taube, P.S.; Leal Costa, M.; Neves Cruz, J.; De Aguiar Andrade, E.H.; De Faria, L.J.G. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, L.D.; Silva, S.G.; Cascaes, M.M.; da Costa, K.S.; Figueiredo, P.L.B.; Costa, C.M.L.; Andrade, E.H.D.A.; de Faria, L.J.G. Drying Effects on Chemical Composition and Antioxidant Activity of Lippia Thymoides Essential Oil, a Natural Source of Thymol. Molecules 2021, 26, 2621. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.S.; Silva, S.G.; da Cruz, J.N.; Ortiz, E.; da Costa, W.A.; Bezerra, F.W.F.; Cunha, V.M.B.; Cordeiro, R.M.; de Jesus Chaves Neto, A.M.; de Andrade, E.H.A.; et al. Supercritical CO2 Application in Essential Oil Extraction. In Industrial Applications of Green Solvents—Volume II.; Inamuddin, R.M., Asiri, A.M., Eds.; Materials Research Foundations: Millersville, PA, USA, 2019; pp. 1–28. [Google Scholar]
- Fuentes, C.; Fuentes, A.; Barat, J.M.; Ruiz, M.J. Relevant Essential Oil Components: A Minireview on Increasing Applications and Potential Toxicity. Toxicol. Mech. Methods 2021, 31, 559–565. [Google Scholar] [CrossRef]
- da Silva Júnior, O.S.; de Jesus Pereira Franco, C.; de Moraes, A.A.B.; Cruz, J.N.; da Costa, K.S.; Diniz do Nascimento, L.; de Aguiar Andrade, E.H. In Silico Analyses of Toxicity of the Major Constituents of Essential Oils from Two Ipomoea L. Species. Toxicon 2021, 195, 111–118. [Google Scholar] [CrossRef]
- Oliva, M.D.L.M.; Gallucci, N.; Zygadlo, J.A.; Demo, M.S. Cytotoxic Activity of Argentinean Essential Oils on Artemia salina. Pharm. Biol. 2007, 45, 259–262. [Google Scholar] [CrossRef]
- Brasil, D.D.S.B.; Muller, A.H.; Guilhon, G.M.S.P.; Alves, C.N.; Andrade, E.H.A.; da Silva, J.K.R.; Maia, J.G.S. Essential Oil Composition of Croton palanostigma Klotzsch from North Brazil. J. Braz. Chem. Soc. 2009, 20, 1188–1192. [Google Scholar] [CrossRef]
- Da Costa, J.G.M.; Rodrigues, F.F.G.; Angélico, E.C.; Pereira, C.K.B.; De Souza, E.O.; Caldas, G.F.R.; Silva, M.R.; Santos, N.K.A.; Mota, M.L.; Dos Santos, P.F. Chemical Composition and Evaluation of the Antibacterial Activity and Toxicity of the Essential Oil of Croton zehntneri (Variety Estragol). Rev. Bras. Farmacogn. 2008, 18, 583–586. [Google Scholar] [CrossRef] [Green Version]
- De Lima, S.G.; Medeiros, L.B.P.; Cunha, C.N.L.C.; Da Silva, D.; De Andrade, N.C.; Moita Neto, J.M.; Lopes, J.A.D.; Steffen, R.A.; Araújo, B.Q.; De Reis, F.A.M. Chemical Composition of Essential Oils of Croton hirtus L’Her from Piauí (Brazil). J. Essent. Oil Res. 2012, 24, 371–376. [Google Scholar] [CrossRef]
- Werka, J.S.; Boehme, A.K.; Setzer, W.N. Biological Activities of Essential Oils from Monteverde, Costa Rica. Nat. Prod. Commun. 2007, 2, 1934578X0700201204. [Google Scholar] [CrossRef]
- Mesquita, K.D.S.M.; Feitosa, B.D.S.; Cruz, J.N.; Ferreira, O.O.; Franco, C.D.J.P.; Cascaes, M.M.; de Oliveira, M.S.; Andrade, E.H.D.A. Chemical Composition and Preliminary Toxicity Evaluation of the Essential Oil from Peperomia circinnata Link Var. circinnata. (Piperaceae) in Artemia salina Leach. Molecules 2021, 26, 7359. [Google Scholar] [CrossRef]
- Baek, I.; Choi, H.J.; Rhee, J.S. Inhibitory Effects of Biocides on Hatching and Acetylcholinesterase Activity in the Brine Shrimp Artemia salina. Toxicol. Environ. Health Sci. 2015, 7, 303–308. [Google Scholar] [CrossRef]
- Secco, R.D.S.; Rosário, A.S.D.; Berry, P.E. Croton campinarensis (Euphorbiaceae), a New Species from Eastern Amazonian Brazil. Phytotaxa 2012, 49, 1–5. [Google Scholar] [CrossRef]
- Ferreira, O.O.; da Silva, S.H.M.; de Oliveira, M.S.; Andrade, E.H.D.A. Chemical Composition and Antifungal Activity of Myrcia Multiflora and Eugenia Florida Essential Oils. Molecules 2021, 26, 7259. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.S.; da Cruz, J.N.; da Costa, W.A.; Silva, S.G.; Brito, M.D.P.; de Menezes, S.A.F.; de Jesus Chaves Neto, A.M.; de Aguiar Andrade, E.H.; de Carvalho Junior, R.N. Chemical Composition, Antimicrobial Properties of Siparuna Guianensis Essential Oil and a Molecular Docking and Dynamics Molecular Study of Its Major Chemical Constituent. Molecules 2020, 25, 3852. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, O.O.; Franco, C.D.J.P.; Varela, E.L.P.; Silva, S.G.; Cascaes, M.M.; Percário, S.; de Oliveira, M.S.; Andrade, E.H.D.A. Chemical Composition and Antioxidant Activity of Essential Oils from Leaves of Two Specimens of Eugenia Florida DC. Molecules 2021, 26, 5848. [Google Scholar] [CrossRef] [PubMed]
- van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publ.: Carol Stream, IL, USA, 2007; Volume 8, ISBN 978-1932633214. [Google Scholar]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- de Moraes, Â.A.B.; Ferreira, O.O.; da Costa, L.S.; Almeida, L.Q.; Varela, E.L.P.; Cascaes, M.M.; de Jesus Pereira Franco, C.; Percário, S.; do Nascimento, L.D.; de Oliveira, M.S.; et al. Phytochemical Profile, Preliminary Toxicity, and Antioxidant Capacity of the Essential Oils of Myrciaria floribunda (H. West Ex Willd.) O. Berg. and Myrcia sylvatica (G. Mey) DC. (Myrtaceae). Antioxidants 2022, 11, 2076. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A Novel Method for Measuring Antioxidant Capacity and Its Application to Monitoring the Antioxidant Status in Premature Neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neto, R.D.A.M.; Santos, C.B.R.; Henriques, S.V.C.; Machado, L.D.O.; Cruz, J.N.; da Silva, C.H.T.D.P.; Federico, L.B.; de Oliveira, E.H.C.; de Souza, M.P.C.; da Silva, P.N.B.; et al. Novel Chalcones Derivatives with Potential Antineoplastic Activity Investigated by Docking and Molecular Dynamics Simulations. J. Biomol. Struct. Dyn. 2022, 40, 2204–2216. [Google Scholar] [CrossRef] [PubMed]
- Rego, C.M.A.; Francisco, A.F.; Boeno, C.N.; Paloschi, M.V.; Lopes, J.A.; Silva, M.D.S.; Santana, H.M.; Serrath, S.N.; Rodrigues, J.E.; Lemos, C.T.L.; et al. Inflammasome NLRP3 Activation Induced by Convulxin, a C-Type Lectin-like Isolated from Crotalus durissus terrificus Snake Venom. Sci. Rep. 2022, 12, 1–17. [Google Scholar] [CrossRef]
- Almeida, V.M.; Dias, Ê.R.; Souza, B.C.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; Queiroz, R.F.; Branco, A. Methoxylated Flavonols from Vellozia Dasypus Seub Ethyl Acetate Active Myeloperoxidase Extract: In Vitro and in Silico Assays. J. Biomol. Struct. Dyn. 2021, 40, 7574–7583. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.D.M.; Siqueira, A.S.; Möller, M.L.S.; Souza, R.C.D.; Cruz, J.N.; Lima, A.R.J.; da Silva, R.C.; Aguiar, D.C.F.; Junior, J.L.; Gonçalves, E.C. In Silico Improvement of the Cyanobacterial Lectin Microvirin and Mannose Interaction. J. Biomol. Struct. Dyn. 2020, 40, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, R.; Christensen, M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006, 49, 3315–3321. [Google Scholar] [CrossRef] [PubMed]
- Leão, R.P.; Cruz, J.V.; da Costa, G.V.; Cruz, J.N.; Ferreira, E.F.B.; Silva, R.C.; de Lima, L.R.; Borges, R.S.; dos Santos, G.B.; Santos, C.B.R. Identification of New Rofecoxib-Based Cyclooxygenase-2 Inhibitors: A Bioinformatics Approach. Pharmaceuticals 2020, 13, 209. [Google Scholar] [CrossRef]
- Mascarenhas, A.M.S.; de Almeida, R.B.M.; de Araujo Neto, M.F.; Mendes, G.O.; da Cruz, J.N.; dos Santos, C.B.R.; Botura, M.B.; Leite, F.H.A. Pharmacophore-Based Virtual Screening and Molecular Docking to Identify Promising Dual Inhibitors of Human Acetylcholinesterase and Butyrylcholinesterase. J. Biomol. Struct. Dyn. 2020, 39, 1–10. [Google Scholar] [CrossRef]
- Santos, C.B.R.; Santos, K.L.B.; Cruz, J.N.; Leite, F.H.A.; Borges, R.S.; Taft, C.A.; Campos, J.M.; Silva, C.H.T.P. Molecular Modeling Approaches of Selective Adenosine Receptor Type 2A Agonists as Potential Anti-Inflammatory Drugs. J. Biomol. Struct. Dyn. 2021, 39, 3115–3127. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.; Gary, E.N.; Shiomi, K.; Rosenberry, T.L. Structures of Human Acetylcholinesterase Bound to Dihydrotanshinone i and Territrem B Show Peripheral Site Flexibility. ACS Med. Chem. Lett. 2013, 4, 1091–1096. [Google Scholar] [CrossRef]
- Turiel, N.A.; Ribeiro, A.F.; Carvalho, N.C.C.; Monteiro, O.S.; Lucas, F.C.A.; Carreira, L.M.M.; Andrade, E.H.A.; Maia, J.G.S. Variability in Essential Oil Composition of Croton Species with Occurrence in the Eastern Brazilian Amazon. Rec. Nat. Prod. 2016, 10, 380–384. [Google Scholar]
- Stein, S.; Mirokhin, D.; Tchekhovskoi, D.; Mallard, G.; Mikaia, A.; Zaikin, V.; Sparkmanm, D. Standard Reference Data Program of the National Institute of Standards and Technology; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011; The NIST mass spectral search program for the nist/epa/nih mass spectra library. [Google Scholar]
- Albuquerque, B.N.D.L.; Da Silva, M.F.R.; Da Silva, P.C.B.; De Lira Pimentel, C.S.; Lino Da Rocha, S.K.; De Aguiar, J.C.R.O.F.; Neto, A.C.A.; Paiva, P.M.G.; Gomes, M.G.M.; Da Silva-Júnior, E.F.; et al. Oviposition Deterrence, Larvicidal Activity and Docking of β-Germacrene-D-4-Ol Obtained from Leaves of Piper corcovadensis (Piperaceae) against Aedes aegypti. Ind. Crops Prod. 2022, 182, 114830. [Google Scholar] [CrossRef]
- Formagio, A.S.N.; Vilegas, W.; Volobuff, C.R.F.; Kassuya, C.A.L.; Cardoso, C.A.L.; Pereira, Z.V.; Silva, R.M.M.F.; dos Santos Yamazaki, D.A.; de Freitas Gauze, G.; Manfron, J.; et al. Exploration of Essential Oil from Psychotria Poeppigiana as an Anti-Hyperalgesic and Anti-Acetylcholinesterase Agent: Chemical Composition, Biological Activity and Molecular Docking. J. Ethnopharmacol. 2022, 296, 115220. [Google Scholar] [CrossRef]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene a Sesquiterpene with Countless. Appl. Sci. 2019, 9, 5420–5438. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.B.; Figueiredo, L.A.; Castorani, G.M.; Veiga, S.M.O.M. Avaliação Da Atividade Antimicrobiana Dos Óleos Essenciais Contra Patógenos Alimentares. Braz. J. Health Rev. 2020, 3, 342–363. [Google Scholar] [CrossRef]
- Lu, J.J.; Dang, Y.Y.; Huang, M.; Xu, W.S.; Chen, X.P.; Wang, Y.T. Anti-Cancer Properties of Terpenoids Isolated from Rhizoma Curcumae—A Review. J. Ethnopharmacol. 2012, 143, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Júnior, O.S.; Franco, C.D.J.P.; de Moraes, Â.A.B.; Pastore, M.; Cascaes, M.M.; do Nascimento, L.D.; de Oliveira, M.S.; Andrade, E.H.D.A. Chemical Variability of Volatile Concentrate from Two Ipomoea L. Species within a Seasonal Gradient. Nat. Prod. Res. 2022, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.C.S.; De Oliveira, J.C.S.; Da Câmara, C.A.G.; Castelar, I.; Carvalho, A.F.F.U.; Lima-Filho, J.V. Antibacterial and Cytotoxic Properties of Some Plant Crude Extracts Used in Northeastern Folk Medicine. Rev. Bras. Farmacogn. 2009, 19, 376–381. [Google Scholar] [CrossRef]
- Morais, S.M.; Cossolosso, D.S.; Silva, A.A.S.; de Moraes Filho, M.O.; Teixeira, M.J.; Campello, C.C.; Bonilla, O.H.; de Paula, V.F.; Vila-Nova, N.S. Essential Oils from Croton Species: Chemical Composition, in Vitro and in Silico Antileishmanial Evaluation, Antioxidant and Cytotoxicity Activities. J. Braz. Chem. Soc. 2019, 30, 2404–2412. [Google Scholar] [CrossRef]
- Pino, J.A.; Terán-Portelles, E.C.; Hernández, I.; Rodeiro, I.; Fernández, M.D. Chemical Composition of the Essential Oil from Croton wagneri Müll. Arg. (Euphorbiaceae) Grown in Ecuador. J. Essent. Oil Res. 2018, 30, 347–352. [Google Scholar] [CrossRef]
- Do Vale, J.P.C.; Vasconcelos, M.A.; Arruda, F.V.S.; Firmino, N.C.S.; Pereira, A.L.; Andrade, A.L.; Saker-Sampaio, S.; Sampaio, A.H.; Marinho, E.S.; Teixeira, A.M.R.; et al. Evaluation of Antimicrobial and Antioxidant Potential of Essential Oil from Croton piauhiensis Müll. Arg. Curr. Microbiol. 2021, 78, 1926–1938. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.P.; Domingues, V.C.; Gonçalves, G.L.P.; Fernandes, J.B.; Glória, E.M.; Vendramim, J.D. Essential Oil from Duguetia lanceolata St.-Hil. (Annonaceae): Suppression of Spoilers of Stored-Grain. Food Biosci. 2020, 36, 100653. [Google Scholar] [CrossRef]
- Andrade, T.C.B.; Lima, S.G.D.; Freitas, R.M.; Rocha, M.S.; Islam, T.; Silva, T.G.D.; Militão, G.C.G. Isolation, Characterization and Evaluation of Antimicrobial and Cytotoxic Activity of Estragole, Obtained from the Essential Oil of Croton zehntneri (Euphorbiaceae). An. Da Acad. Bras. De Ciências 2015, 87, 173–182. [Google Scholar] [CrossRef]
- Lawal, O.A.; Ogunwande, I.A.; Osunsanmi, F.O.; Opoku, A.R.; Oyedeji, A.O. Croton gratissimus Leaf Essential Oil Composition, Antibacterial, Antiplatelet Aggregation, and Cytotoxic Activities. J. Herbs Spices Med. Plants 2017, 23, 77–87. [Google Scholar] [CrossRef]
- Ascari, J.; de Oliveira, M.S.; Nunes, D.S.; Granato, D.; Scharf, D.R.; Simionatto, E.; Otuki, M.; Soley, B.; Heiden, G. Chemical Composition, Antioxidant and Anti-Inflammatory Activities of the Essential Oils from Male and Female Specimens of Baccharis punctulata (Asteraceae). J. Ethnopharmacol. 2019, 234, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Casiglia, S.; Bruno, M.; Bramucci, M.; Quassinti, L.; Lupidi, G.; Fiorini, D.; Maggi, F. Kundmannia sicula (L.) DC: A Rich Source of Germacrene D. J. Essent. Oil Res. 2017, 29, 437–442. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria Crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- de Castro, J.A.M.; Monteiro, O.S.; Coutinho, D.F.; Rodrigues, A.A.C.; da Silva, J.K.R.; Maia, J.G.S. Seasonal and Circadian Study of a Thymol/γ-Terpinene/p-Cymene Type Oil of Ocimum gratissimum L. And Its Antioxidant and Antifungal Effects. J. Braz. Chem. Soc. 2019, 30, 930–938. [Google Scholar] [CrossRef]
- Zuccolotto, T.; Bressan, J.; Lourenço, A.V.F.; Bruginski, E.; Veiga, A.; Marinho, J.V.N.; Raeski, P.A.; Heiden, G.; Salvador, M.J.; Murakami, F.S.; et al. Chemical, Antioxidant, and Antimicrobial Evaluation of Essential Oils and an Anatomical Study of the Aerial Parts from Baccharis Species (Asteraceae). Chem. Biodivers. 2019, 16, e1800547. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, Z.; Hou, E.; Ma, N.; Fan, J.; Jin, C.Y.; Yang, R. Non-Food Bioactive Natural Forest Products as Insecticide Candidates: Preparation, Biological Evaluation and Molecular Docking Studies of Novel N-(1,3-Thiazol-2- Yl)Carboxamides Fused (+)-Nootkatone from Chamaecyparis Nootkatensis [D. Don] Spach. Ind. Crops Prod. 2020, 156, 112864. [Google Scholar] [CrossRef]
- Mollica, F.; Gelabert, I.; Amorati, R. Synergic Antioxidant Effects of the Essential Oil Component γ-Terpinene on High-Temperature Oil Oxidation. ACS Food Sci. Technol. 2022, 2, 180–186. [Google Scholar] [CrossRef]
- Judžentienė, A.; Būdienė, J. Mugwort (Artemisia vulgaris L.) Essential Oils Rich in Germacrene D, and Their Toxic Activity. J. Essent. Oil Res. 2021, 33, 256–264. [Google Scholar] [CrossRef]
- Machado, K.D.C.; Paz, M.F.C.J.; de Oliveira Santos, J.V.; da Silva, F.C.C.; Tchekalarova, J.D.; Salehi, B.; Islam, M.T.; Setzer, W.N.; Sharifi-Rad, J.; de Castro e Sousa, J.M.; et al. Anxiety Therapeutic Interventions of β-Caryophyllene: A Laboratory-Based Study. Nat. Prod. Commun. 2020, 15, 1934578X20962229. [Google Scholar] [CrossRef]
- Schmitt, D.; Levy, R.; Carroll, B. Toxicological Evaluation of β-Caryophyllene Oil: Subchronic Toxicity in Rats. Int. J. Toxicol. 2016, 35, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Rajeswary, M.; Hoti, S.L.; Bhattacharyya, A.; Benelli, G. Eugenol, α-Pinene and β-Caryophyllene from Plectranthus barbatus Essential Oil as Eco-Friendly Larvicides against Malaria, Dengue and Japanese Encephalitis Mosquito Vectors. Parasitol. Res. 2016, 115, 807–815. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, M.R.C.; Barros, L.M.; Duarte, A.E.; De Lima Silva, M.G.; Da Silva, B.A.F.; Pereira Bezerra, A.O.B.; Oliveira Tintino, C.D.M.; De Oliveira, V.A.P.; Boligon, A.A.; Kamdem, J.P.; et al. Gc-Ms Chemical Characterization and in Vitro Evaluation of Antioxidant and Toxic Effects Using Drosophila Melanogaster Model of the Essential Oil of Lantana montevidensis (Spreng) Briq. Medicina 2019, 55, 194. [Google Scholar] [CrossRef] [Green Version]
- Ojah, E.O.; Moronkola, D.O.; Petrelli, R.; Nzekoue, F.K. Chemical Composition of Ten Essential Oils from Calophyllum Inophyllum Linn and Their Toxicity Against Artemia salina. Eur. J. Pharm. Med. Res. 2019, 6, 185–194. [Google Scholar]
- Fabri, N.T.; Gatto, L.J.; Furusho, A.S.; Garcia, M.J.B.; Marques, F.D.A.; Miguel, M.D.; Montrucchio, D.P.; Zanin, S.M.W.; Miguel, O.G.; Gaspari Dias, J.D.F. Composition, Antioxidant Properties, and Biological Activities of the Essential Oil Extracted from Ocotea diospyrifolia (Meisn.) Mez. Braz. J. Pharm. Sci. 2019, 55, 1–8. [Google Scholar] [CrossRef]
- Cho, T.J.; Park, S.M.; Yu, H.; Seo, G.H.; Kim, H.W.; Kim, S.A.; Rhee, M.S. Recent Advances in the Application of Antibacterial Complexes Using Essential Oils. Molecules 2020, 25, 1752. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A. Toxicity of Selected Monoterpenes and Essential Oils Rich in These Compounds. Molecules 2022, 27, 1716. [Google Scholar] [CrossRef] [PubMed]
- Iannone, M.; Ovidi, E.; Vitalini, S.; Laghezza Masci, V.; Iriti, M.; Tiezzi, A.; Garzoli, S.; Marianelli, A. From Hops to Craft Beers: Production Process, VOCs Profile Characterization, Total Polyphenol and Flavonoid Content Determination and Antioxidant Activity Evaluation. Processes 2022, 10, 517. [Google Scholar] [CrossRef]
- dos Santos, K.L.B.; Cruz, J.N.; Silva, L.B.; Ramos, R.S.; Neto, M.F.A.; Lobato, C.C.; Ota, S.S.B.; Leite, F.H.A.; Borges, R.S.; da Silva, C.H.T.P.; et al. Identification of Novel Chemical Entities for Adenosine Receptor Type 2a Using Molecular Modeling Approaches. Molecules 2020, 25, 1245. [Google Scholar] [CrossRef]
- Pinto, V.D.S.; Araújo, J.S.C.; Silva, R.C.; da Costa, G.V.; Cruz, J.N.; Neto, M.F.D.A.; Campos, J.M.; Santos, C.B.R.; Leite, F.H.A.; Junior, M.C.S. In Silico Study to Identify New Antituberculosis Molecules from Natural Sources by Hierarchical Virtual Screening and Molecular Dynamics Simulations. Pharmaceuticals 2019, 12, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, E.B.; Silva, R.C.; Espejo-Román, J.M.; Neto, M.F.D.A.; Cruz, J.N.; Leite, F.H.A.; Silva, C.H.T.P.; Pinheiro, J.C.; Macêdo, W.J.C.; Santos, C.B.R. Chemometric Methods in Antimalarial Drug Design from 1,2,4,5-Tetraoxanes Analogues. SAR QSAR Environ. Res. 2020, 31, 677–695. [Google Scholar] [CrossRef]
- Galucio, N.C.D.R.; Moysés, D.D.A.; Pina, J.R.S.; Marinho, P.S.B.; Gomes Júnior, P.C.; Cruz, J.N.; Vale, V.V.; Khayat, A.S.; Marinho, A.M.D.R. Antiproliferative, Genotoxic Activities and Quantification of Extracts and Cucurbitacin B Obtained from Luffa operculata (L.) Cogn. Arab. J. Chem. 2022, 15, 103589. [Google Scholar] [CrossRef]
Yield (%) | 0.24 | ||
---|---|---|---|
RIL | RIC | Chemical Constituents | Area (%) |
1014 a | 1017 | α-terpinene | 0.31 |
1020 a | 1024 | p-cymene | 0.49 |
1054 a | 1059 | γ-terpinene | 8.99 |
1335 a | 1339 | δ-elemene | 7.59 |
1374 a | 1378 | α-copaene | 0.34 |
1387 a | 1387 | β-bourbonene | 0.45 |
1389 a | 1394 | β-elemene | 3.56 |
1409 a | 1412 | α-gurjunene | 0.48 |
1417 a | 1423 | (E)-caryophyllene | 17.60 |
1430 a | 1431 | β-copaene | 1.37 |
1434 a | 1434 | γ-elemene | 0.43 |
1432 a | 1437 | α-trans-bergamotene | 1.03 |
1447 b | 1446 | isogermacrene D | 0.60 |
1452 a | 1456 | α-humulene | 2.49 |
1458 a | 1463 | allo-aromadrendene | 0.38 |
1465 a | 1465 | cis-muurola-4(14).5-diene | 0.21 |
1478 a | 1479 | γ-muurolene | 0.39 |
1484 a | 1484 | germacrene D | 26.95 |
1495 a | 1492 | γ-amorphene | 0.39 |
1500 a | 1500 | bicyclogermacrene | 17.98 |
1504 a | 1506 | cuparene | 1.68 |
1514 a | 1513 | β-curcumene | 0.28 |
1514 a | 1516 | (Z)-γ-bisabolene | 1.01 |
1522 a | 1525 | δ-cadinene | 1.38 |
1529 a | 1533 | (E)-γ-bisabolene | 1.06 |
1533 a | 1539 | trans-cadina-1.4-diene | 0.09 |
1537 | 1544 | (E)-α-bisabolene | 0.21 |
1577 a | 1581 | spathulenol | 0.96 |
1582 | 1587 a | caryophyllene oxide | 0.31 |
1638 | 1643 a | epi-α-cadinol | 0.33 |
1644 | 1649 a | α-muurolol | 0.21 |
1652 | 1655 a | α-cadinol | 0.31 |
monoterpene hydrocarbons | 9.30 | ||
oxygenated monoterpenes | 0.00 | ||
sesquiterpene hydrocarbons | 87.95 | ||
oxygenated sesquiterpenes | 2.12 | ||
other | 0.49 | ||
TOTAL | 99.86 |
TEAC | Preliminary Toxicity | ||
---|---|---|---|
ABTS (mM·L−1) | DPPH (mM·L−1) | LC50 (µg·mL−1) | R2 |
0.55 ± 0.04 a | 1.88 ± 0.08 b | 20.84 ± 4.84 | 0.85 |
Molecule | MolDock Score | Rerank Score |
---|---|---|
Germacrene D | −01.107 | −55.75 |
Bicyclogermacrene | −95.71 | −71.41 |
(E)-caryophyllene | −103.70 | −80.34 |
γ-terpinen | −49.42 | −43.07 |
δ-elemene | −89.36 | −70.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa, L.S.; de Moraes, Â.A.B.; Cruz, J.N.; Mali, S.N.; Almeida, L.Q.; do Nascimento, L.D.; Ferreira, O.O.; Varela, E.L.P.; Percário, S.; de Oliveira, M.S.; et al. First Report on the Chemical Composition, Antioxidant Capacity, and Preliminary Toxicity to Artemia salina L. of Croton campinarensis Secco, A. Rosário & PE Berry (Euphorbiaceae) Essential Oil, and In Silico Study. Antioxidants 2022, 11, 2410. https://doi.org/10.3390/antiox11122410
da Costa LS, de Moraes ÂAB, Cruz JN, Mali SN, Almeida LQ, do Nascimento LD, Ferreira OO, Varela ELP, Percário S, de Oliveira MS, et al. First Report on the Chemical Composition, Antioxidant Capacity, and Preliminary Toxicity to Artemia salina L. of Croton campinarensis Secco, A. Rosário & PE Berry (Euphorbiaceae) Essential Oil, and In Silico Study. Antioxidants. 2022; 11(12):2410. https://doi.org/10.3390/antiox11122410
Chicago/Turabian Styleda Costa, Leonardo Souza, Ângelo Antônio Barbosa de Moraes, Jorddy Neves Cruz, Suraj N. Mali, Lorena Queiroz Almeida, Lidiane Diniz do Nascimento, Oberdan Oliveira Ferreira, Everton Luiz Pompeu Varela, Sandro Percário, Mozaniel Santana de Oliveira, and et al. 2022. "First Report on the Chemical Composition, Antioxidant Capacity, and Preliminary Toxicity to Artemia salina L. of Croton campinarensis Secco, A. Rosário & PE Berry (Euphorbiaceae) Essential Oil, and In Silico Study" Antioxidants 11, no. 12: 2410. https://doi.org/10.3390/antiox11122410
APA Styleda Costa, L. S., de Moraes, Â. A. B., Cruz, J. N., Mali, S. N., Almeida, L. Q., do Nascimento, L. D., Ferreira, O. O., Varela, E. L. P., Percário, S., de Oliveira, M. S., & Andrade, E. H. d. A. (2022). First Report on the Chemical Composition, Antioxidant Capacity, and Preliminary Toxicity to Artemia salina L. of Croton campinarensis Secco, A. Rosário & PE Berry (Euphorbiaceae) Essential Oil, and In Silico Study. Antioxidants, 11(12), 2410. https://doi.org/10.3390/antiox11122410