Bioactive Activities of the Phenolic Extract from Sterile Bracts of Araucaria angustifolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Phenolic Compounds
2.3. Phenolic Analysis
2.4. Antioxidant Activity
2.5. Antimicrobial Activity
2.6. Antiglycemic Activity
2.7. Cellular Antioxidant Activity
2.8. Anti-Inflammatory Activity
2.9. Antiproliferative Activity and Hepatotoxicity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Extraction of Phenolic Compounds from Araucaria angustifolia Bracts
3.2. The Individual Phenolic Compounds at the Optimized Point
3.3. Antimicrobial Activity of the Optimized Extract
3.4. Antiglycemic Activity
3.5. Cellular Antioxidant and Anti-Inflammatory Activity
3.6. Antiproliferative Activity and Hepatotoxicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Branco, C.S.; Rodrigues, T.S.; Lima, É.D.; Calloni, C.; Scola, G.; Salvador, M. Chemical Constituents and Biological Activities of Araucaria angustifolia (Bertol.) O. Kuntze: A Review. J. Org. Inorg. Chem. 2016, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wosiacki, G.; Nogueira, M.K.F.S.; Nogueira, A.; Kintoop, S.E.; Botelho, V.M.B.; Vieira, R.G. Functional fruits in the Araucaria Forest/Brasil. Fruit Proc. 2010, 3, 118–122. [Google Scholar]
- Cordenunsi, B.R.; Menezes, E.W.; Genovese, M.I.; Colli, C.; Souza, A.G.; Lajolo, F.M. Chemical Composition and Glycemic Index of Brazilian Pine (Araucaria angustifolia) Seeds. J. Agric. Food Chem. 2004, 52, 3412–3416. [Google Scholar] [CrossRef] [PubMed]
- Michelon, F.; Branco, C.S.; Calloni, C.; Giazzon, I.; Agostini, F.; Spada, P.K.W.; Salvador, M. Araucaria Angustifolia: A Potential Nutraceutical with Antioxidant and Antimutagenic Activities. Curr. Nutr. Food Sci. 2012, 8, 155–159. [Google Scholar] [CrossRef]
- De Sousa, A.N.; de Lemos, L.B.; Nascimento, B.; Moraes, C.; Souza, G.; de Oliveira Pereira, M.; Navroski, M.C. Effect of Araucaria angustifolia “pinecone failures” on rooting of Sequoia Sempervirens minicuttings. Braz. J. Dev. 2020, 6, 46671–46680. [Google Scholar]
- Souza, M.O.; Branco, C.S.; Sene, J.; Dallagnol, R.; Agostini, F.; Moura, S.; Salvador, M. Antioxidant and Antigenotoxic Activities of the Brazilian Pine Araucaria angustifolia (Bert.) O. Kuntze. Antioxidants 2014, 3, 24–37. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef]
- Da Silva, S.M.; Koehnlein, E.A.; Bracht, A.; Castoldi, R.; de Morais, G.R.; Baesso, M.L.; Peralta, R.A.; de Souza, C.G.M.; de Sá-Nakanishi, A.B.; Peralta, R.M. Inhibition of salivary and pancreatic α-amylases by a pinhão coat (Araucaria angustifolia) extract rich in condensed tannin. Food Res. Int. 2014, 56, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Benvenutti, L.; Bortolini, D.G.; Nogueira, A.; Zielinski, A.A.F.; Alberti, A. Effect of addition of phenolic compounds recovered from apple pomace on cider quality. LWT 2019, 100, 348–354. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef]
- Box, G.E.P.; Behnken, D.W. Some New Three Level Designs for the Study of Quantitative Variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric. 1978, 29, 788–794. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 9th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Moradi-Afrapoli, F.; Asghari, B.; Saeidnia, S.; Ajani, Y.; Mirjani, M.; Malmir, M.; Bazaz, R.D.; Hadjiakhoondi, A.; Salehi, P.; Hamburger, M.; et al. In vitro α-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polygonum hyrcanicum. DARU J. Pharm. Sci. 2012, 20, 37. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, K.L.; Liu, R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; De Souza, A.H.P.; Calhelha, R.C.; Barros, L.; Glamoclija, J.; Sokovic, M.; Peralta, R.M.; Bracht, A.; Ferreira, I.C.F.R. Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer. Food Funct. 2015, 6, 2155–2164. [Google Scholar] [CrossRef] [Green Version]
- Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules 2016, 21, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruns, R.E.; Scarminio, I.S.; de Barros Neto, B. Statistical Design—Chemometrics; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Peralta, R.M.; Koehnlein, E.A.; Oliveira, R.F.; Correa, V.G.; Corrêa, R.C.G.; Bertonha, L.; Bracht, A.; Ferreira, I.C.F.R. Biological activities and chemical constituents of Araucaria angustifolia: An effort to recover a species threatened by extinction. Trends Food Sci. Technol. 2016, 54, 85–93. [Google Scholar] [CrossRef]
- Freitas, T.B.; Santos, C.H.K.; da Silva, M.V.; Shirai, M.A.; Dias, M.I.; Barros, L.; Barreiro, M.F.; Ferreira, I.C.F.R.; Gonçalves, O.H.; Leimann, F.V. Antioxidants extraction from Pinhão (Araucaria angustifolia (Bertol.) Kuntze) coats and application to zein films. Food Packag. Shelf Life 2018, 15, 28–34. [Google Scholar] [CrossRef]
- Dorneles, M.S.; Noreña, C.P.Z. Extraction of bioactive compounds from Araucaria angustifolia bracts by microwave-assisted extraction. J. Food Process. Preserv. 2020, 44, e14481. [Google Scholar] [CrossRef]
- Durling, N.E.; Catchpole, O.J.; Grey, J.B.; Webby, R.F.; Mitchell, K.A.; Foo, L.Y.; Perry, N.B. Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures. Food Chem. 2007, 101, 1417–1424. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Li, D.; Wang, L.J.; Ozkan, N.; Chen, X.D.; Mao, Z.H.; Yang, H.Z. Optimization of ethanol–water extraction of lignans from flaxseed. Sep. Purif. Technol. 2007, 57, 17–24. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Alberti, A.; Zielinski, A.A.F.; Zardo, D.M.; Demiate, I.M.; Nogueira, A.; Mafra, L.I. Optimisation of the extraction of phenolic compounds from apples using response surface methodology. Food Chem. 2014, 149, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Baite, T.N.; Mandal, B.; Purkait, M.K. Ultrasound assisted extraction of gallic acid from Ficus auriculata leaves using green solvent. Food Bioprod. Process. 2021, 128, 1–11. [Google Scholar] [CrossRef]
- Kerdsomboon, K.; Chumsawat, W.; Auesukaree, C. Effects of Moringa oleifera leaf extracts and its bioactive compound gallic acid on reducing toxicities of heavy metals and metalloid in Saccharomyces cerevisiae. Chemosphere 2021, 270, 128659. [Google Scholar] [CrossRef]
- Prabhu, S.; Molath, A.; Choksi, H.; Kumar, S.; Mehra, R. Classifications of polyphenols and their potential application in human health and diseases. Int. J. Physiol. Nutr. Phys. Educ. 2021, 6, 293–301. [Google Scholar] [CrossRef]
- Pedro, A.C.; Maciel, G.M.; Rampazzo Ribeiro, V.; Haminiuk, C.W.I. Fundamental and applied aspects of catechins from different sources: A review. Int. J. Food Sci. 2020, 55, 429–442. [Google Scholar] [CrossRef]
- Kingori, S.M.; Ochanda, S.O.; Koech, R.K.; Kingori, S.M.; Ochanda, S.O.; Koech, R.K. Variation in Levels of Flavonols Myricetin, Quercetin and Kaempferol—In Kenyan Tea (Camellia sinensis L.) with Processed Tea Types and Geographic Location. Open J. Appl. Sci. 2021, 11, 736–749. [Google Scholar] [CrossRef]
- Macharia, J.M.; Mwangi, R.W.; Rozmann, N.; Zsolt, K.; Varjas, T.; Uchechukwu, P.O.; Wagara, I.N.; Raposa, B.L. Medicinal plants with anti-colorectal cancer bioactive compounds: Potential game-changers in colorectal cancer management. Biomed. Pharmacother. 2022, 153, 113383. [Google Scholar] [CrossRef]
- Arias, C.A.; Murray, B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef] [Green Version]
- Dysvik, A.; Rosa, S.L.L.; Liland, K.H.; Myhrer, K.S.; Østlie, H.M.; Rouck, G.D.; Rukke, E.-O.; Westereng, B.; Wicklund, T. Co-fermentation Involving Saccharomyces cerevisiae and Lactobacillus Species Tolerant to Brewing-Related Stress Factors for Controlled and Rapid Production of Sour Beer. Front. Microbiol. 2020, 11, 279. [Google Scholar] [CrossRef]
- Trojaike, G.H.; Biondo, E.; Padilha, R.L.; Brandelli, A.; Sant’Anna, V. Antimicrobial Activity of Araucaria angustifolia Seed (Pinhão) Coat Extract and its Synergism with Thermal Treatment to Inactivate Listeria monocytogenes. Food Bioproc. Tech. 2018, 12, 193–197. [Google Scholar] [CrossRef]
- Haq, F.U.; Siraj, A.; Ameer, M.A.; Hamid, T.; Rahman, M.; Khan, S.; Khan, S.; Masud, S.; Haq, F.U.; Siraj, A.; et al. Comparative Review of Drugs Used in Diabetes Mellitus—New and Old. Int. J. Diabetes Mellit. 2021, 11, 115–131. [Google Scholar] [CrossRef]
- Lu, Y.H.; Tian, C.R.; Gao, C.Y.; Wang, B.N.; Yang, W.Y.; Kong, X.; Chai, L.Q.; Chen, G.C.; Yin, X.F.; He, Y.H. Phenolic composition, antioxidant capacity and inhibitory effects on α-glucosidase and lipase of immature faba bean seeds. Int. J. Food Prop. 2018, 21, 2366–2377. [Google Scholar] [CrossRef] [Green Version]
- Schmeda-Hirschmann, G.; Antileo-Laurie, J.; Theoduloz, C.; Jiménez-Aspee, F.; Avila, F.; Burgos-Edwards, A.; Olate-Olave, V. Phenolic composition, antioxidant capacity and α-glucosidase inhibitory activity of raw and boiled Chilean Araucaria araucana kernels. Food Chem. 2021, 350, 129241. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, X.; Dai, T.; Liu, C.; Li, T.; McClements, D.J.; Chen, J.; Liu, J. Proanthocyanidins, Isolated from Choerospondias axillaris Fruit Peels, Exhibit Potent Antioxidant Activities in Vitro and a Novel Anti-angiogenic Property in Vitro and in Vivo. J. Agric. Food Chem. 2016, 64, 3546–3556. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Moreira, T.F.M.; Pepinelli, A.L.S.; Costa, L.G.M.A.; Leal, L.E.; Da Silva, T.B.V.; Gonçalves, O.H.; Porto Ineu, R.; Dias, M.I.; Barros, L.; et al. Bioactivity screening of pinhão (Araucaria Angustifolia (Bertol.) Kuntze) seed extracts: The inhibition of cholinesterases and α-amylases, and cytotoxic and anti-inflammatory activities. Food Funct. 2021, 12, 9820–9828. [Google Scholar] [CrossRef] [PubMed]
- Ambriz-Pérez, D.L.; Leyva-López, N.; Gutierrez-Grijalva, E.P.; Heredia, J.B. Phenolic compounds: Natural alternative in inflammation treatment. A Review. Cogent Food Agric. 2016, 2, 1131412. [Google Scholar] [CrossRef]
- Talaat, A.N.; Ebada, S.S.; Labib, R.M.; Esmat, A.; Youssef, F.S.; Singab, A.N.B. Verification of the anti-inflammatory activity of the polyphenolic-rich fraction of Araucaria bidwillii Hook. using phytohaemagglutinin-stimulated human peripheral blood mononuclear cells and virtual screening. J. Ethnopharmacol. 2018, 226, 44–47. [Google Scholar] [CrossRef]
- Zhao, D.K.; Shi, Y.N.; Petrova, V.; Yue, G.G.L.; Negrin, A.; Wu, S.B.; D’Armiento, J.M.; Lau, C.B.S.; Kennelly, E.J. Jaboticabin and Related Polyphenols from Jaboticaba (Myrciaria cauliflora) with Anti-inflammatory Activity for Chronic Obstructive Pulmonary Disease. J. Agric. Food Chem. 2019, 67, 1513–1520. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Pereira, C.; Calhelha, R.C.; José Alves, M.; Abreu, R.M.V.; Barros, L.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of valuable compounds with bioactive properties. Food Chem. 2020, 309, 125735. [Google Scholar] [CrossRef] [Green Version]
- Demaria, M.; O’Leary, M.N.; Chang, J.; Shao, L.; Liu, S.; Alimirah, F.; Koenig, K.; Le, C.; Mitin, N.; Deal, A.M.; et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017, 7, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Panebianco, C.; Andriulli, A.; Pazienza, V. Pharmacomicrobiomics: Exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 2018, 6, 92. [Google Scholar] [CrossRef]
- Meegan, M.J.; O’boyle, N.M. Special Issue “Anticancer Drugs 2021”. Pharmaceuticals 2022, 15, 479. [Google Scholar] [CrossRef]
- Girardelo, J.R.; Munari, E.L.; Dallorsoleta, J.C.S.; Cechinel, G.; Goetten, A.L.F.; Sales, L.R.; Reginatto, F.H.; Chaves, V.C.; Smaniotto, F.A.; Somacal, S.; et al. Bioactive compounds, antioxidant capacity and antitumoral activity of ethanolic extracts from fruits and seeds of Eugenia involucrata DC. Int. Food Res. J. 2020, 137, 109615. [Google Scholar] [CrossRef]
- Ryan, M.; Lazar, I.; Nadasdy, G.M.; Nadasdy, T.; Satoskar, A.A. Acute kidney injury and hyperbilirubinemia in a young male after ingestion of Tribulus terrestris. Clin. Nephrol. 2015, 83, 177–183. [Google Scholar] [CrossRef]
- Ala, A.A.; Olotu, B.B.; Ohia, C.M.D. Assessment of cytotoxicity of leaf extracts of Andrographis paniculata and Aspilia africana on murine cells in vitro. Arch. Basic Appl. Med. 2018, 6, 61. [Google Scholar] [CrossRef]
- Kapetanovic, I.M.; Crowell, J.A.; Krishnaraj, R.; Zakharov, A.; Lindeblad, M.; Lyubimov, A. Exposure and Toxicity of Green Tea Polyphenols in Fasted and Non-Fasted Dogs. Toxicology 2009, 260, 28. [Google Scholar] [CrossRef] [Green Version]
- Ewing, L.E.; Skinner, C.M.; Quick, C.M.; Kennon-McGill, S.; McGill, M.R.; Walker, L.A.; ElSohly, M.A.; Gurley, B.J.; Koturbash, I. Hepatotoxicity of a Cannabidiol-Rich Cannabis Extract in the Mouse Model. Molecules 2019, 24, 1694. [Google Scholar] [CrossRef] [Green Version]
- Mensah, M.L.K.; Komlaga, G.; Forkuo, A.D.; Firempong, C.; Anning, A.K.; Dickson, R.A. Toxicity and Safety Implications of Herbal Medicines Used in Africa. Herb. Med. J. 2019, 1, 72437. [Google Scholar] [CrossRef]
Assay | Factors | ||
---|---|---|---|
Concentration (%) | Ratio (w/v) | Temperature (°C) | |
1 | 20 (−1) | 10 (−1) | 55 (0) |
2 | 60 (+1) | 10 (−1) | 55 (0) |
3 | 20 (−1) | 40 (+1) | 55 (0) |
4 | 60 (+1) | 40 (+1) | 55 (0) |
5 | 20 (−1) | 25 (0) | 30 (−1) |
6 | 60 (+1) | 25 (0) | 30 (−1) |
7 | 20 (−1) | 25 (0) | 80 (+1) |
8 | 60 (+1) | 25 (0) | 80 (+1) |
9 | 40 (0) | 10 (−1) | 30 (−1) |
10 | 40 (0) | 40 (+1) | 30 (−1) |
11 | 40 (0) | 10 (−1) | 80 (+1) |
12 | 40 (0) | 40 (+1) | 80 (+1) |
13 | 40 (0) | 25 (0) | 55 (0) |
14 | 40 (0) | 25 (0) | 55 (0) |
15 | 40 (0) | 25 (0) | 55 (0) |
Assay | TPC (mg GAE/g) | TF (mg CTE/g) | TAN (mg CTE/g) | DPPH (μmol TE/g) | ABTS (μmol TE/g) |
---|---|---|---|---|---|
1 | 3.57 h ± 0.12 | 2.10 l ± 0.05 | 2.17 n ± 0.11 | 22.30 g ± 1.47 | 28.09 i ± 1.21 |
2 | 4.64 g ± 0.28 | 3.14 ij ± 0.15 | 4.83 i ± 0.19 | 23.30 g ± 0.85 | 33.44 h ± 0.85 |
3 | 6.89 e ± 0.44 | 4.29 h ± 0.08 | 4.03 j ± 0.13 | 31.48 f ± 3.05 | 52.34 ef ± 1.60 |
4 | 8.66 b ± 0.42 | 5.68 c ± 0.10 | 9.40 c ± 0.38 | 54.89 c ± 2.60 | 73.32 b ± 1.62 |
5 | 4.92 g ± 0.20 | 3.03 j ± 0.08 | 2.97 l ± 0.13 | 22.20 g ± 3.16 | 32.58 h ± 0.67 |
6 | 7.46 cd ± 0.37 | 4.88 def ± 0.07 | 7.44 d ± 0.32 | 45.88 d ± 1.08 | 50.65 f ± 1.80 |
7 | 7.86 c ± 0.12 | 4.81 efg ± 0.16 | 6.95 e ± 0.28 | 45.64 d ± 1.41 | 53.08 e ± 0.49 |
8 | 9.27 a ± 0.31 | 6.05 b ± 0.18 | 10.56 a ± 0.30 | 60.55 b ± 1.34 | 74.22 b ± 2.03 |
9 | 3.77 h ± 0.15 | 2.12 l ± 0.09 | 2.60 m ± 0.13 | 15.57 h ± 1.15 | 28.13 i ± 0.77 |
10 | 7.24 de ± 0.22 | 4.57 g ± 0.10 | 5.23 gh ± 0.23 | 37.97 e ± 1.18 | 53.51 e ± 2.03 |
11 | 5.76 f ± 0.27 | 3.36 i ± 0.05 | 5.00 hi ± 0.09 | 29.55 f ± 0.98 | 41.13 g ± 1.28 |
12 | 9.48 a ± 0.34 | 6.57 a ± 0.25 | 10.26 b ± 0.22 | 68.69 a ± 3.56 | 77.40 a ± 2.05 |
13 | 7.59 cd ± 0.22 | 4.94 de ± 0.14 | 6.18 f ± 0.14 | 43.12 d ± 1.98 | 50.49 f ± 2.16 |
14 | 7.37 d ± 0.16 | 4.66 fg ± 0.21 | 5.51 g ± 0.19 | 38.80 e ± 2.56 | 57.30 d ± 0.41 |
15 | 7.81 c ± 0.37 | 5.09 d ± 0.28 | 6.39 f ± 0.21 | 44.22 d ± 1.55 | 64.11 c ± 1.78 |
p (Hartley) * | 0.70 | 0.49 | 0.08 | 0.31 | 0.49 |
p (one-way ANOVA) ** | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Response Variable | Factors | Regression Coefficient | Standard Error | t-Value | p-Value | −95% Confidence | +95% Confidence |
---|---|---|---|---|---|---|---|
Total phenolic compounds (mg/g) | Constant | 7.71 | 0.15 | 50.85 | <0.001 | 7.37 | 8.06 |
0.85 | 0.11 | 7.59 | <0.001 | 0.59 | 1.10 | ||
−0.43 | 0.16 | −2.63 | 0.03 | −0.80 | −0.06 | ||
1.81 | 0.11 | 16.24 | <0.001 | 1.56 | 2.07 | ||
−1.25 | 0.16 | −7.61 | <0.001 | −1.62 | −088 | ||
1.12 | 0.11 | 10.06 | <0.001 | 0.87 | 1.38 | ||
R2 | 0.98 | ||||||
Adjusted R2 | 0.97 | ||||||
p-value (model) | <0.001 | ||||||
p-value (lack of fit) | 0.33 | ||||||
Total flavonoids (mg/g) | Constant | 4.78 | 0.11 | 43.35 | <0.001 | 4.53 | 5.02 |
0.69 | 0.10 | 6.70 | <0.001 | 0.46 | 0.92 | ||
1.30 | 0.10 | 12.60 | <0.001 | 1.07 | 1.53 | ||
−0.80 | 0.15 | −5.31 | <0.001 | −1.13 | −0.46 | ||
0.77 | 0.10 | 7.49 | <0.001 | 0.54 | 1.00 | ||
R2 | 0.97 | ||||||
Adjusted R2 | 0.95 | ||||||
p-value (model) | <0.001 | ||||||
p-value (lack of fit) | 0.38 | ||||||
Tannins (mg/g) | Constant | 6.55 | 0.31 | 20.93 | <0.001 | 5.85 | 7.24 |
2.00 | 0.29 | 6.82 | <0.001 | 1.34 | 2.65 | ||
1.79 | 0.29 | 6.11 | <0.001 | 1.14 | 2.44 | ||
−1.11 | 0.43 | −2.59 | 0.03 | −2.06 | −0.15 | ||
1.79 | 0.29 | 6.13 | <0.001 | 1.14 | 2.45 | ||
R2 | 0.93 | ||||||
Adjusted R2 | 0.90 | ||||||
p-value (model) | <0.001 | ||||||
p-value (lack of fit) | 0.22 | ||||||
ABTS (μmol TE/g) | Constant | 54.63 | 1.97 | 27.71 | <0.001 | 50.24 | 59.03 |
8.19 | 1.84 | 4.44 | <0.001 | 4.08 | 12.30 | ||
15.72 | 1.84 | 8.52 | <0.001 | 11.61 | 19.83 | ||
−6.21 | 2.70 | −2.30 | 0.04 | −12.23 | −0.20 | ||
10.11 | 1.84 | 5.49 | <0.001 | 6.01 | 14.23 | ||
R2 | 0.93 | ||||||
Adjusted R2 | 0.90 | ||||||
p-value (model) | <0.001 | ||||||
p-value (lack of fit) | 0.81 | ||||||
DPPH (μmol TE/g) | Constant | 42.91 | 2.29 | 18.70 | <0.001 | 37.80 | 48.03 |
7.87 | 2.15 | 3.67 | <0.01 | 3.09 | 12.66 | ||
12.79 | 2.15 | 5.96 | <0.001 | 8.00 | 17.57 | ||
−7.44 | 3.14 | −2.37 | 0.04 | −14.44 | −0.44 | ||
10.35 | 2.15 | 4.82 | <0.001 | 5.57 | 15.13 | ||
R2 | 0.89 | ||||||
Adjusted R2 | 0.84 | ||||||
p-value (model) | <0.001 | ||||||
p-value (lack of fit) | 0.17 |
Strain | Concentration (μg/mL) | Inhibition (%) |
---|---|---|
Staphylococcus aureus | 10,000 | 81.3 |
Enterococcus spp. | 10,000 | 86.9 |
5000 | 76.3 | |
2500 | 82.8 | |
1250 | 63.7 | |
Salmonella spp. | 10,000 | 83.5 |
5000 | 59.4 | |
Escherichia coli | 10,000 | 79.7 |
5000 | 57.5 | |
Lactobacillus brevis | 15,000 | 27.9 |
10,000 | 19.5 |
Antiglycemic Activity | IC50 (mg/mL) |
---|---|
Phenolic extract | 0.58 |
Acarbose control | 5.54 |
Activity | Concentration (µg/mL) | Activity |
---|---|---|
Cellular antioxidant (Inhibition, %) | ||
Phenolic extract | 2000 | ND * |
Quercetin control | 0.3 | 95 ± 5% |
Anti-inflammatory (IC50) | ||
Phenolic extract | 400 | ND * |
Dexamethasone control | - | 6.3 ± 0.4 |
Antiproliferative Activity GI50 (μg/mL) | Phenolic Extract | Ellipticine |
---|---|---|
AGS (gastric carcer cell line) | 55 ± 5 | 1.23 ± 0.03 |
CaCo-2 (colon carcinoma cell line) | 140 ± 7 | 1.21 ± 0.02 |
MCF-7 (breast cancer cell line) | 171 ± 19 | 1.02 ± 0.02 |
PLP2 (non-tumor cell line) | 41 ± 3 | 1.4 ± 0.1 |
VERO (non-tumor cell line) | 75 ± 7 | 1.41 ± 0.06 |
Cytotoxic Selectivity Index (CSI) | ||||||
---|---|---|---|---|---|---|
PLP2 | VERO | |||||
AGS | CaCo2 | MCF-7 | AGS | CaCo2 | MCF-7 | |
Phenolic extract | 0.75 | 0.29 | 0.24 | 1.36 | 0.54 | 0.44 |
Ellipticine | 1.14 | 1.16 | 1.37 | 1.15 | 1.17 | 1.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer, T.E.; Marcondes, A.; Zardo, D.M.; Nogueira, A.; Calhelha, R.C.; Vaz, J.A.; Barros, L.; Zielinski, A.A.F.; Alberti, A. Bioactive Activities of the Phenolic Extract from Sterile Bracts of Araucaria angustifolia. Antioxidants 2022, 11, 2431. https://doi.org/10.3390/antiox11122431
Fischer TE, Marcondes A, Zardo DM, Nogueira A, Calhelha RC, Vaz JA, Barros L, Zielinski AAF, Alberti A. Bioactive Activities of the Phenolic Extract from Sterile Bracts of Araucaria angustifolia. Antioxidants. 2022; 11(12):2431. https://doi.org/10.3390/antiox11122431
Chicago/Turabian StyleFischer, Thaís Estéfane, Amanda Marcondes, Danianni Marinho Zardo, Alessandro Nogueira, Ricardo C. Calhelha, Josiana A. Vaz, Lillian Barros, Acácio Antonio Ferreira Zielinski, and Aline Alberti. 2022. "Bioactive Activities of the Phenolic Extract from Sterile Bracts of Araucaria angustifolia" Antioxidants 11, no. 12: 2431. https://doi.org/10.3390/antiox11122431
APA StyleFischer, T. E., Marcondes, A., Zardo, D. M., Nogueira, A., Calhelha, R. C., Vaz, J. A., Barros, L., Zielinski, A. A. F., & Alberti, A. (2022). Bioactive Activities of the Phenolic Extract from Sterile Bracts of Araucaria angustifolia. Antioxidants, 11(12), 2431. https://doi.org/10.3390/antiox11122431