Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (37,078)

Search Parameters:
Keywords = natural products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2638 KiB  
Article
Identification of Bioactive Compounds in Warburgia salutaris Leaf Extracts and Their Pro-Apoptotic Effects on MCF-7 Breast Cancer Cells
by Lebogang Valentia Monama, Daniel Lefa Tswaledi, Tshisikhawe Masala Hadzhi, Makgwale Sharon Mphahlele, Mopeledi Blandina Madihlaba, Matlou Phineas Mokgotho, Leshweni Jeremia Shai and Emelinah Hluphekile Mathe
Int. J. Mol. Sci. 2025, 26(16), 8065; https://doi.org/10.3390/ijms26168065 (registering DOI) - 20 Aug 2025
Abstract
The apoptotic mechanism is complex and involves many pathways. Defects can occur at any time along these pathways, resulting in malignant cell transformation and resistance to anticancer drugs. Collective efforts have made great progress in the implementation of natural products in clinical use [...] Read more.
The apoptotic mechanism is complex and involves many pathways. Defects can occur at any time along these pathways, resulting in malignant cell transformation and resistance to anticancer drugs. Collective efforts have made great progress in the implementation of natural products in clinical use and in discovering new therapeutic opportunities. This study aimed to screen volatile compounds of Warburgia salutaris leaf extracts and investigate their pro-apoptotic effects on MCF-7 cells. The approach was mainly based on determining cell viability using MTT and scratch assays, and DNA synthesis and damage using BrdU and comet assays, respectively. DAPI/PI stains were used for morphological analysis and expression was determined by RT-PCR and human apoptotic proteome profiler. Warburgia salutaris extracts exhibited antiproliferative effects on MCF-7 cells in a time- and dose-dependent manner. Acetone and methanol extracts exhibited low IC50 at 24, 48 and 72 h. Furthermore, the scratch test revealed that MCF-7 does not metastasise when treated with IC50. Expression showed upregulation of pro-apoptotic proteins and executioner caspases. Taken together, these findings suggest that leaves can promote apoptosis through the intrinsic apoptotic pathway, as observed by upregulation of the Bax and caspase 3 proteins. This paper provides new insights into the mechanisms of action of W. salutaris leaf extracts in the development of anticancer drugs. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Figure 1

28 pages, 5633 KiB  
Article
Investigation into Efficacy and Mechanisms of Neuroprotection of Ashwagandha Root Extract and Water-Soluble CoenzymeQ10 in a Transgenic Mouse Model of Alzheimer’s Disease
by Caleb Vegh, Gabrielle Walach, Keanna Dube, Bromleigh Dobson, Rohan Talukdar, Darcy Wear, Hasana Jayawardena, Kaitlyn Dufault, Lauren Culmone, Subidsa Srikantha, Iva Okaj, Rachel Huggard, Jerome Cohen and Siyaram Pandey
Nutrients 2025, 17(16), 2701; https://doi.org/10.3390/nu17162701 - 20 Aug 2025
Abstract
Background: Alzheimer’s Disease (AD) is one of the most prevalent neurodegenerative disorders and the most common form of dementia. Although current treatments examine disease progression, many have side effects and primarily target symptomatic relief as opposed to halting further neurodegeneration. Objective: The current [...] Read more.
Background: Alzheimer’s Disease (AD) is one of the most prevalent neurodegenerative disorders and the most common form of dementia. Although current treatments examine disease progression, many have side effects and primarily target symptomatic relief as opposed to halting further neurodegeneration. Objective: The current study aims to determine the neuroprotective effects of water-soluble coenzyme Q10 (Ubisol-Q10) and an ethanolic Ashwagandha extract (E-ASH) on a transgenic mouse model of AD. Methods: A variety of immunofluorescence staining of biomarkers was conducted to assess mechanisms commonly implicated in the disease. Additionally, spatial and non-spatial memory tests evaluated cognitive functions at two timepoints throughout the progression of the disease. Results: A substantial reduction in microglial activation and amyloid-β (Aβ) plaques when treated with a combination of natural health products (NHPs), Ubisol-Q10 and E-ASH. Moreover, activation of autophagy was upregulated in both the Ubisol-Q10 and combination (Ubisol-Q10+E-ASH given as a combined “Tonic” solution) groups. Oxidative stress was decreased across treated groups, while astrocyte activation was elevated in both the E-ASH and Tonic group. The Tonic group expressed an elevation in the fluorescent intensity of neuronal nuclei (NeuN) and brain-derived neurotrophic factor (BDNF) levels. Interestingly, treatment with E-ASH and Ubisol-Q10 enhanced synaptic vesicle formation compared to controls. Pre-mortem memory tests revealed the treatments to be effective at preserving cognitive abilities. Conclusions: Based on these findings, the combination of E-ASH and Ubisol-Q10 may effectively mitigate the various mechanisms implicated in AD and ultimately prevent further disease progression. Full article
Show Figures

Figure 1

30 pages, 7361 KiB  
Article
Gas Sources and Productivity-Influencing Factors of Matrix Reservoirs in Xujiahe Formation—A Case Study of Xin 8-5H Well and Xinsheng 204-1H Well
by Weijie Miao, Xingwen Wang, Wen Zhang, Ling Qiu, Qianli Lu and Xinwei Gong
Processes 2025, 13(8), 2644; https://doi.org/10.3390/pr13082644 - 20 Aug 2025
Abstract
The tight sandstone gas reservoirs of the Xujiahe Formation are critical targets for tight gas exploration and development in the Sichuan Basin. While Class I reservoirs have been successfully developed using staged volume fracturing technology, efforts are being increasingly directed toward Class II [...] Read more.
The tight sandstone gas reservoirs of the Xujiahe Formation are critical targets for tight gas exploration and development in the Sichuan Basin. While Class I reservoirs have been successfully developed using staged volume fracturing technology, efforts are being increasingly directed toward Class II and III matrix-type blocks. These reservoirs are characterized by a low permeability, high geo-stress differentials, strong heterogeneity, and limited fracture development. These properties result in several challenges, including ambiguous gas production sources, low reservoir utilization rates, significant variability in horizontal well performance, and rapid early-stage production decline—all of which hinder the effective development of matrix-type reservoirs. This study examines two representative fractured wells, Xin 8-5H and Xinsheng 204-1H, located in Class II and III blocks of the Xujiahe Formation gas reservoir. To identify gas production sources, we establish full-fracturing-section productivity models. Furthermore, accounting for variations in geological characteristics, we develop distinct productivity models for three key zones, the matrix area, fracture area, and fault area, to evaluate the productivity controls. The findings reveal that well Xin 8-5H primarily produces gas from the matrix and fault zones, whereas well Xinsheng 204-1H derives most of its production from the matrix and natural fractures. In matrix-dominated zones, generating complex fracture networks enhances productivity. An optimal cluster spacing of approximately 14 m ensures broad pressure sweep coverage while maintaining effective inter-cluster fracture connectivity. Additionally, natural fractures in the Xu-2 matrix reservoirs play a vital role in fluid communication. To maximize reservoir contact, well trajectories should be designed such that natural fractures are oriented either parallel or perpendicular to the wellbore, thereby improving lateral and vertical development. Near fault zones, adjusting cluster spacing to 14–25 m—while keeping the distance between faults and fracturing stages below 50 m—effectively connects faults and substantially increases production. This study introduces a systematic methodology for identifying gas sources in matrix reservoirs and optimizes key productivity-influencing parameters. The results provide both theoretical insights and practical strategies for the efficient development of Xu-2 matrix reservoirs. Full article
(This article belongs to the Section Energy Systems)
26 pages, 3819 KiB  
Article
Acoustic Transmission Characteristics and Model Prediction of Upper and Lower Completion Pipe Strings for Test Production of Natural Gas Hydrate
by Benchong Xu, Haowen Chen, Guoyue Yin, Rulei Qin, Jieyun Gao and Xin He
Appl. Sci. 2025, 15(16), 9174; https://doi.org/10.3390/app15169174 (registering DOI) - 20 Aug 2025
Abstract
This study adopts numerical simulation methods to explore the acoustic transmission characteristics of pipe strings in the upper and lower completions of a monitoring system for test production of natural gas hydrate. A finite-element simulation model for acoustic transmission in the pipe string [...] Read more.
This study adopts numerical simulation methods to explore the acoustic transmission characteristics of pipe strings in the upper and lower completions of a monitoring system for test production of natural gas hydrate. A finite-element simulation model for acoustic transmission in the pipe string system is established through COMSOL. The sound pressure level attenuation and the sound pressure amplitude ratio are chosen as evaluation indexes. Parametric numerical simulations are carried out to study the effects of the number of tubing cascades and the size of connection joints in the pipe string system on the acoustic transmission characteristics of the pipe string. The Light Gradient Boosting Machine (LightGBM) algorithm is adopted to predict the acoustic transmission characteristic curves of the pipe string. Based on this prediction model, with the maximum transmission distance, maximum sound pressure amplitude ratio, and minimum transmission attenuation as objective functions, the NSGA-II (Non-dominated Sorting Genetic Algorithm-II) optimization algorithm is adopted to obtain the optimal combinations of the pipe string system structure and the transmission frequency. The findings show that within the range of 20–2000 Hz, when the acoustic wave propagates in the column system, the amplitude attenuation caused by structural damping is positively correlated with the transmission distance, and the high-frequency acoustic wave attenuates faster. When the frequency exceeds 500 Hz, the sound pressure amplitude ratio is lower than 0.4, and the attenuation is stabilized at 90% above 1500 Hz. The thickness of the joints has a weak impact on the transmission, while an increase in length raises the characteristic frequency but exacerbates sound pressure attenuation. The LightGBM algorithm has a high prediction accuracy, reaching up to 88.54% and 84.82%, respectively. The optimal parameter combinations (n, hkg, lkg, freq) optimized by NSGA-II provide an optimization scheme for the structure and frequency of acoustic transmission in down-hole pipe strings. Full article
16 pages, 1363 KiB  
Article
Soil Quality and Trace Element Risk in Urban and Rural Kitchen Gardens: A Comparative Analysis
by Diego Arán, Osvaldo Santos, Rodrigo Feteira-Santos, Yacine Benhalima and Erika S. Santos
Toxics 2025, 13(8), 697; https://doi.org/10.3390/toxics13080697 - 20 Aug 2025
Abstract
The development and use of urban spaces for food production is increasing in response to the search for healthier foods and contact with nature. These spaces can be created or built on materials of various types, which might contain potentially toxic elements (PTEs). [...] Read more.
The development and use of urban spaces for food production is increasing in response to the search for healthier foods and contact with nature. These spaces can be created or built on materials of various types, which might contain potentially toxic elements (PTEs). This study focuses on the evaluation of soil fertility and contamination levels in urban and rural kitchen gardens in Lisbon, Portugal. Soils of twenty kitchen gardens (nurban = 15; nrural = 5) were sampled, and their physicochemical characteristics and the contents of PTEs in the total and available fractions were analyzed. The results were used to calculate contamination indices and associated ecological risk. The soils of the urban and rural kitchen gardens had a neutral pH, with the presence of carbonate forms, and moderate-to-high organic matter contents, although with a clear nutritional imbalance. Regarding PTEs, both urban and rural kitchen gardens soils showed elevated levels of certain elements (e.g., Cr, Ni, Cu), exceeding the maximum allowable values established by Portuguese regulations. However, the available fraction of these elements was generally low. Contamination indices ranged from mild to considerable in isolated cases, with no general multi-element contamination or ecological risk. This suggests that associated environmental and health risks are minimal, although periodic monitoring of kitchen gardens’ soil quality is necessary to ensure and maximize the health benefits. Full article
Show Figures

Figure 1

17 pages, 1853 KiB  
Review
Exploring the Protective Effects of Taxifolin in Cardiovascular Health: A Comprehensive Review
by Hwan-Hee Sim, Ju-Young Ko, Dal-Seong Gong, Dong-Wook Kim, Jung Jin Kim, Han-Kyu Lim, Hyun Jung Kim and Min-Ho Oak
Int. J. Mol. Sci. 2025, 26(16), 8051; https://doi.org/10.3390/ijms26168051 (registering DOI) - 20 Aug 2025
Abstract
Taxifolin is a natural flavonoid found in a variety of plants, including Siberian larch (Larix sibirica) and milk thistle (Silybum marianum), that has attracted attention for its multifaceted pharmacological properties, including cardioprotective effects. Through its antioxidant and anti-inflammatory activities, [...] Read more.
Taxifolin is a natural flavonoid found in a variety of plants, including Siberian larch (Larix sibirica) and milk thistle (Silybum marianum), that has attracted attention for its multifaceted pharmacological properties, including cardioprotective effects. Through its antioxidant and anti-inflammatory activities, taxifolin has shown significant therapeutic potential in cardiovascular diseases such as atherosclerosis, myocardial ischemia, and diabetic cardiomyopathy. This review highlights the cardioprotective effects of taxifolin in preclinical models of atherosclerosis, ischemia/reperfusion injury, and diabetic cardiomyopathy. Taxifolin contributes to its cardioprotective effects through key mechanisms such as modulation of pathways such as PI3K/AKT and JAK2/STAT3, inhibition of NADPH oxidase, and modulation of nitric oxide production. Recent studies have shown that taxifolin can affect glucose metabolism by modulating sodium–glucose transporter (SGLT) expression, potentially enhancing the cardioprotective effects of SGLT2 inhibitors. Given the emerging role of SGLT2 inhibitors in the management of cardiovascular disease, further investigation of the interaction of this pathway with taxifolin may provide new therapeutic insights. Although taxifolin has multifaceted potential in the prevention and treatment of cardiovascular disease, further studies are needed to better understand its mechanisms and validate its efficacy in different disease stages. This review aims to provide a rationale for the clinical application of taxifolin-based cardiovascular therapies and suggest directions for future research. Full article
(This article belongs to the Special Issue Bioactive Compounds in the Prevention of Chronic Diseases)
Show Figures

Figure 1

20 pages, 1687 KiB  
Article
Evaluating Forest Aboveground Biomass Products by Incorporating Spatial Representativeness Analysis
by Yin Wang, Xiaohui Wang, Ping Ji, Haikui Li, Shengrong Wei and Daoli Peng
Remote Sens. 2025, 17(16), 2898; https://doi.org/10.3390/rs17162898 - 20 Aug 2025
Abstract
Forest aboveground biomass (AGB) products serve as essential references for research on carbon cycle and climate change. However, significant uncertainties exist regarding forest AGB products and their evaluation methods. This study aims to evaluate AGB products in the context of discrepancies in plot [...] Read more.
Forest aboveground biomass (AGB) products serve as essential references for research on carbon cycle and climate change. However, significant uncertainties exist regarding forest AGB products and their evaluation methods. This study aims to evaluate AGB products in the context of discrepancies in plot size and product scales, while also investigate the applicability of large-scale AGB products at a regional level. The National Aeronautics and Space Administration (NASA)’s Global Ecosystem Dynamics Investigation (GEDI) and the European Space Agency (ESA)’s Climate Change Initiative (CCI) biomass data were evaluated using sample plots from the National Forest Inventory (NFI). The study was conducted in Jilin Province, located in Northeast China, which is predominantly covered by natural forests. Spatial representativeness evaluation indicators for sample plots were established, followed by a comprehensive representativeness assessment and the selection of sample plots based on the criteria importance through the intercriteria correlation (CRITIC) method. Additionally, the study conducted an overall evaluation of the products, as well as evaluations across different biomass ranges and various forest types. The results indicate that the accuracy metrics demonstrated improved performance when using representative plots compared to all plots, with the R2 increasing by 15.38%. Both products demonstrated optimal accuracy and stability in the 50–150 Mg/ha range. GEDI and CCI biomass data indicated an overall underestimation, with biases of −25.68 Mg/ha and −83.95 Mg/ha, respectively. Specifically, a slight overestimation occurred in the <50 Mg/ha range, while a gradually increasing underestimation was observed in the ≥50 Mg/ha range. This study highlights the advantages of spatial representativeness analysis in mitigating evaluation uncertainties arising from scale mismatches and enhancing the reliability of product evaluation. The accuracy trends of AGB products offer significant insights that could facilitate improvements and enhance their application. Full article
(This article belongs to the Section Forest Remote Sensing)
18 pages, 1441 KiB  
Article
Cutinase Production in Komagataella phaffii (Pichia pastoris): Performance Differences Between Host Strains
by Andrea Sabido-Ramos, Montserrat Tagle-Gil, Krystel Estefany León-Montes, José Augusto Castro-Rodríguez and Amelia Farrés
Fermentation 2025, 11(8), 483; https://doi.org/10.3390/fermentation11080483 - 20 Aug 2025
Abstract
The Pichia system has been exploited for decades as a host for recombinant protein production, but there is still an information gap regarding problems that may arise with its use. The application of strains based on the methanol-induced alcohol oxidase 1 (AOX1) promoter [...] Read more.
The Pichia system has been exploited for decades as a host for recombinant protein production, but there is still an information gap regarding problems that may arise with its use. The application of strains based on the methanol-induced alcohol oxidase 1 (AOX1) promoter may represent a safety issue, and its performance varies among strains. In this study, the ability of a Komagataella phaffii MutS KM71H strain to produce recombinant cutinases was evaluated and compared to that of the more widely used Mut+ X-33 strain. The effects of the nature of the cutinase (ANCUT1 and ANCUT3, from Aspergillus nidulans), methanol level, and inoculum concentrations were evaluated in shake flasks containing a complex medium. Higher activities and volumetric cutinase productivity were observed at lower induction cell densities (0.5%) for the MutS KM71H aox1::pPICZα-A-ANCUT1 strain, while a higher one (2%) yielded better results in KM71H aox1::pPICZα-A-ANCUT3. The best inoculum and inducer conditions for both strains yielded similar results. The behavior of the different cutinases in the MutS or Mut+ genetic background was opposed: strain KM71H aox1::pPICZα-A-ANCUT3 produced 19% more activity than strain X-33 aox1::pPICZα-A-ANCUT3, while the ANCUT1 containing strain produced significantly higher activity in the X-33 Mut+ strain. These results indicate that MutS strains are viable host options without the complications of rapidly growing methanol strains. The effect of the gene structure being expressed is a phenomenon that needs further exploration. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

20 pages, 2328 KiB  
Article
Effect of Silk Fibroin as a Sustainable Solvent on the Extraction of Bixin from Annatto Seeds (Bixa orellana L.)
by Swanny Ferreira Borges, Fabricio H. e Holanda, Kaio C. De Maria, Sônia do Socorro do C. Oliveira, David E. Q. Jimenez, Celisnolia Morais Leite, Valtencir Zucolotto and Irlon M. Ferreira
Sustainability 2025, 17(16), 7518; https://doi.org/10.3390/su17167518 (registering DOI) - 20 Aug 2025
Abstract
Bixin, an apocarotenoid from Bixa orellana seeds, is a valuable natural pigment with industrial and pharmacological applications. Traditional extraction methods rely on organic solvents, but eco-friendly alternatives like silk fibroin solution (SFS) are emerging. This study evaluated SFS for bixin extraction from annatto [...] Read more.
Bixin, an apocarotenoid from Bixa orellana seeds, is a valuable natural pigment with industrial and pharmacological applications. Traditional extraction methods rely on organic solvents, but eco-friendly alternatives like silk fibroin solution (SFS) are emerging. This study evaluated SFS for bixin extraction from annatto seeds, optimizing conditions using Box-Behnken Design (BBD). The optimal parameters 1.5% SFS, 60 °C, and 60 min yielded 9.06 mg/mL (liquid extract of annatto seeds, LEAS + SFS) and 12.56 mg/mL (solid extract of annatto seeds, SEAS + SFS). Cell viability was assessed in human dermal fibroblasts (HDFn) and RAW 264.7 murine macrophages via MTT assay. After 24 and 72 h, LEAS + SFS, SEAS + SFS, purified bixin (PB), and SFS maintained >70% viability in HDFn cells. Similarly, RAW 264.7 cells showed >70% viability after 24 h, indicating low cytotoxicity. These results highlight the biocompatibility of SFS-extracted bixin, supporting its potential in food, cosmetics, and biomedicine. The study demonstrates that SFS is an effective, sustainable alternative to traditional solvents, offering high extraction efficiency and minimal toxicity. This method aligns with green chemistry principles, providing a promising solution for bixin production. Full article
Show Figures

Graphical abstract

14 pages, 1236 KiB  
Article
Physicochemical Properties and Antioxidant Profile of a Fermented Dairy Beverage Enriched with Coffee By-Products
by Maria Alexandraki, Ioannis Maisoglou, Michalis Koureas, Vasiliki Kossyva, Anastasia Tzereme, Ermioni Meleti, Mariastela Vrontaki, Vasileios Manouras, Lamprini Dimitriou, Eleni Malissiova and Athanasios Manouras
Beverages 2025, 11(4), 121; https://doi.org/10.3390/beverages11040121 - 20 Aug 2025
Abstract
Functional beverages are increasingly sought as components of a healthy diet, and goat milk offers a nutritious base with unique sensory attributes. This study aimed to develop a novel fermented goat milk beverage enriched with spent coffee grounds (SCG) extract, utilizing SCG’s high [...] Read more.
Functional beverages are increasingly sought as components of a healthy diet, and goat milk offers a nutritious base with unique sensory attributes. This study aimed to develop a novel fermented goat milk beverage enriched with spent coffee grounds (SCG) extract, utilizing SCG’s high natural antioxidant content to improve nutritional and functional properties. SCG was extracted via aqueous solid–liquid extraction and lyophilized; its extract was incorporated into goat milk–fructose blends at 0%, 1%, and 2% (w/v). Analyses included physicochemical characterization (pH, acidity, fat, and protein), total phenolic content, and antioxidant capacity via DPPH assay, alongside consumer sensory evaluation for acceptance and purchase intent. Results demonstrated that higher SCG extract levels significantly increased pH, phenolic concentrations, and radical scavenging activity while reducing titratable acidity. The 2% SCG formulation achieved the highest overall, taste, and aftertaste acceptance and purchase intention. These findings suggest that SCG-enriched goat dairy beverages are feasible functional foods with enhanced antioxidant properties and consumer appeal, promoting valorization of coffee by-products. Full article
Show Figures

Graphical abstract

21 pages, 8908 KiB  
Article
Spatiotemporal Heterogeneity and Zonal Adaptation Strategies for Agricultural Risks of Compound Dry and Hot Events in China’s Middle Yangtze River Basin
by Yonggang Wang, Jiaxin Wang, Daohong Gong, Mingjun Ding, Wentao Zhong, Muping Deng, Qi Kang, Yibo Ding, Yanyi Liu and Jianhua Zhang
Remote Sens. 2025, 17(16), 2892; https://doi.org/10.3390/rs17162892 - 20 Aug 2025
Abstract
Compound dry and hot events or extremes (CDHEs) have emerged as major climatic threats to agricultural production and food security in the middle reaches of the Yangtze River Basin (MRYRB), a critical grain-producing region in China. However, agricultural risks associated with CDHEs, incorporating [...] Read more.
Compound dry and hot events or extremes (CDHEs) have emerged as major climatic threats to agricultural production and food security in the middle reaches of the Yangtze River Basin (MRYRB), a critical grain-producing region in China. However, agricultural risks associated with CDHEs, incorporating both natural and socio-economic factors, remain poorly understood in this area. Using a Hazard-Exposure-Vulnerability (HEV) framework integrated with a weighting quantification method and supported by remote sensing technology and integrated geographic data, we systematically assessed the spatiotemporal dynamics of agricultural CDHE risks and corresponding crop responses in the MRYRB from 2000 to 2019. Results indicated an increasing trend in agricultural risks across the region, particularly in the Poyang Lake Plain (by 21.9%) and Jianghan Plain (by 9.9%), whereas a decreasing trend was observed in the Dongting Lake Plain (by 15.2%). Spatial autocorrelation analysis further demonstrated a significant negative relationship between gross primary production (GPP) and high agricultural risks of CDHEs, with a spatial concordance rate of 52.6%. These findings underscore the importance of incorporating CDHE risk assessments into agricultural management. To mitigate future risks, we suggest targeted adaptation strategies, including strengthening water resource management and developing multi-source irrigation systems in the Poyang Lake Plain, Dongting Lake, and the Jianghan Plain, improving hydraulic infrastructure and water source conservation capacity in northern and southwestern Hunan Province, and prioritizing regional risk-based adaptive planning to reduce agricultural losses. Our findings rectify the longstanding assumption that hydrological abundance inherently confers robust resistance to compound drought and heatwave stresses in lacustrine plains. Full article
(This article belongs to the Special Issue GeoAI and EO Big Data Driven Advances in Earth Environmental Science)
Show Figures

Figure 1

19 pages, 2646 KiB  
Article
Fundamentals of Metal Contact to p-Type GaN—A New Multilayer Energy-Saving Design
by Konrad Sakowski, Cyprian Sobczak, Pawel Strak and Stanislaw Krukowski
Electronics 2025, 14(16), 3309; https://doi.org/10.3390/electronics14163309 - 20 Aug 2025
Abstract
The electrical properties of contacts to p-type nitride semiconductor devices, based on gallium nitride, were simulated by ab initio and drift-diffusion calculations. The electrical properties of the contact are shown to be dominated by the electron-transfer process from the metal to GaN, which [...] Read more.
The electrical properties of contacts to p-type nitride semiconductor devices, based on gallium nitride, were simulated by ab initio and drift-diffusion calculations. The electrical properties of the contact are shown to be dominated by the electron-transfer process from the metal to GaN, which is related to the Fermi-level difference, as determined by both ab initio and model calculations. The results indicate a high potential barrier for holes, leading to the non-Ohmic character of the contact. The electrical nature of the Ni–Au contact formed by annealing in an oxygen atmosphere was elucidated. The influence of doping on the potential profile of p-type GaN was calculated using the drift-diffusion model. The energy-barrier height and width for hole transport were determined. Based on these results, a new type of contact is proposed. The contact is created by employing multiple-layer implantation of deep acceptors. The implementation of such a design promises to attain superior characteristics (resistance) compared with other contacts used in bipolar nitride semiconductor devices. The development of such contacts will remove one of the main obstacles in the development of highly efficient nitride optoelectronic devices, both LEDs and LDs: energy loss and excessive heat production close to the multiple-quantum-well system. Full article
Show Figures

Figure 1

18 pages, 1918 KiB  
Article
Sustainable Degradation of Acetaminophen by a Solar-Powered Electro-Fenton Process: A Green and Energy-Efficient Approach
by Sonia Herrera-Chávez, Silvia Gutierrez, Miguel A. Sandoval, Enric Brillas, Martin Pacheco-Álvarez and Juan M. Peralta-Hernández
Processes 2025, 13(8), 2633; https://doi.org/10.3390/pr13082633 - 20 Aug 2025
Abstract
The presence of acetaminophen (ACTP) in aquatic environments has become a significant concern due to its environmental persistence and the potential formation of toxic transformation products. This study systematically compares the performance of three electrochemical advanced oxidation processes (EAOPs), electro-oxidation (EO), electro-Fenton (EF), [...] Read more.
The presence of acetaminophen (ACTP) in aquatic environments has become a significant concern due to its environmental persistence and the potential formation of toxic transformation products. This study systematically compares the performance of three electrochemical advanced oxidation processes (EAOPs), electro-oxidation (EO), electro-Fenton (EF), and solar photo-electro-Fenton (SPEF), for the degradation and mineralization of ACTP in aqueous media using boron-doped diamond (BDD) electrodes. Reactions were conducted under varying operational parameters, including current densities (15–60 mA cm−2), initial ACTP concentrations (10–30 mg L−1), and Fe2+ dosages. In the SPEF system, natural sunlight was utilized as the source of UV-A irradiation (30–35 W m−2). Among the evaluated processes, SPEF exhibited the highest degradation efficiency, achieving up to 97% ACTP removal and 78% chemical oxygen demand (COD) reduction within 90 min. High-performance liquid chromatography (HPLC) analysis identified phenol and catechol as major intermediates, suggesting a degradation pathway involving hydroxylation, aromatic ring cleavage, and subsequent oxidation into low-molecular-weight carboxylic acids. Kinetic modeling revealed pseudo-first-order behavior, with a maximum rate constant of 0.0865 min−1 under optimized conditions determined via Box–Behnken experimental design. Additionally, SPEF demonstrated enhanced energy efficiency (~0.052 kWh gCOD−1) and improved oxidant regeneration under solar radiation, highlighting its potential as an environmentally friendly and cost-effective alternative for pharmaceutical wastewater treatment. These results support the implementation of SPEF as a sustainable strategy for mitigating the environmental impact of emerging contaminants, especially in regions with high solar availability and limited technological resources. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

16 pages, 3508 KiB  
Article
Metabolomic Profiling Reveals Dynamic Changes in Organic Acids During Zaolajiao Fermentation: Correlation with Physicochemical Properties and CAZymes
by Ju Chen, Xueya Wang, Wenxin Li, Jianwen He, Yong Yin, Min Lu and Yubing Huang
Fermentation 2025, 11(8), 479; https://doi.org/10.3390/fermentation11080479 - 20 Aug 2025
Abstract
Zaolajiao (ZLJ) is a traditional national specialty fermented condiment in Guizhou, and organic acid is one of its main flavor substances. In the study, we used metabolomics and multivariate analysis to identify differential organic acids (DOAs) during ZLJ fermentation and explored their correlations [...] Read more.
Zaolajiao (ZLJ) is a traditional national specialty fermented condiment in Guizhou, and organic acid is one of its main flavor substances. In the study, we used metabolomics and multivariate analysis to identify differential organic acids (DOAs) during ZLJ fermentation and explored their correlations with physicochemical indices and CAZymes. Eight DOAs were detected, with citric acid prominent early and lactic acid dominant late in fermentation. Citric acid exhibited a highly significant negative correlation (p < 0.01, |r| > 0.955) with AA3, GT4, and CE1, while showing significant positive correlation (p < 0.05) with GH1, soluble sugars, and total acids. Lactic acid exhibited a highly significant positive correlation with total acid, AA3, and GT4 (p < 0.05, |r| > 0.955). Conversely, it showed a significant negative correlation with soluble sugar (p < 0.05) and a highly significant negative correlation with GH1 (p < 0.05, |r| > 0.955). The most significant metabolic pathway for DOAs enrichment was the citrate cycle (TCA cycle). Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

28 pages, 1337 KiB  
Review
Recent Advances in Microbial Bioconversion as an Approach to Boost Hydroxytyrosol Recovery from Olive Mill Wastewater
by Irene Maria Zingale, Anna Elisabetta Maccarronello, Claudia Carbone, Cinzia Lucia Randazzo, Teresa Musumeci and Cinzia Caggia
Fermentation 2025, 11(8), 477; https://doi.org/10.3390/fermentation11080477 - 20 Aug 2025
Abstract
Olive mill wastewater (OMWW) is a highly complex matrix derived from olive oil extraction, containing phenolic compounds, lipids, minerals, and organic acids. Hydroxytyrosol (HT), an outstanding antioxidant and health-promoting phenolic compound, has garnered significant interest as a natural preservative and functional ingredient. Enzymatic [...] Read more.
Olive mill wastewater (OMWW) is a highly complex matrix derived from olive oil extraction, containing phenolic compounds, lipids, minerals, and organic acids. Hydroxytyrosol (HT), an outstanding antioxidant and health-promoting phenolic compound, has garnered significant interest as a natural preservative and functional ingredient. Enzymatic hydrolysis, utilizing purified enzymes to cleave glycosidic or ester bonds, and microbial bioconversion, employing whole microorganisms with their intrinsic enzymes and metabolic pathways, are effective biotechnological strategies for fostering the release of HT from its conjugated forms. These approaches offer great potential for the sustainable recovery of HT from OMWW, contributing to the valorization of this environmentally impactful agro-industrial by-product. Processed OMWW can lead to clean-label HT-enriched foods and beverages, capitalizing on by-product valorization and improving food safety and quality. In this review, the most important aspects of the chemistry, technology, and microbiology of OMWW were explored in depth. Recent trends and findings in terms of both enzymatic and microbial bioconversion processes are critically discussed, including spontaneous and driven fermentation, using selected microbial strains. These approaches are presented as economically viable options for obtaining HT-enriched OMWW for applications in the food and nutraceutical sectors. The selected topics aim to provide the reader with a solid background while inspiring and facilitating future research and innovation. Full article
(This article belongs to the Special Issue Microbial Upcycling of Organic Waste to Biofuels and Biochemicals)
Show Figures

Figure 1

Back to TopTop