Genome-Wide Association Study of Fluorescent Oxidation Products Accounting for Tobacco Smoking Status in Adults from the French EGEA Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population (EGEA Study)
2.2. FlOPs Level
2.3. Genotyping
2.4. Definitions of Population’s Characteristics
2.4.1. Asthma
2.4.2. Chronic Bronchitis
2.4.3. Lung Function
2.4.4. Smoking Status
2.4.5. Body Mass Index (BMI)
2.4.6. Biological Parameters
2.5. Statistical Methods and Strategy of Analysis
2.5.1. Characteristics of the Studied Population and Association with the FlOPs Level
2.5.2. GWAS of the FlOPs Level
2.5.3. eQTLs, meQTLs, and Functional Annotations
3. Results
3.1. Characteristics of the Studied Population
3.2. GWAS of the FlOPs Level
3.2.1. Whole Sample
3.2.2. In Never-Smokers and in Current Smokers
3.3. eQTLs, meQTLs, and Functional Annotations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, E.; Stone, K.; Carter, K.M.; Pryor, W.A. Environmental Tobacco Smoke Is Just as Damaging to DNA as Mainstream Smoke. Environ. Health Perspect. 1994, 102, 870–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sies, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef]
- Dillard, C.J.; Tappel, A.L. Fluorescent Damage Products of Lipid Peroxidation. Methods Enzymol. 1984, 105, 337–341. [Google Scholar] [CrossRef]
- Wu, T.; Willett, W.C.; Rifai, N.; Rimm, E.B. Plasma Fluorescent Oxidation Products as Potential Markers of Oxidative Stress for Epidemiologic Studies. Am. J. Epidemiol. 2007, 166, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Rifai, N.; Willett, W.C.; Rimm, E.B. Plasma Fluorescent Oxidation Products: Independent Predictors of Coronary Heart Disease in Men. Am. J. Epidemiol. 2007, 166, 544–551. [Google Scholar] [CrossRef]
- Jensen, M.K.; Wang, Y.; Rimm, E.B.; Townsend, M.K.; Willett, W.; Wu, T. Fluorescent Oxidation Products and Risk of Coronary Heart Disease: A Prospective Study in Women. J. Am. Heart Assoc. 2013, 2, e000195. [Google Scholar] [CrossRef] [Green Version]
- Rebholz, C.M.; Wu, T.; Hamm, L.L.; Arora, R.; Khan, I.E.; Liu, Y.; Chen, C.-S.; Mills, K.T.; Rogers, S.; Kleinpeter, M.A.; et al. The Association of Plasma Fluorescent Oxidation Products and Chronic Kidney Disease: A Case-Control Study. Am. J. Nephrol. 2012, 36, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Akiki, Z.; Andrianjafimasy, M.; Zerimech, F.; Le Moual, N.; Siroux, V.; Dumas, O.; Matran, R.; Nadif, R. High Level of Fluorescent Oxidation Products and Worsening of Asthma Control over Time. Respir. Res. 2019, 20, 203. [Google Scholar] [CrossRef] [Green Version]
- Andrianjafimasy, M.; Zerimech, F.; Akiki, Z.; Huyvaert, H.; Le Moual, N.; Siroux, V.; Matran, R.; Dumas, O.; Nadif, R. Oxidative Stress Biomarkers and Asthma Characteristics in Adults of the EGEA Study. Eur. Respir. J. 2017, 50, 1701193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.K.; Cho, M.H.; Hersh, C.P.; Lomas, D.A.; Miller, B.E.; Kong, X.; Bakke, P.; Gulsvik, A.; Agustí, A.; Wouters, E.; et al. Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2012, 186, 1238–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Wang, W.; Bai, Y.; Zhang, H.; Zhang, S.; He, L.; Zhou, W.; Zhang, D.; Xu, J. Identification of a Genome-Wide Serum MicroRNA Expression Profile as Potential Noninvasive Biomarkers for Chronic Kidney Disease Using next-Generation Sequencing. J. Int. Med. Res. 2020, 48, 300060520969481. [Google Scholar] [CrossRef] [PubMed]
- Wallace, C.; Newhouse, S.J.; Braund, P.; Zhang, F.; Tobin, M.; Falchi, M.; Ahmadi, K.; Dobson, R.J.; Marçano, A.C.B.; Hajat, C.; et al. Genome-Wide Association Study Identifies Genes for Biomarkers of Cardiovascular Disease: Serum Urate and Dyslipidemia. Am. J. Hum. Genet. 2008, 82, 139–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauffmann, F.; Dizier, M.H.; Annesi-Maesano, I.; Bousquet, J.; Charpin, D.; Demenais, F.; Ecochard, D.; Feingold, J.; Gormand, F.; Grimfeld, A.; et al. EGEA (Epidemiological Study on the Genetics and Environment of Asthma, Bronchial Hyperresponsiveness and Atopy)—Descriptive Characteristics. Clin. Exp. Allergy 1999, 29 (Suppl. S4), 17–21. [Google Scholar] [PubMed]
- Kauffmann, F.; Dizier, M.H. EGEA (Epidemiological Study on the Genetics and Environment of Asthma, Bronchial Hyperresponsiveness and Atopy)—Design Issues. EGEA Co-Operative Group. Clin. Exp. Allergy 1995, 25 (Suppl. S2), 19–22. [Google Scholar] [CrossRef]
- Nadif, R.; Bouzigon, E.; Moual, N.L.; Siroux, V. EGEA Collection: A Biobank Devoted to Asthma and Asthma-Related Phenotypes. Open J. Bioresour. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Moffatt, M.F.; Gut, I.G.; Demenais, F.; Strachan, D.P.; Bouzigon, E.; Heath, S.; von Mutius, E.; Farrall, M.; Lathrop, M.; Cookson, W.O.C.M.; et al. A Large-Scale, Consortium-Based Genomewide Association Study of Asthma. N. Engl. J. Med. 2010, 363, 1211–1221. [Google Scholar] [CrossRef] [Green Version]
- Imboden, M.; Bouzigon, E.; Curjuric, I.; Ramasamy, A.; Kumar, A.; Hancock, D.B.; Wilk, J.B.; Vonk, J.M.; Thun, G.A.; Siroux, V.; et al. Genome-Wide Association Study of Lung Function Decline in Adults with and without Asthma. J. Allergy Clin. Immunol. 2012, 129, 1218–1228. [Google Scholar] [CrossRef] [Green Version]
- McVean, G.A.; Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; Flicek, P.; et al. An Integrated Map of Genetic Variation from 1092 Human Genomes. Nature 2012, 491, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Howie, B.N.; Donnelly, P.; Marchini, J. A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies. PLoS Genet. 2009, 5, e1000529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of Spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Quanjer, P.H.; Tammeling, G.J.; Cotes, J.E.; Pedersen, O.F.; Peslin, R.; Yernault, J.-C. Lung Volumes and Forced Ventilatory Flows. Eur. Respir. J. 1993, 6, 5–40. [Google Scholar] [CrossRef] [PubMed]
- Nadif, R.; Siroux, V.; Oryszczyn, M.-P.; Ravault, C.; Pison, C.; Pin, I.; Kauffmann, F. Epidemiological study on the Genetics and Environment of Asthma (EGEA) Heterogeneity of Asthma According to Blood Inflammatory Patterns. Thorax 2009, 64, 374–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadif, R.; Siroux, V.; Boudier, A.; le Moual, N.; Just, J.; Gormand, F.; Pison, C.; Matran, R.; Pin, I. Blood Granulocyte Patterns as Predictors of Asthma Phenotypes in Adults from the EGEA Study. Eur. Respir. J. 2016, 48, 1040–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, W. Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics 2001, 57, 120–125. [Google Scholar] [CrossRef]
- Pruim, R.J.; Welch, R.P.; Sanna, S.; Teslovich, T.M.; Chines, P.S.; Gliedt, T.P.; Boehnke, M.; Abecasis, G.R.; Willer, C.J. LocusZoom: Regional Visualization of Genome-Wide Association Scan Results. Bioinformatics 2010, 26, 2336–2337. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-X.; Yeung, J.M.Y.; Cherny, S.S.; Sham, P.C. Evaluating the Effective Numbers of Independent Tests and Significant P-Value Thresholds in Commercial Genotyping Arrays and Public Imputation Reference Datasets. Hum. Genet. 2012, 131, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Kamat, M.A.; Blackshaw, J.A.; Young, R.; Surendran, P.; Burgess, S.; Danesh, J.; Butterworth, A.S.; Staley, J.R. PhenoScanner V2: An Expanded Tool for Searching Human Genotype-Phenotype Associations. Bioinformatics 2019, 35, 4851–4853. [Google Scholar] [CrossRef] [Green Version]
- Staley, J.R.; Blackshaw, J.; Kamat, M.A.; Ellis, S.; Surendran, P.; Sun, B.B.; Paul, D.S.; Freitag, D.; Burgess, S.; Danesh, J.; et al. PhenoScanner: A Database of Human Genotype-Phenotype Associations. Bioinformatics 2016, 32, 3207–3209. [Google Scholar] [CrossRef] [Green Version]
- Zhernakova, D.V.; Deelen, P.; Vermaat, M.; van Iterson, M.; van Galen, M.; Arindrarto, W.; van ’t Hof, P.; Mei, H.; van Dijk, F.; Westra, H.-J.; et al. Identification of Context-Dependent Expression Quantitative Trait Loci in Whole Blood. Nat. Genet. 2017, 49, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Gaunt, T.R.; Shihab, H.A.; Hemani, G.; Min, J.L.; Woodward, G.; Lyttleton, O.; Zheng, J.; Duggirala, A.; McArdle, W.L.; Ho, K.; et al. Systematic Identification of Genetic Influences on Methylation across the Human Life Course. Genome Biol. 2016, 17, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, L.D.; Kellis, M. HaploReg: A Resource for Exploring Chromatin States, Conservation, and Regulatory Motif Alterations within Sets of Genetically Linked Variants. Nucleic Acids Res. 2012, 40, D930–D934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A General Framework for Estimating the Relative Pathogenicity of Human Genetic Variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Moser, M.; Binder, O.; Wu, Y.; Aitsebaomo, J.; Ren, R.; Bode, C.; Bautch, V.L.; Conlon, F.L.; Patterson, C. BMPER, a Novel Endothelial Cell Precursor-Derived Protein, Antagonizes Bone Morphogenetic Protein Signaling and Endothelial Cell Differentiation. Mol. Cell. Biol. 2003, 23, 5664–5679. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Massagué, J. Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell 2003, 113, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Boxall, C.; Holgate, S.T.; Davies, D.E. The Contribution of Transforming Growth Factor-Beta and Epidermal Growth Factor Signalling to Airway Remodelling in Chronic Asthma. Eur. Respir. J. 2006, 27, 208–229. [Google Scholar] [CrossRef]
- Adewoye, A.H.; Nolan, V.G.; Ma, Q.; Baldwin, C.; Wyszynski, D.F.; Farrell, J.J.; Farrer, L.A.; Steinberg, M.H. Association of Polymorphisms of IGF1R and Genes in the Transforming Growth Factor–β/Bone Morphogenetic Protein Pathway with Bacteremia in Sickle Cell Anemia. Clin. Infect. Dis. 2006, 43, 593–598. [Google Scholar] [CrossRef] [Green Version]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of Published Genome-Wide Association Studies, Targeted Arrays and Summary Statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef] [Green Version]
- Kichaev, G.; Bhatia, G.; Loh, P.-R.; Gazal, S.; Burch, K.; Freund, M.K.; Schoech, A.; Pasaniuc, B.; Price, A.L. Leveraging Polygenic Functional Enrichment to Improve GWAS Power. Am. J. Hum. Genet. 2019, 104, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Loth, D.W.; Soler Artigas, M.; Gharib, S.A.; Wain, L.V.; Franceschini, N.; Koch, B.; Pottinger, T.D.; Smith, A.V.; Duan, Q.; Oldmeadow, C.; et al. Genome-Wide Association Analysis Identifies Six New Loci Associated with Forced Vital Capacity. Nat. Genet. 2014, 46, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Shrine, N.; Guyatt, A.L.; Erzurumluoglu, A.M.; Jackson, V.E.; Hobbs, B.D.; Melbourne, C.A.; Batini, C.; Fawcett, K.A.; Song, K.; Sakornsakolpat, P.; et al. New Genetic Signals for Lung Function Highlight Pathways and Chronic Obstructive Pulmonary Disease Associations across Multiple Ancestries. Nat. Genet. 2019, 51, 481–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakornsakolpat, P.; Prokopenko, D.; Lamontagne, M.; Reeve, N.F.; Guyatt, A.L.; Jackson, V.E.; Shrine, N.; Qiao, D.; Bartz, T.M.; Kim, D.K.; et al. Genetic Landscape of Chronic Obstructive Pulmonary Disease Identifies Heterogeneous Cell-Type and Phenotype Associations. Nat. Genet. 2019, 51, 494–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, J.D.; Hung, R.J.; Han, Y.; Zong, X.; Carreras-Torres, R.; Christiani, D.C.; Caporaso, N.E.; Johansson, M.; Xiao, X.; Li, Y.; et al. Large-Scale Association Analysis Identifies New Lung Cancer Susceptibility Loci and Heterogeneity in Genetic Susceptibility across Histological Subtypes. Nat. Genet. 2017, 49, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Lutz, S.M.; Cho, M.H.; Young, K.; Hersh, C.P.; Castaldi, P.J.; McDonald, M.-L.; Regan, E.; Mattheisen, M.; DeMeo, D.L.; Parker, M.; et al. A Genome-Wide Association Study Identifies Risk Loci for Spirometric Measures among Smokers of European and African Ancestry. BMC Genet. 2015, 16, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, P.T.; Estus, S.; Abner, E.L.; Parikh, I.; Malik, M.; Neltner, J.H.; Ighodaro, E.; Wang, W.-X.; Wilfred, B.R.; Wang, L.-S.; et al. ABCC9 Gene Polymorphism Is Associated with Hippocampal Sclerosis of Aging Pathology. Acta Neuropathol. 2014, 127, 825–843. [Google Scholar] [CrossRef] [Green Version]
- Penney, M.E.; Parfrey, P.S.; Savas, S.; Yilmaz, Y.E. A Genome-Wide Association Study Identifies Single Nucleotide Polymorphisms Associated with Time-to-Metastasis in Colorectal Cancer. BMC Cancer 2019, 19, 133. [Google Scholar] [CrossRef]
- Pilling, L.C.; Kuo, C.-L.; Sicinski, K.; Tamosauskaite, J.; Kuchel, G.A.; Harries, L.W.; Herd, P.; Wallace, R.; Ferrucci, L.; Melzer, D. Human Longevity: 25 Genetic Loci Associated in 389,166 UK Biobank Participants. Aging 2017, 9, 2504–2520. [Google Scholar] [CrossRef] [Green Version]
- Wright, K.M.; Rand, K.A.; Kermany, A.; Noto, K.; Curtis, D.; Garrigan, D.; Slinkov, D.; Dorfman, I.; Granka, J.M.; Byrnes, J.; et al. A Prospective Analysis of Genetic Variants Associated with Human Lifespan. G3 Genes 2019, 9, 2863–2878. [Google Scholar] [CrossRef] [Green Version]
- Bønnelykke, K.; Matheson, M.C.; Pers, T.H.; Granell, R.; Strachan, D.P.; Alves, A.C.; Linneberg, A.; Curtin, J.A.; Warrington, N.M.; Standl, M.; et al. Meta-Analysis of Genome-Wide Association Studies Identifies Ten Loci Influencing Allergic Sensitization. Nat. Genet. 2013, 45, 902–906. [Google Scholar] [CrossRef] [Green Version]
- Herold, C.; Hooli, B.V.; Mullin, K.; Liu, T.; Roehr, J.T.; Mattheisen, M.; Parrado, A.R.; Bertram, L.; Lange, C.; Tanzi, R.E. Family-Based Association Analyses of Imputed Genotypes Reveal Genome-Wide Significant Association of Alzheimer’s Disease with OSBPL6, PTPRG, and PDCL3. Mol. Psychiatry 2016, 21, 1608–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leng, S.; Liu, Y.; Weissfeld, J.L.; Thomas, C.L.; Han, Y.; Picchi, M.A.; Edlund, C.K.; Willink, R.P.; Gaither Davis, A.L.; Do, K.C.; et al. 15q12 Variants, Sputum Gene Promoter Hypermethylation, and Lung Cancer Risk: A GWAS in Smokers. J. Natl. Cancer Inst. 2015, 107, djv035. [Google Scholar] [CrossRef] [PubMed]
- Sherva, R.; Tripodis, Y.; Bennett, D.A.; Chibnik, L.B.; Crane, P.K.; de Jager, P.L.; Farrer, L.A.; Saykin, A.J.; Shulman, J.M.; Naj, A.; et al. Genome-Wide Association Study of the Rate of Cognitive Decline in Alzheimer’s Disease. Alzheimers Dement 2014, 10, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Lawrenson, K.; Song, F.; Hazelett, D.J.; Kar, S.P.; Tyrer, J.; Phelan, C.M.; Corona, R.I.; Rodríguez-Malavé, N.I.; Seo, J.-H.; Adler, E.; et al. Genome-Wide Association Studies Identify Susceptibility Loci for Epithelial Ovarian Cancer in East Asian Women. Gynecol. Oncol. 2019, 153, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Manichaikul, A.; Peres, L.C.; Wang, X.-Q.; Barnard, M.E.; Chyn, D.; Sheng, X.; Du, Z.; Tyrer, J.; Dennis, J.; Schwartz, A.G.; et al. Identification of Novel Epithelial Ovarian Cancer Loci in Women of African Ancestry. Int. J. Cancer 2019, 146, 2987–2998. [Google Scholar] [CrossRef]
- Visconti, A.; Duffy, D.L.; Liu, F.; Zhu, G.; Wu, W.; Chen, Y.; Hysi, P.G.; Zeng, C.; Sanna, M.; Iles, M.M.; et al. Genome-Wide Association Study in 176,678 Europeans Reveals Genetic Loci for Tanning Response to Sun Exposure. Nat. Commun. 2018, 9, 1684. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Nie, C.; Min, J.; Chen, H.; Liu, X.; Ye, R.; Chen, Z.; Bai, C.; Xie, E.; Yin, Z.; et al. Sex Differences in Genetic Associations With Longevity. JAMA Netw. Open 2018, 1, e181670. [Google Scholar] [CrossRef] [Green Version]
- Karlsson Linnér, R.; Biroli, P.; Kong, E.; Meddens, S.F.W.; Wedow, R.; Fontana, M.A.; Lebreton, M.; Tino, S.P.; Abdellaoui, A.; Hammerschlag, A.R.; et al. Genome-Wide Association Analyses of Risk Tolerance and Risky Behaviors in over 1 Million Individuals Identify Hundreds of Loci and Shared Genetic Influences. Nat. Genet. 2019, 51, 245–257. [Google Scholar] [CrossRef]
- Ray, M.E.; Wistow, G.; Su, Y.A.; Meltzer, P.S.; Trent, J.M. AIM1, a Novel Non-Lens Member of the Betagamma-Crystallin Superfamily, Is Associated with the Control of Tumorigenicity in Human Malignant Melanoma. Proc. Natl. Acad. Sci. USA 1997, 94, 3229–3234. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.A.; Vonk, J.M.; Baurecht, H.; Marenholz, I.; Tian, C.; Hoffman, J.D.; Helmer, Q.; Tillander, A.; Ullemar, V.; van Dongen, J.; et al. Shared Genetic Origin of Asthma, Hay Fever and Eczema Elucidates Allergic Disease Biology. Nat. Genet. 2017, 49, 1752–1757. [Google Scholar] [CrossRef]
- Ferreira, M.A.R.; Mathur, R.; Vonk, J.M.; Szwajda, A.; Brumpton, B.; Granell, R.; Brew, B.K.; Ullemar, V.; Lu, Y.; Jiang, Y.; et al. Genetic Architectures of Childhood- and Adult-Onset Asthma Are Partly Distinct. Am. J. Hum. Genet. 2019, 104, 665–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, L.J.; Gupta, J.; Jyothula, S.S.S.K.; Butsch Kovacic, M.; Biagini Myers, J.M.; Patterson, T.L.; Ericksen, M.B.; He, H.; Gibson, A.M.; Baye, T.M.; et al. Functional Variant in the Autophagy-Related 5 Gene Promotor Is Associated with Childhood Asthma. PLoS ONE 2012, 7, e33454. [Google Scholar] [CrossRef] [PubMed]
- McAlinden, K.D.; Deshpande, D.A.; Ghavami, S.; Xenaki, D.; Sohal, S.S.; Oliver, B.G.; Haghi, M.; Sharma, P. Autophagy Activation in Asthma Airways Remodeling. Am. J. Respir. Cell Mol. Biol. 2019, 60, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.L.; Kim, S.-H.; Losol, P.; Yang, E.-M.; Shin, Y.S.; Ye, Y.-M.; Park, H.-S. Association of Autophagy Related Gene Polymorphisms with Neutrophilic Airway Inflammation in Adult Asthma. Korean J. Intern. Med. 2016, 31, 375–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta-Herrera, M.; Kerick, M.; González-Serna, D.; Myositis Genetics Consortium; Scleroderma Genetics Consortium; Wijmenga, C.; Franke, A.; Gregersen, P.K.; Padyukov, L.; Worthington, J.; et al. Genome-Wide Meta-Analysis Reveals Shared New Loci in Systemic Seropositive Rheumatic Diseases. Ann. Rheum. Dis. 2018, 78, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentham, J.; Morris, D.L.; Graham, D.S.C.; Pinder, C.L.; Tombleson, P.; Behrens, T.W.; Martín, J.; Fairfax, B.P.; Knight, J.C.; Chen, L.; et al. Genetic Association Analyses Implicate Aberrant Regulation of Innate and Adaptive Immunity Genes in the Pathogenesis of Systemic Lupus Erythematosus. Nat. Genet. 2015, 47, 1457–1464. [Google Scholar] [CrossRef]
- Langefeld, C.D.; Ainsworth, H.C.; Cunninghame Graham, D.S.; Kelly, J.A.; Comeau, M.E.; Marion, M.C.; Howard, T.D.; Ramos, P.S.; Croker, J.A.; Morris, D.L.; et al. Transancestral Mapping and Genetic Load in Systemic Lupus Erythematosus. Nat. Commun. 2017, 8, 16021. [Google Scholar] [CrossRef]
- Martin, J.-E.; Assassi, S.; Diaz-Gallo, L.-M.; Broen, J.C.; Simeon, C.P.; Castellvi, I.; Vicente-Rabaneda, E.; Fonollosa, V.; Ortego-Centeno, N.; González-Gay, M.A.; et al. A Systemic Sclerosis and Systemic Lupus Erythematosus Pan-Meta-GWAS Reveals New Shared Susceptibility Loci. Hum. Mol. Genet. 2013, 22, 4021–4029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laufer, V.A.; Tiwari, H.K.; Reynolds, R.J.; Danila, M.I.; Wang, J.; Edberg, J.C.; Kimberly, R.P.; Kottyan, L.C.; Harley, J.B.; Mikuls, T.R.; et al. Genetic Influences on Susceptibility to Rheumatoid Arthritis in African-Americans. Hum. Mol. Genet. 2019, 28, 858–874. [Google Scholar] [CrossRef]
- Márquez, A.; Vidal-Bralo, L.; Rodríguez-Rodríguez, L.; González-Gay, M.A.; Balsa, A.; González-Álvaro, I.; Carreira, P.; Ortego-Centeno, N.; Ayala-Gutiérrez, M.M.; García-Hernández, F.J.; et al. A Combined Large-Scale Meta-Analysis Identifies COG6 as a Novel Shared Risk Locus for Rheumatoid Arthritis and Systemic Lupus Erythematosus. Ann. Rheum. Dis. 2016, 76, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.S.; Li, N.; Weinhold, N.; Försti, A.; Ali, M.; van Duin, M.; Thorleifsson, G.; Johnson, D.C.; Chen, B.; Halvarsson, B.-M.; et al. Genome-Wide Association Study Identifies Multiple Susceptibility Loci for Multiple Myeloma. Nat. Commun. 2016, 7, 12050. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.N.; Mabrouk, M.S.; Eldeib, A.M.; Shaker, O.G. Studying the Effects of Haplotype Partitioning Methods on the RA-Associated Genomic Results from the North American Rheumatoid Arthritis Consortium (NARAC) Dataset. J. Adv. Res. 2019, 18, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Al Olama, A.A.; Kote-Jarai, Z.; Berndt, S.I.; Conti, D.V.; Schumacher, F.; Han, Y.; Benlloch, S.; Hazelett, D.J.; Wang, Z.; Saunders, E.; et al. A Meta-Analysis of 87,040 Individuals Identifies 23 New Susceptibility Loci for Prostate Cancer. Nat. Genet. 2014, 46, 1103–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conti, D.V.; Darst, B.F.; Moss, L.C.; Saunders, E.J.; Sheng, X.; Chou, A.; Schumacher, F.R.; Olama, A.A.A.; Benlloch, S.; Dadaev, T.; et al. Trans-Ancestry Genome-Wide Association Meta-Analysis of Prostate Cancer Identifies New Susceptibility Loci and Informs Genetic Risk Prediction. Nat. Genet. 2021, 53, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, F.R.; Al Olama, A.A.; Berndt, S.I.; Benlloch, S.; Ahmed, M.; Saunders, E.J.; Dadaev, T.; Leongamornlert, D.; Anokian, E.; Cieza-Borrella, C.; et al. Association Analyses of More than 140,000 Men Identify 63 New Prostate Cancer Susceptibility Loci. Nat. Genet. 2018, 50, 928–936. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Wang, X.; Yan, S.; Yin, Y.; Hou, J.; Wang, X.; Sun, B. Interaction of PTPRO and TLR4 Signaling in Hepatocellular Carcinoma. Tumor Biol. 2014, 35, 10267–10273. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Wang, P.; Zhang, Z.; Wang, X. LncRNA HULC Promotes Lung Squamous Cell Carcinoma by Regulating PTPRO via NF-ΚB. J. Cell. Biochem. 2019, 120, 19415–19421. [Google Scholar] [CrossRef]
- Schuliga, M. NF-KappaB Signaling in Chronic Inflammatory Airway Disease. Biomolecules 2015, 5, 1266–1283. [Google Scholar] [CrossRef]
- Võsa, U.; Claringbould, A.; Westra, H.-J.; Bonder, M.J.; Deelen, P.; Zeng, B.; Kirsten, H.; Saha, A.; Kreuzhuber, R.; Kasela, S.; et al. Unraveling the Polygenic Architecture of Complex Traits Using Blood EQTL Metaanalysis. bioRxiv 2018, 447367. [Google Scholar] [CrossRef] [Green Version]
Whole Sample | Never- Asthmatics | Ever- Asthmatics | Never- Smokers | Current Smokers | Controls | Cases/Relatives | |
---|---|---|---|---|---|---|---|
(n = 1216) | (n = 684) | (n = 532) | (n = 604) | (n = 275) | (n = 243) | (n = 973) | |
Age, m ± sd | 43.3 ± 16.4 | 46.3 ± 15.9 | 39.4 ± 16.4 | 42.7 ± 16.9 | 35.5 ± 14.1 | 47.2 ± 17.2 | 42.3 ± 16.1 |
Sex, women, n (%) | 621 (51.1) | 374 (54.7) | 247 (46.4) | 338 (56.0) | 131 (47.6) | 125 (51.4) | 496 (51.0) |
Current smoking status, n (%) | |||||||
Never-smokers | 604 (49.7) | 342 (50.0) | 262 (49.2) | 604 (100) | - | 114 (46.9) | 490 (50.4) |
Ex-smokers | 337 (27.7) | 202 (29.5) | 135 (25.4) | - | - | 70 (28.8) | 267 (27.4) |
Current smokers | 275 (22.6) | 140 (20.5) | 135 (25.4) | - | 275 (100) | 59 (24.3) | 216 (22.2) |
Smoking, pack-year, n (%) | |||||||
Never-smokers | 604 (49.7) | 342 (50.0) | 262 (49.3) | 604 (100) | - | 114 (46.9) | 490 (50.4) |
<10 | 384 (31.6) | 197 (28.8) | 187 (35.1) | - | 186 (67.6) | 75 (30.9) | 309 (31.8) |
10–20 | 111 (9.1) | 68 (9.9) | 43 (8.1) | - | 44 (16.0) | 23 (9.5) | 88 (9.0) |
>20 | 117 (9.6) | 77 (11.3) | 40 (7.5) | - | 45 (16.4) | 31 (12.7) | 86 (8.8) |
BMI, kg·m−2, n (%) | n = 1201 | n = 676 | n = 525 | n = 597 | n = 272 | n = 240 | n = 961 |
≥30 | 118 (9.8) | 66 (9.8) | 52 (9.9) | 56 (9.4) | 16 (5.9) | 20 (8.3) | 98 (10.2) |
IgE | n = 1214 | n = 682 | n = 532 | n = 603 | n = 274 | n = 242 | n = 972 |
IgE, IU/mL, m ± sd | 222 ± 453 | 134 ± 352 | 333 ± 537 | 198 ± 431 | 304 ± 528 | 116 ± 258 | 248 ± 487 |
White blood count | n = 1206 | n = 677 | n = 529 | n = 601 | n = 273 | n = 242 | n = 964 |
Neutrophils, cells/mm3, m ± sd | 3986 ± 1391 | 3959 ± 1317 | 4020 ± 1481 | 3879 ± 1278 | 4314 ± 1535 | 3985 ± 1317 | 3986 ± 1410 |
Eosinophils, cells/mm3, m ± sd | 202 ± 155 | 168 ± 125 | 244 ± 179 | 203 ± 166 | 220 ± 162 | 160 ± 116 | 212 ± 162 |
Lung Function | n = 1197 | n = 673 | n = 524 | n = 594 | n = 272 | n = 238 | n = 959 |
FEV1, % predicted, m ± sd | 103 ± 17.8 | 107 ± 16.3 | 97 ± 18.2 | 104 ± 17.5 | 100 ± 15.6 | 105 ± 15.4 | 102 ± 18.3 |
FVC, % predicted, m ± sd | 110 ± 17.1 | 112 ± 17.5 | 108 ± 16.3 | 112 ± 17.1 | 107 ± 15.0 | 109 ± 15.3 | 111 ± 17.5 |
FEV1 ≥ 80%, n (%) | 1097 (91.7) | 644 (95.7) | 453 (86.5) | 556 (93.6) | 253 (93.0) | 228 (95.8) | 869 (90.6) |
Chronic bronchitis, n (%) | n = 1205 | n = 679 | n = 526 | n = 597 | n = 274 | n = 241 | n = 964 |
Yes | 114 (9.5) | 39 (5.7) | 75 (14.3) | 47 (7.9) | 40 (14.6) | 19 (7.9) | 95 (9.9) |
FlOPs, RFU/mL, GM (Q1, Q3) | 92.3 (80, 105) | 93.9 (82, 108) | 90.4 (78, 102) | 89.1 (77, 101) | 93.8 (82, 107) | 92.6 (81, 107) | 92.3 (79, 105) |
Chr | Gene | Nearest Gene | Genomic Location | Marker | Position bp (hg38) | Band | A1/A2 | EAF | Beta ± se | p |
---|---|---|---|---|---|---|---|---|---|---|
6 | BMP6 | TXNDC5 | Intronic | rs270404 | 7,757,141 | p24.3 | A/G | 0.41 | −0.20 ± 0.04 | 3.0 × 10−6 |
7 | BMPER | 3′-UTR | rs13223298 | 34,158,658 | p14.3 | G/T | 0.08 | −0.34 ± 0.08 | 8.7 × 10−6 | |
15 | SEMA6D | Intergenic | rs491274 | 46,577,328 | q21.1 | A/G | 0.09 | −0.31 ± 0.07 | 8.9 × 10−6 | |
1 | RGL1 | APOBEC4 | Intronic | rs6664058 | 183,687,143 | q25.3 | C/T | 0.36 | 0.21 ± 0.05 | 1.2 × 10−5 |
7 | PKD1L1 | TNS3 | Intronic | rs10276437 | 47,766,479 | p12.3 | C/T | 0.78 | 0.21 ± 0.05 | 1.3 × 10−5 |
14 | VRK1 | Intergenic | rs4905587 | 97,213,901 | q32.2 | G/T | 0.12 | 0.31 ± 0.07 | 1.4 × 10−5 | |
1 | RGL1 | APOBEC4 | Intronic | rs6424909 | 183,727,521 | q25.3 | A/G | 0.36 | 0.21 ± 0.05 | 1.5 × 10−5 |
16 | HS3ST6 | 5′-UTR | rs344363 | 1,922,547 | p13.3 | C/T | 0.17 | −0.26 ± 0.06 | 1.7 × 10−5 | |
20 | PMEPA1 | ZBP1 | Intronic | rs6025728 | 57,697,562 | q13.31 | C/T | 0.63 | 0.20 ± 0.05 | 2.0 × 10−5 |
12 | CACNA1C | FKBP4 | Intronic | rs4765961 | 2,559,306 | p13.33 | C/T | 0.82 | 0.23 ± 0.05 | 2.2 × 10−5 |
Chr | Gene | Nearest Gene | Genomic Location | Marker | A1/A2 | EAF | Never-Asthmatics (n = 684) | Ever-Asthmatics (n = 532) | Homogeneity Test | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta ± se | p | Beta ± se | p | Khi2 | p | |||||||
6 | BMP6 | TXNDC5 | Intronic | rs270404 | A/G | 0.41 | −0.20 ± 0.06 | 5.1 × 10−4 | −0.20 ± 0.06 | 5.4 × 10−4 | 0.01 | 0.91 |
7 | BMPER | 3′-UTR | rs13223298 | G/T | 0.08 | −0.42 ± 0.10 | 4.5 × 10−5 | −0.23 ± 0.12 | 5.5 × 10−2 | 1.32 | 0.25 | |
15 | SEMA6D | Intergenic | rs491274 | A/G | 0.09 | −0.36 ± 0.08 | 2.7 × 10−5 | −0.23 ± 0.11 | 4.1 × 10−2 | 0.75 | 0.39 |
Chr | Gene | Nearest Gene | Genomic Location | Marker | Position bp (hg38) | Band | A1/A2 | EAF | Beta ± se | p |
---|---|---|---|---|---|---|---|---|---|---|
Never-smokers (n = 604) | ||||||||||
6 | COL21A1 | DST | Intronic | rs17823624 | 56,348,021 | p12.1 | A/G | 0.92 | 0.44 ± 0.08 | 2.3 × 10−7 |
15 | GABRG3 | GABRA5 | Intronic | rs6606856 | 27,022,887 | q12 | C/T | 0.70 | −0.28 ± 0.05 | 4.1 × 10−7 |
5 | NUDT12 | Intergenic | rs2962642 | 104,131,010 | q21.2 | A/G | 0.24 | 0.30 ± 0.06 | 4.4 × 10−7 | |
10 | PAOX | MTG1 | Intronic | rs6537600 | 133,391,295 | q26.3 | C/T | 0.88 | 0.40 ± 0.08 | 6.5 × 10−7 |
5 | NUDT12 | Intergenic | rs7725285 | 104,111,482 | q21.2 | G/T | 0.75 | −0.29 ± 0.06 | 1.5 × 10−6 | |
10 | PAOX | MTG1 | Intronic | rs10776679 | 133,389,090 | q26.3 | C/T | 0.05 | −0.49 ± 0.10 | 1.6 × 10−6 |
8 | DEFB135 | DEFB136 | Intronic | rs6985349 | 11,982,562 | p23.1 | C/T | 0.06 | −0.43 ± 0.09 | 2.0 × 10−6 |
8 | DEFB135 | DEFB136 | Intronic | rs7004833 | 11,982,502 | p23.1 | A/G | 0.06 | −0.43 ± 0.09 | 2.0 × 10−6 |
3 | ZNF385D | Intronic | rs1391857 | 20,857,452 | p24.3 | A/G | 0.61 | −0.27 ± 0.06 | 2.5 × 10−6 | |
10 | ECHS1 | PAOX | Missense | rs1049951 | 133,370,622 | q26.3 | A/G | 0.06 | −0.41 ± 0.09 | 3.6 × 10−6 |
Current smokers (n = 275) | ||||||||||
6 | CRYBG1 | ATG5 | Intronic | rs3851212 | 106,375,664 | q21 | A/G | 0.94 | −0.81 ± 0.13 | 2.4 × 10−9 |
12 | COL2A1 | TMEM106C | Intronic | rs1793958 | 47,998,650 | q13.11 | A/G | 0.61 | −0.40 ± 0.08 | 4.7 × 10−7 |
12 | PTPRO | Intergenic | rs17174795 | 15,603,555 | p12.3 | G/T | 0.87 | −0.62 ± 0.12 | 9.2 × 10−7 | |
15 | ISG20 | AEN | Intronic | rs8041687 | 88,655,329 | q26.1 | A/G | 0.07 | 0.56 ± 0.11 | 1.1 × 10−6 |
3 | CMC1 | AZI2 | Intronic | rs7641491 | 28,301,843 | p24.1 | A/G | 0.53 | 0.39 ± 0.08 | 2.8 × 10−6 |
3 | CMC1 | AZI2 | Intronic | rs13085075 | 28,309,712 | p24.1 | C/T | 0.48 | −0.39 ± 0.08 | 3.1 × 10−6 |
7 | CREB5 | Intergenic | rs10228137 | 28,848,469 | p14.3 | A/C | 0.81 | −0.43 ± 0.09 | 4.3 × 10−6 | |
2 | LRP1B | Intergenic | rs961109 | 142,396,452 | q22.2 | C/T | 0.91 | 0.66 ± 0.14 | 4.6 × 10−6 | |
4 | TENM3 | DCTD | Intronic | rs4557308 | 182,734,597 | q35.1 | A/G | 0.26 | 0.41 ± 0.09 | 5.0 × 10−6 |
13 | ATP7B | 5′-UTR | rs4943040 | 51,919,816 | q14.3 | C/T | 0.55 | 0.38 ± 0.08 | 5.2 × 10−6 |
Never-Asthmatics | Ever-Asthmatics | Homogeneity Test | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chr | Gene | Nearest Gene | Genomic Location | Marker | Position bp (hg38) | A1/A2 | EAF | Beta ± se | p | Beta ± se | p | khi² | p |
Never-smokers (n = 604) | n = 342 | n = 262 | |||||||||||
6 | COL21A1 | DST | Intronic | rs17823624 | 56 348 021 | A/G | 0.92 | 0.46 ± 0.11 | 2.9 × 10−5 | 0.43 ± 0.13 | 1.1 × 10−3 | 0.07 | 0.79 |
15 | GABRG3 | GABRA5 | Intronic | rs6606856 | 27 022 887 | C/T | 0.70 | −0.29 ± 0.08 | 2.4 × 10−4 | −0.30 ± 0.08 | 1.7 × 10−4 | 0.00 | 0.97 |
5 | NUDT12 | Intergenic | rs2962642 | 104 131 010 | A/G | 0.24 | 0.36 ± 0.07 | 2.0 × 10−6 | 0.22 ± 0.09 | 1.5 × 10−2 | 1.89 | 0.17 | |
Current smokers (n = 275) | n = 140 | n = 135 | |||||||||||
6 | CRYBG1 | ATG5 | Intronic | rs3851212 | 106 375 664 | A/G | 0.94 | −0.79 ± 0.22 | 5.5 × 10−4 | −0.85 ± 0.16 | 3.2 × 10−7 | 0.08 | 0.78 |
12 | COL2A1 | TMEM106C | Intronic | rs1793958 | 47 998 650 | A/G | 0.61 | −0.38 ± 0.12 | 1.7 × 10−3 | −0.42 ± 0.10 | 4.9 × 10−5 | 0.09 | 0.77 |
12 | PTPRO | Intergenic | rs17174795 | 15 603 555 | G/T | 0.87 | −0.85 ± 0.18 | 5.1 × 10−6 | −0.36 ± 0.16 | 2.7 × 10−2 | 3.86 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orsi, L.; Margaritte-Jeannin, P.; Andrianjafimasy, M.; Dumas, O.; Mohamdi, H.; Bouzigon, E.; Demenais, F.; Matran, R.; Zerimech, F.; Nadif, R.; et al. Genome-Wide Association Study of Fluorescent Oxidation Products Accounting for Tobacco Smoking Status in Adults from the French EGEA Study. Antioxidants 2022, 11, 802. https://doi.org/10.3390/antiox11050802
Orsi L, Margaritte-Jeannin P, Andrianjafimasy M, Dumas O, Mohamdi H, Bouzigon E, Demenais F, Matran R, Zerimech F, Nadif R, et al. Genome-Wide Association Study of Fluorescent Oxidation Products Accounting for Tobacco Smoking Status in Adults from the French EGEA Study. Antioxidants. 2022; 11(5):802. https://doi.org/10.3390/antiox11050802
Chicago/Turabian StyleOrsi, Laurent, Patricia Margaritte-Jeannin, Miora Andrianjafimasy, Orianne Dumas, Hamida Mohamdi, Emmanuelle Bouzigon, Florence Demenais, Régis Matran, Farid Zerimech, Rachel Nadif, and et al. 2022. "Genome-Wide Association Study of Fluorescent Oxidation Products Accounting for Tobacco Smoking Status in Adults from the French EGEA Study" Antioxidants 11, no. 5: 802. https://doi.org/10.3390/antiox11050802
APA StyleOrsi, L., Margaritte-Jeannin, P., Andrianjafimasy, M., Dumas, O., Mohamdi, H., Bouzigon, E., Demenais, F., Matran, R., Zerimech, F., Nadif, R., & Dizier, M. -H. (2022). Genome-Wide Association Study of Fluorescent Oxidation Products Accounting for Tobacco Smoking Status in Adults from the French EGEA Study. Antioxidants, 11(5), 802. https://doi.org/10.3390/antiox11050802