Next Issue
Volume 11, June
Previous Issue
Volume 11, April
 
 

Antioxidants, Volume 11, Issue 5 (May 2022) – 238 articles

Cover Story (view full-size image): The decline of reproductive capacity with reduced oocyte quality accompanied by advanced maternal age is an emerging issue. Here, we suggest a natural antioxidant 3,3'-diindolylmethane (DIM) as a beneficial modulator that can improve the quality of oocytes in reproductive-aged mothers. Mitochondrial dysfunction with increased reactive oxygen species (ROS) production appears in aged oocytes. DIM supplementation improves oocyte quality, including mitochondrial function, ROS production, and chromosomal morphology, in aged C. elegans mothers. DIM supplementation activates CEP-1/p53 in the germ line of C. elegans to maintain the levels of germ cell proliferation and apoptosis, highly associated with the improved oocyte quality. As a result, the reproductively aged C. elegans showed reduced embryonic lethality by DIM supplementation. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 1164 KiB  
Review
Mitochondrial ROS, ER Stress, and Nrf2 Crosstalk in the Regulation of Mitochondrial Apoptosis Induced by Arsenite
by Orazio Cantoni, Ester Zito, Andrea Guidarelli, Mara Fiorani and Pietro Ghezzi
Antioxidants 2022, 11(5), 1034; https://doi.org/10.3390/antiox11051034 - 23 May 2022
Cited by 22 | Viewed by 4650
Abstract
Long-term ingestion of arsenicals, a heterogeneous group of toxic compounds, has been associated with a wide spectrum of human pathologies, which include various malignancies. Although their mechanism of toxicity remains largely unknown, it is generally believed that arsenicals mainly produce their effects via [...] Read more.
Long-term ingestion of arsenicals, a heterogeneous group of toxic compounds, has been associated with a wide spectrum of human pathologies, which include various malignancies. Although their mechanism of toxicity remains largely unknown, it is generally believed that arsenicals mainly produce their effects via direct binding to protein thiols and ROS formation in different subcellular compartments. The generality of these mechanisms most probably accounts for the different effects mediated by different forms of the metalloid in a variety of cells and tissues. In order to learn more about the molecular mechanisms of cyto- and genotoxicity, there is a need to focus on specific arsenic compounds under tightly controlled conditions. This review focuses on the mechanisms regulating the mitochondrial formation of ROS after exposure to low concentrations of a specific arsenic compound, NaAsO2, and their crosstalk with the nuclear factor (erythroid-2 related) factor 2 antioxidant signaling and the endoplasmic reticulum stress response. Full article
(This article belongs to the Special Issue 10th Anniversary of Antioxidants—Review Collection)
Show Figures

Figure 1

10 pages, 1696 KiB  
Article
β-Carotene Increases Activity of Cytochrome P450 2E1 during Ethanol Consumption
by Cristian Sandoval, Luciana Mella, Karina Godoy, Khosrow Adeli and Jorge Farías
Antioxidants 2022, 11(5), 1033; https://doi.org/10.3390/antiox11051033 - 23 May 2022
Cited by 9 | Viewed by 2698
Abstract
One of the key routes through which ethanol induces oxidative stress appears to be the activation of cytochrome P450 2E1 at different levels of ethanol intake. Our aim was to determine if oral β-carotene intake had an antioxidant effect on CYP2E1 gene expression [...] Read more.
One of the key routes through which ethanol induces oxidative stress appears to be the activation of cytochrome P450 2E1 at different levels of ethanol intake. Our aim was to determine if oral β-carotene intake had an antioxidant effect on CYP2E1 gene expression in mice that had previously consumed ethanol. C57BL/6 mice were used and distributed into: control (C), low-dose alcohol (LA), moderate-dose alcohol (MA), β-carotene (B), low-dose alcohol+β-carotene (LA + B), and moderate-dose alcohol+β-carotene (MA + B). Animals were euthanized at the end of the experiment, and liver tissue was taken from each one. CYP2E1 was measured using qPCR to detect liver damage. The relative expression level of each RNA was estimated using the comparative threshold cycle (Ct) technique (2−ΔΔCT method) by averaging the Ct values from three replicates. The LA+B (2267 ± 0.707) and MA+B (2.307 ± 0.384) groups had the highest CYP2E1 fold change values. On the other hand, the C (1.053 ± 0.292) and LA (1.240 ± 0.163) groups had the lowest levels. These results suggest that ethanol feeding produced a fold increase in CYP2E1 protein in mice as compared to the control group. Increased CYP2E1 activity was found to support the hypothesis that β-carotene might be dangerous during ethanol exposure in animal models. Our findings imply that β-carotene can increase the hepatic damage caused by low and high doses of alcohol. Therefore, the quantity of alcohol ingested, the exposure period, the regulatory mechanisms of alcoholic liver damage, and the signaling pathways involved in the consumption of both alcohol and antioxidant must all be considered. Full article
(This article belongs to the Special Issue Effect of Dietary Antioxidants in Chronic Disease Prevention)
Show Figures

Figure 1

15 pages, 2343 KiB  
Article
Protective Effect of Alpinia oxyphylla Fruit against tert-Butyl Hydroperoxide-Induced Toxicity in HepG2 Cells via Nrf2 Activation and Free Radical Scavenging and Its Active Molecules
by Chae Lee Park, Ji Hoon Kim, Je-Seung Jeon, Ju-hee Lee, Kaixuan Zhang, Shuo Guo, Do-hyun Lee, Eun Mei Gao, Rak Ho Son, Young-Mi Kim, Gyu Hwan Park and Chul Young Kim
Antioxidants 2022, 11(5), 1032; https://doi.org/10.3390/antiox11051032 - 23 May 2022
Cited by 9 | Viewed by 2482
Abstract
Alpinia oxyphylla Miq. (Zingiberaceae) extract exerts protective activity against tert-butyl hydroperoxide-induced toxicity in HepG2 cells, and the antioxidant response element (ARE) luciferase activity increased 6-fold at 30 μg/mL in HepG2 cells transiently transfected with ARE-luciferase. To identify active molecules, activity-guided isolation of [...] Read more.
Alpinia oxyphylla Miq. (Zingiberaceae) extract exerts protective activity against tert-butyl hydroperoxide-induced toxicity in HepG2 cells, and the antioxidant response element (ARE) luciferase activity increased 6-fold at 30 μg/mL in HepG2 cells transiently transfected with ARE-luciferase. To identify active molecules, activity-guided isolation of the crude extract led to four sesquiterpenes (1, 2, 5, 6) and two diarylheptanoids (3 and 4) from an n-hexane extract and six sesquiterpenes (712) from an ethyl acetate extract. Chemical structures were elucidated by one-dimensional, two-dimensional nuclear magnetic resonance (1D-, 2D-NMR), and mass (MS) spectral data. Among the isolated compounds, eudesma-3,11-dien-2-one (2) promoted the nuclear accumulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and increased the promoter property of the ARE. Diarylheptanoids, yakuchinone A (3), and 5′-hydroxyl-yakuchinone A (4) showed radical scavenging activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assays. Furthermore, optimization of extraction solvents (ratios of water and ethanol) was performed by comparison of contents of active compounds, ARE-inducing activity, radical scavenging activity, and HepG2 cell protective activity. As a result, 75% ethanol was the best solvent for the extraction of A. oxyphylla fruit. This study demonstrated that A. oxyphylla exerted antioxidant effects via the Nrf2/HO-1 (heme oxygenase-1) pathway and radical scavenging along with active markers eudesma-3,11-dien-2-one (2) and yakuchinone A (3). Full article
Show Figures

Figure 1

13 pages, 2143 KiB  
Article
Ultrafine Diesel Exhaust Particles Induce Apoptosis of Oligodendrocytes by Increasing Intracellular Reactive Oxygen Species through NADPH Oxidase Activation
by Ji Young Kim, Jin-Hee Kim, Yong-Dae Kim and Je Hoon Seo
Antioxidants 2022, 11(5), 1031; https://doi.org/10.3390/antiox11051031 - 23 May 2022
Cited by 7 | Viewed by 2544
Abstract
Diesel exhaust particles (DEPs) are a main contributor to air pollution. Ultrafine DEPs can cause neurodegenerative diseases by increasing intracellular reactive oxygen species (ROS). Compared with other cells in the brain, oligodendrocytes responsible for myelination are more susceptible to oxidative stress. However, the [...] Read more.
Diesel exhaust particles (DEPs) are a main contributor to air pollution. Ultrafine DEPs can cause neurodegenerative diseases by increasing intracellular reactive oxygen species (ROS). Compared with other cells in the brain, oligodendrocytes responsible for myelination are more susceptible to oxidative stress. However, the mechanisms underlying ROS generation in oligodendrocytes and the susceptibility of oligodendrocytes to ROS by ultrafine DEPs remain unclear. Herein, we examined the effects of excessive ROS generated by NOX2, an isoform of the NADPH oxidase family, after exposure to ultrafine DEPs (200 μg/mL) on the survival of two types of oligodendrocytes—oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (mOLs)––isolated from the brain of neonatal rats. In addition, mice were exposed to ultrafine DEP suspension (20 μL, 0.4 mg/mL) via the nasal route for 1 week, after which the expression of NOX2 and cleaved caspase-3 was examined in the white matter of the cerebellum. Exposure to DEPs significantly increased NOX2 expression and ROS generation in OPCs and mOLs. OPCs and mOLs clearly exhibited viability reduction, and a significant change in p53, Bax, Bcl-2, and cleaved caspase-3 expression, after DEP exposure. In contrast, treatment with berberine (BBR), an NOX2 inhibitor, significantly mitigated these effects. In mice exposed to DEP, the presence of NOX2-positive and cleaved caspase-3-positive oligodendrocytes was demonstrated in the cerebellar white matter; NOX2 and cleaved caspase-3 expression in the cerebellum lysates was significantly increased. BBR treatment returned expression of these proteins to control levels. These results demonstrate that the susceptibility of OPCs and mOLs to ultrafine DEPs is, at least in part, caused by excessive ROS produced by NOX2 and the sequential changes in the expression of p53, Bax, Bcl-2, and cleaved caspase-3. Overall, NOX2 inhibitor enhances the survival of two types of oligodendrocytes. Full article
(This article belongs to the Special Issue Pharmacology of Antioxidants)
Show Figures

Graphical abstract

22 pages, 2823 KiB  
Article
Identification of Modulators of the C. elegans Aryl Hydrocarbon Receptor and Characterization of Transcriptomic and Metabolic AhR-1 Profiles
by Lucie Larigot, Linh-Chi Bui, Marine de Bouvier, Ophélie Pierre, Grégory Pinon, Justine Fiocca, Mohammad Ozeir, Cendrine Tourette, Chris Ottolenghi, Sandrine Imbeaud, Clément Pontoizeau, Benjamin J. Blaise, Aline Chevallier, Céline Tomkiewicz, Béatrice Legrand, Bénédicte Elena-Herrmann, Christian Néri, Vanessa Brinkmann, Pierre Nioche, Robert Barouki, Natascia Ventura, Julien Dairou and Xavier Coumouladd Show full author list remove Hide full author list
Antioxidants 2022, 11(5), 1030; https://doi.org/10.3390/antiox11051030 - 23 May 2022
Cited by 5 | Viewed by 3336
Abstract
The Aryl hydrocarbon Receptor (AhR) is a xenobiotic sensor in vertebrates, regulating the metabolism of its own ligands. However, no ligand has been identified to date for any AhR in invertebrates. In C. elegans, the AhR ortholog, AHR-1, displays physiological functions. [...] Read more.
The Aryl hydrocarbon Receptor (AhR) is a xenobiotic sensor in vertebrates, regulating the metabolism of its own ligands. However, no ligand has been identified to date for any AhR in invertebrates. In C. elegans, the AhR ortholog, AHR-1, displays physiological functions. Therefore, we compared the transcriptomic and metabolic profiles of worms expressing AHR-1 or not and investigated the putative panel of chemical AHR-1 modulators. The metabolomic profiling indicated a role for AHR-1 in amino acids, carbohydrates, and fatty acids metabolism. The transcriptional profiling in neurons expressing AHR-1, identified 95 down-regulated genes and 76 up-regulated genes associated with neuronal and metabolic functions in the nervous system. A gene reporter system allowed us to identify several AHR-1 modulators including bacterial, dietary, or environmental compounds. These results shed new light on the biological functions of AHR-1 in C. elegans and perspectives on the evolution of the AhR functions across species. Full article
(This article belongs to the Special Issue The 10th Anniversary of Antioxidants: Past, Present and Future)
Show Figures

Figure 1

15 pages, 2945 KiB  
Article
Anti-Inflammatory, Anti-Apoptotic, and Antioxidant Roles of Honey, Royal Jelly, and Propolis in Suppressing Nephrotoxicity Induced by Doxorubicin in Male Albino Rats
by Hanaa K. Mohamed, Maysa A. Mobasher, Rasha A. Ebiya, Marwa T. Hassen, Howaida M. Hagag, Radwa El-Sayed, Shaimaa Abdel-Ghany, Manal M. Said and Nabil S. Awad
Antioxidants 2022, 11(5), 1029; https://doi.org/10.3390/antiox11051029 - 23 May 2022
Cited by 28 | Viewed by 4042
Abstract
Nephrotoxicity is one of the limiting factors for using doxorubicin (DOX). Honey, propolis, and royal jelly were evaluated for their ability to protect against nephrotoxicity caused by DOX. Forty-two adult albino rats were divided into control groups. The DOX group was injected i.p. [...] Read more.
Nephrotoxicity is one of the limiting factors for using doxorubicin (DOX). Honey, propolis, and royal jelly were evaluated for their ability to protect against nephrotoxicity caused by DOX. Forty-two adult albino rats were divided into control groups. The DOX group was injected i.p. with a weekly dose of 3 mg/kg of DOX for six weeks. The DOX plus honey treated group was injected with DOX and on the next day, received 500 mg/kg/day of honey orally for 21 days. The DOX plus royal jelly treated group was injected with DOX and on the following day, received 100 mg/kg/day of royal jelly orally for 21 days. The DOX plus propolis treated group received DOX and on the following day, was treated orally with 50 mg/kg/day of propolis for 21 days. The DOX plus combined treatment group received DOX and on the following day, was treated with a mix of honey, royal jelly, and propolis orally for 21 days. Results confirmed that DOX raised creatinine, urea, MDA, and TNF-α while decreasing GPX and SOD. Damages and elevated caspase-3 expression were discovered during renal tissue’s histopathological and immunohistochemical studies. Combined treatment with honey, royal jelly, and propolis improved biochemical, histological, and immunohistochemical studies in the renal tissue. qRT-PCR revealed increased expression of poly (ADP-Ribose) polymerase-1 (PARP-1) and a decline of Bcl-2 in the DOX group. However, combined treatment induced a significant decrease in the PARP-1 gene and increased Bcl-2 expression levels. In addition, the combined treatment led to significant improvement in the expression of both PARP-1 and Bcl-2 genes. In conclusion, the combined treatment effectively inhibited nephrotoxicity induced by DOX. Full article
(This article belongs to the Special Issue Antioxidant Activity of Honey Bee Products)
Show Figures

Figure 1

16 pages, 673 KiB  
Review
The Systemic Effects of Exercise on the Systemic Effects of Alzheimer’s Disease
by Dora Aczel, Bernadett Gyorgy, Peter Bakonyi, RehAn BukhAri, Ricardo Pinho, Istvan Boldogh, Gu Yaodong and Zsolt Radak
Antioxidants 2022, 11(5), 1028; https://doi.org/10.3390/antiox11051028 - 23 May 2022
Cited by 10 | Viewed by 4091
Abstract
Alzheimer’s disease (AD) is a progressive degenerative disorder and a leading cause of dementia in the elderly. The etiology of AD is multifactorial, including an increased oxidative state, deposition of amyloid plaques, and neurofibrillary tangles of the tau protein. The formation of amyloid [...] Read more.
Alzheimer’s disease (AD) is a progressive degenerative disorder and a leading cause of dementia in the elderly. The etiology of AD is multifactorial, including an increased oxidative state, deposition of amyloid plaques, and neurofibrillary tangles of the tau protein. The formation of amyloid plaques is considered one of the first signs of the illness, but only in the central nervous system (CNS). Interestingly, results indicate that AD is not just localized in the brain but is also found in organs distant from the brain, such as the cardiovascular system, gut microbiome, liver, testes, and kidney. These observations make AD a complex systemic disorder. Still, no effective medications have been found, but regular physical activity has been considered to have a positive impact on this challenging disease. While several articles have been published on the benefits of physical activity on AD development in the CNS, its peripheral effects have not been discussed in detail. The provocative question arising is the following: is it possible that the beneficial effects of regular exercise on AD are due to the systemic impact of training, rather than just the effects of exercise on the brain? If so, does this mean that the level of fitness of these peripheral organs can directly or indirectly influence the incidence or progress of AD? Therefore, the present paper aims to summarize the systemic effects of both regular exercise and AD and point out how common exercise-induced adaptation via peripheral organs can decrease the incidence of AD or attenuate the progress of AD. Full article
(This article belongs to the Special Issue Redox Signaling in Exercise Physiology)
Show Figures

Figure 1

4 pages, 197 KiB  
Editorial
Paradox Role of Oxidative Stress in Cancer: State of the Art
by Cinzia Domenicotti and Barbara Marengo
Antioxidants 2022, 11(5), 1027; https://doi.org/10.3390/antiox11051027 - 23 May 2022
Cited by 4 | Viewed by 1693
Abstract
The modulation of oxidative stress is essential for the maintenance of redox homeostasis in healthy and cancer cells [...] Full article
(This article belongs to the Special Issue Paradox Role of Oxidative Stress in Cancer: State of the Art)
16 pages, 1957 KiB  
Article
Randomized Clinical Trial of How Long-Term Glutathione Supplementation Offers Protection from Oxidative Damage and Improves HbA1c in Elderly Type 2 Diabetic Patients
by Saurabh Kalamkar, Jhankar Acharya, Arjun Kolappurath Madathil, Vijay Gajjar, Uma Divate, Sucheta Karandikar-Iyer, Pranay Goel and Saroj Ghaskadbi
Antioxidants 2022, 11(5), 1026; https://doi.org/10.3390/antiox11051026 - 23 May 2022
Cited by 20 | Viewed by 8000
Abstract
Complications in type 2 diabetes (T2D) arise from hyperglycemia-induced oxidative stress. Here, we examined the effectiveness of supplementation with the endogenous antioxidant glutathione (GSH) during anti-diabetic treatment. A total of 104 non-diabetic and 250 diabetic individuals on anti-diabetic therapy, of either sex and [...] Read more.
Complications in type 2 diabetes (T2D) arise from hyperglycemia-induced oxidative stress. Here, we examined the effectiveness of supplementation with the endogenous antioxidant glutathione (GSH) during anti-diabetic treatment. A total of 104 non-diabetic and 250 diabetic individuals on anti-diabetic therapy, of either sex and aged between 30 and 78 years, were recruited. A total of 125 diabetic patients were additionally given 500 mg oral GSH supplementation daily for a period of six months. Fasting and PP glucose, insulin, HbA1c, GSH, oxidized glutathione (GSSG), and 8-hydroxy-2-deoxy guanosine (8-OHdG) were measured upon recruitment and after three and six months of supplementation. Statistical significance and effect size were assessed longitudinally across all arms. Blood GSH increased (Cohen’s d = 1.01) and 8-OHdG decreased (Cohen’s d = −1.07) significantly within three months (p < 0.001) in diabetic individuals. A post hoc sub-group analysis showed that HbA1c (Cohen’s d = −0.41; p < 0.05) and fasting insulin levels (Cohen’s d = 0.56; p < 0.05) changed significantly in diabetic individuals above 55 years. GSH supplementation caused a significant increase in blood GSH and helped maintain the baseline HbA1c overall. These results suggest GSH supplementation is of considerable benefit to patients above 55 years, not only supporting decreased glycated hemoglobin (HbA1c) and 8-OHdG but also increasing fasting insulin. The clinical implication of our study is that the oral administration of GSH potentially complements anti-diabetic therapy in achieving better glycemic targets, especially in the elderly population. Full article
(This article belongs to the Special Issue Antioxidants in Diabetes)
Show Figures

Figure 1

18 pages, 3415 KiB  
Review
Plant- and Animal-Based Antioxidants’ Structure, Efficacy, Mechanisms, and Applications: A Review
by Edirisinghe Dewage Nalaka Sandun Abeyrathne, Kichang Nam, Xi Huang and Dong Uk Ahn
Antioxidants 2022, 11(5), 1025; https://doi.org/10.3390/antiox11051025 - 23 May 2022
Cited by 73 | Viewed by 7475
Abstract
Antioxidants are compounds that normally prevent lipid and protein oxidation. They play a major role in preventing many adverse conditions in the human body, including inflammation and cancer. Synthetic antioxidants are widely used in the food industry to prevent the production of adverse [...] Read more.
Antioxidants are compounds that normally prevent lipid and protein oxidation. They play a major role in preventing many adverse conditions in the human body, including inflammation and cancer. Synthetic antioxidants are widely used in the food industry to prevent the production of adverse compounds that harm humans. However, plant- and animal-based antioxidants are more appealing to consumers than synthetic antioxidants. Plant-based antioxidants are mainly phenolic compounds, carotenoids, and vitamins, while animal-based antioxidants are mainly whole protein or the peptides of meat, fish, egg, milk, and plant proteins. Plant-based antioxidants mainly consist of aromatic rings, while animal-based antioxidants mainly consist of amino acids. The phenolic compounds and peptides act differently in preventing oxidation and can be used in the food and pharmaceutical industries. Therefore, compared with animal-based antioxidants, plant-based compounds are more practical in the food industry. Even though plant-based antioxidant compounds are good sources of antioxidants, animal-based peptides (individual peptides) cannot be considered antioxidant compounds to add to food. However, they can be considered an ingredient that will enhance the antioxidant capacity. This review mainly compares plant- and animal-based antioxidants’ structure, efficacy, mechanisms, and applications. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Graphical abstract

16 pages, 7936 KiB  
Article
Alginate-Chitosan Coated Nanoliposomes as Effective Delivery Systems for Bamboo Leaf Flavonoids: Characterization, In Vitro Release, Skin Permeation and Anti-Senescence Activity
by Yanpei Gu, Zhenlei Zhao, Fan Xue and Ying Zhang
Antioxidants 2022, 11(5), 1024; https://doi.org/10.3390/antiox11051024 - 23 May 2022
Cited by 14 | Viewed by 3050
Abstract
The use of bamboo leaf flavonoids (BLF) as functional food and cosmetic ingredients is limited by low bioavailability and difficulty in being absorbed by the intestine or skin. The aim of this study was to prepare BLF-loaded alginate-chitosan coated nanoliposomes (AL-CH-BLF-Lip) to overcome [...] Read more.
The use of bamboo leaf flavonoids (BLF) as functional food and cosmetic ingredients is limited by low bioavailability and difficulty in being absorbed by the intestine or skin. The aim of this study was to prepare BLF-loaded alginate-chitosan coated nanoliposomes (AL-CH-BLF-Lip) to overcome these challenges. The nanocarriers were characterized by dynamic light scattering, high performance liquid chromatography, Fourier transform infrared spectroscopy and differential scanning calorimetry. The biological activity was analyzed by in vitro antioxidant activity, transdermal absorption, cytotoxicity and AAPH induced HaCaT cell senescence model. The results showed that the size of nanocarriers ranged from 152.13 to 228.90 nm and had a low polydispersity index (0.25–0.36). Chitosan (CH) and alginate (AL) were successfully coated on BLF-loaded nanoliposomes (BLF-Lip), the encapsulation efficiency of BLF-Lip, BLF-loaded chitosan coated nanoliposomes (CH-BLF-Lip) and AL-CH-BLF-Lip were 71.31%, 78.77% and 82.74%, respectively. In addition, BLF-Lip, CH-BLF-Lip and AL-CH-BLF-Lip showed better in vitro release and free radical scavenging ability compared with naked BLF. In particular, the skin permeability of BLF-Lip, CH-BLF-Lip, and AL-CH-BLF-Lip increased 2.1, 2.4 and 2.9 times after 24 h, respectively. Furthermore, the use of nanoliposomes could significantly improve the anti-senescence activity of BLF (p < 0.01). Conclusively, alginate-chitosan coated nanoliposomes are promising delivery systems for BLF that can be used in functional foods and cosmetics. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Cosmetics)
Show Figures

Figure 1

18 pages, 6673 KiB  
Article
β-Sitosterol Glucoside-Loaded Nanosystem Ameliorates Insulin Resistance and Oxidative Stress in Streptozotocin-Induced Diabetic Rats
by Sherif M. Afifi, Naglaa M. Ammar, Rabab Kamel, Tuba Esatbeyoglu and Heba A. Hassan
Antioxidants 2022, 11(5), 1023; https://doi.org/10.3390/antiox11051023 - 22 May 2022
Cited by 9 | Viewed by 3419
Abstract
β-Sitosterol glucoside (SG), isolated from Senecio petasitis (Family Asteraceae), was loaded in self-nanoemulsifying drug delivery systems (SEDDS) in a trial to enhance its solubility and biological effect. Various co-surfactants were tested to prepare a successful SEDDS. The selected SG-loaded SEDDS had a [...] Read more.
β-Sitosterol glucoside (SG), isolated from Senecio petasitis (Family Asteraceae), was loaded in self-nanoemulsifying drug delivery systems (SEDDS) in a trial to enhance its solubility and biological effect. Various co-surfactants were tested to prepare a successful SEDDS. The selected SG-loaded SEDDS had a droplet size of 134 ± 15.2 nm with a homogenous distribution (polydispersity index 0.296 ± 0.02). It also demonstrated a significant augmentation of SG in vitro release by 4-fold compared to the free drug suspension. The in vivo insulin sensitivity and antidiabetic effect of the prepared SG-loaded SEDDS were further assessed in streptozotocin-induced hyperglycemic rats. The hypoglycemic effect of SG-loaded nanosystem was evidenced by decreased serum glucose and insulin by 63.22% and 53.11%, respectively. Homeostasis model assessment-insulin resistance (HOMA-IR) index demonstrated a significant reduction by 5.4-fold in the diabetic group treated by SG-loaded nanosystem and exhibited reduced glucagon level by 40.85%. In addition, treatment with SG-loaded nanosystem significantly decreased serum MDA (malondialdehyde) and increased catalase levels by 38.31% and 64.45%, respectively. Histopathological investigations also supported the protective effect of SG-loaded nanosystem on the pancreas. The promising ability of SG-loaded nanosystem to ameliorate insulin resistance, protect against oxidative stress, and restore pancreatic β-cell secretory function warrants its inclusion in further studies during diabetes progression. Full article
(This article belongs to the Special Issue Applications of Antioxidant Nanoparticles)
Show Figures

Figure 1

13 pages, 12148 KiB  
Article
Cerebral Oxidative Stress in Early Alzheimer’s Disease Evaluated by 64Cu-ATSM PET/MRI: A Preliminary Study
by Hidehiko Okazawa, Masamichi Ikawa, Tetsuya Tsujikawa, Tetsuya Mori, Akira Makino, Yasushi Kiyono, Yasunari Nakamoto, Hirotaka Kosaka and Makoto Yoneda
Antioxidants 2022, 11(5), 1022; https://doi.org/10.3390/antiox11051022 - 22 May 2022
Cited by 9 | Viewed by 2733
Abstract
Oxidative stress imaging using diacetyl-bis (N4-methylthiosemicarbazone) (Cu-ATSM) was applied to the evaluation of patients with early Alzheimer’s disease (eAD). Ten eAD patients (72 ± 9 years) and 10 age-matched healthy controls (HCs) (73 ± 9 years) participated in this study. [...] Read more.
Oxidative stress imaging using diacetyl-bis (N4-methylthiosemicarbazone) (Cu-ATSM) was applied to the evaluation of patients with early Alzheimer’s disease (eAD). Ten eAD patients (72 ± 9 years) and 10 age-matched healthy controls (HCs) (73 ± 9 years) participated in this study. They underwent dynamic PET/MRI using 11C-PiB and 64Cu-ATSM with multiple MRI sequences. To evaluate cerebral oxidative stress, three parameters of 64Cu-ATSM PET were compared: standardized uptake value (SUV), tracer influx rate (Kin), and a rate constant k3. The input functions were estimated by the image-derived input function method. The relative differences were analyzed by statistical parametric mapping (SPM) using SUV and Kin images. All eAD patients had positive and HC subjects had negative PiB accumulation, and MMSE scores were significantly different between them. The 64Cu-ATSM accumulation tended to be higher in eAD than in HCs for both SUV and Kin. When comparing absolute values, eAD patients had a greater Kin in the posterior cingulate cortex and a greater k3 in the hippocampus compared with lobar cortical values of HCs. In SPM analysis, eAD had an increased left operculum and decreased bilateral hippocampus and anterior cingulate cortex compared to HCs. 64Cu-ATSM PET/MRI and tracer kinetic analysis elucidated cerebral oxidative stress in the eAD patients, particularly in the cingulate cortex and hippocampus. Full article
Show Figures

Figure 1

29 pages, 901 KiB  
Review
Physiological and Clinical Aspects of Bioactive Peptides from Marine Animals
by Sukwasa Chakniramol, Andreas Wierschem, Man-Gi Cho and Khawaja Muhammad Imran Bashir
Antioxidants 2022, 11(5), 1021; https://doi.org/10.3390/antiox11051021 - 22 May 2022
Cited by 14 | Viewed by 3239
Abstract
Biological molecules in nutraceuticals and functional foods have proven physiological properties to treat human chronic diseases. These molecules contribute to applications in the food and pharmaceutical industries by preventing food spoilage and cellular injury. Technological advancement in the screening and characterization of bioactive [...] Read more.
Biological molecules in nutraceuticals and functional foods have proven physiological properties to treat human chronic diseases. These molecules contribute to applications in the food and pharmaceutical industries by preventing food spoilage and cellular injury. Technological advancement in the screening and characterization of bioactive peptides has enabled scientists to understand the associated molecules. Consistent collaboration among nutritionists, pharmacists, food scientists, and bioengineers to find new bioactive compounds with higher therapeutic potential against nutrition-related diseases highlights the potential of the bioactive peptides for food and pharmaceutic industries. Among the popular dietary supplements, marine animals have always been considered imperative due to their rich nutritional values and byproduct use in the food and pharmaceutical industries. The bioactive peptides isolated from marine animals are well-known for their higher bioactivities against human diseases. The physiological properties of fish-based hydrolyzed proteins and peptides have been claimed through in vitro, in vivo, and clinical trials. However, systematic study on the physiological and clinical significance of these bioactive peptides is scarce. In this review, we not only discuss the physiological and clinical significance of antioxidant and anticancer peptides derived from marine animals, but we also compare their biological activities through existing in vitro and in vivo studies. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

21 pages, 6600 KiB  
Article
Evaluation of Antioxidant Capacity and Gut Microbiota Modulatory Effects of Different Kinds of Berries
by Jiebiao Chen, Yichen Shu, Yanhong Chen, Zhiwei Ge, Changfeng Zhang, Jinping Cao, Xian Li, Yue Wang and Chongde Sun
Antioxidants 2022, 11(5), 1020; https://doi.org/10.3390/antiox11051020 - 22 May 2022
Cited by 18 | Viewed by 4584
Abstract
Berries are fairly favored by consumers. Phenolic compounds are the major phytochemicals in berries, among which anthocyanins are one of the most studied. Phenolic compounds are reported to have prebiotic-like effects. In the present study, we identified the anthocyanin profiles, evaluated and compared [...] Read more.
Berries are fairly favored by consumers. Phenolic compounds are the major phytochemicals in berries, among which anthocyanins are one of the most studied. Phenolic compounds are reported to have prebiotic-like effects. In the present study, we identified the anthocyanin profiles, evaluated and compared the antioxidant capacities and gut microbiota modulatory effects of nine common berries, namely blackberry, black goji berry, blueberry, mulberry, red Chinese bayberry, raspberry, red goji berry, strawberry and white Chinese bayberry. Anthocyanin profiles were identified by UPLC-Triple-TOF/MS. In vitro antioxidant capacity was evaluated by four chemical assays (DPPH, ABTS, FRAP and ORAC). In vivo antioxidant capacity and gut microbiota modulatory effects evaluation was carried out by treating healthy mice with different berry extracts for two weeks. The results show that most berries could improve internal antioxidant status, reflected by elevated serum or colonic T-AOC, GSH, T-SOD, CAT, and GSH-PX levels, as well as decreased MDA content. All berries significantly altered the gut microbiota composition. The modulatory effects of the berries were much the same, namely by the enrichment of beneficial SCFAs-producing bacteria and the inhibition of potentially harmful bacteria. Our study shed light on the gut microbiota modulatory effect of different berries and may offer consumers useful consumption guidance. Full article
(This article belongs to the Special Issue Antioxidants in Fruits and Vegetables)
Show Figures

Figure 1

13 pages, 2405 KiB  
Article
Resveratrol Treatment Induces Mito-miRNome Modification in Follicular Fluid from Aged Women with a Poor Prognosis for In Vitro Fertilization Cycles
by Rosalia Battaglia, Angela Caponnetto, Anna Maria Caringella, Anna Cortone, Carmen Ferrara, Salvatore Smirni, Rossana Iannitti, Michele Purrello, Giuseppe D’Amato, Bernard Fioretti and Cinzia Di Pietro
Antioxidants 2022, 11(5), 1019; https://doi.org/10.3390/antiox11051019 - 21 May 2022
Cited by 15 | Viewed by 3693
Abstract
Advanced maternal age impairs reproductive performance, influencing the quantity and the quality of oocytes. Mitochondria dysfunction seems to play a decisive role in conditioning the quality of the female gamete. Different in vitro and in vivo studies, demonstrated the antioxidant and anti-inflammatory activities [...] Read more.
Advanced maternal age impairs reproductive performance, influencing the quantity and the quality of oocytes. Mitochondria dysfunction seems to play a decisive role in conditioning the quality of the female gamete. Different in vitro and in vivo studies, demonstrated the antioxidant and anti-inflammatory activities of Resveratrol and its ability to improve mitochondria function even if the exact mechanism of action has not yet been demonstrated in human oocytes. In this paper, by retrospective analysis, we evaluated follicular fluid (FF) miRNome modification in aged women with a poor ovarian reserve receiving a resveratrol-based supplement the three months before the in vitro Fertilization (IVF) cycle. We found 13 differentially expressed microRNAs (miRNAs) in women treated with resveratrol and specifically miR-125b-5p, miR-132-3p, miR-19a-3p, miR-30a-5p and miR-660-5p, regulating mitochondrial proteins, are able to control metabolism and mitochondrial biogenesis. MiRNA expression differences, observed after resveratrol treatment in FF from women with a poor prognosis for IVF, demonstrated that resveratrol may act on mitomiRNAs to improve follicular microenvironment by transcriptomic and proteomic modifications in granulosa cells. Full article
(This article belongs to the Special Issue Mitochondria Biology in Reproductive Function)
Show Figures

Figure 1

7 pages, 229 KiB  
Editorial
Oxygen Sensing: Physiology and Pathophysiology
by Philip I. Aaronson and Asuncion Rocher
Antioxidants 2022, 11(5), 1018; https://doi.org/10.3390/antiox11051018 - 21 May 2022
Cited by 1 | Viewed by 1954
Abstract
Oxygen is such an essential element for life that multiple mechanisms have evolved to maintain oxygen homeostasis, including those which detect decreases in arterial O2 and generate adaptive responses to hypoxia [...] Full article
(This article belongs to the Special Issue Physiology and Pathophysiology of Oxygen Sensitivity)
22 pages, 1864 KiB  
Article
Unveiling the Phytochemical Profile and Biological Potential of Five Artemisia Species
by Adriana Trifan, Gokhan Zengin, Kouadio Ibrahime Sinan, Elwira Sieniawska, Rafal Sawicki, Magdalena Maciejewska-Turska, Krystyna Skalikca-Woźniak and Simon Vlad Luca
Antioxidants 2022, 11(5), 1017; https://doi.org/10.3390/antiox11051017 - 21 May 2022
Cited by 37 | Viewed by 3847
Abstract
The Artemisia L. genus comprises over 500 species with important medicinal and economic attributes. Our study aimed at providing a comprehensive metabolite profiling and bioactivity assessment of five Artemisia species collected from northeastern Romania (A. absinthium L., A. annua L., A. austriaca [...] Read more.
The Artemisia L. genus comprises over 500 species with important medicinal and economic attributes. Our study aimed at providing a comprehensive metabolite profiling and bioactivity assessment of five Artemisia species collected from northeastern Romania (A. absinthium L., A. annua L., A. austriaca Jacq., A. pontica L. and A. vulgaris L.). Liquid chromatography–tandem high-resolution mass spectrometry (LC-HRMS/MS) analysis of methanol and chloroform extracts obtained from the roots and aerial parts of the plants led to the identification of 15 phenolic acids (mostly hydroxycinnamic acid derivatives), 26 flavonoids (poly-hydroxylated/poly-methoxylated flavone derivatives, present only in the aerial parts), 14 sesquiterpene lactones, 3 coumarins, 1 lignan and 7 fatty acids. Clustered image map (CIM) analysis of the phytochemical profiles revealed that A. annua was similar to A. absinthium and that A. pontica was similar to A. austriaca, whereas A. vulgaris represented a cluster of its own. Correlated with their total phenolic contents, the methanol extracts from both parts of the plants showed the highest antioxidant effects, as assessed by the DPPH and ABTS radical scavenging, CUPRAC, FRAP and total antioxidant capacity methods. Artemisia extracts proved to be promising sources of enzyme inhibitory agents, with the methanol aerial part extracts being the most active samples against acetylcholinesterase and glucosidase. All Artemisia samples displayed good antibacterial effects against Mycobacterium tuberculosis H37Ra, with MIC values of 64–256 mg/L. In conclusion, the investigated Artemisia species proved to be rich sources of bioactives endowed with antioxidant, enzyme inhibitory and anti-mycobacterial properties. Full article
Show Figures

Figure 1

15 pages, 2242 KiB  
Article
Taurine Administration Counteracts Aging-Associated Impingement of Skeletal Muscle Regeneration by Reducing Inflammation and Oxidative Stress
by Alessandra Barbiera, Silvia Sorrentino, Damon Fard, Elisa Lepore, Gigliola Sica, Gabriella Dobrowolny, Luca Tamagnone and Bianca Maria Scicchitano
Antioxidants 2022, 11(5), 1016; https://doi.org/10.3390/antiox11051016 - 21 May 2022
Cited by 13 | Viewed by 5765
Abstract
Sarcopenia, which occurs during aging, is characterized by the gradual loss of skeletal muscle mass and function, resulting in a functional decline in physical abilities. Several factors contribute to the onset of sarcopenia, including reduced regenerative capacity, chronic low-grade inflammation, mitochondrial dysfunction, and [...] Read more.
Sarcopenia, which occurs during aging, is characterized by the gradual loss of skeletal muscle mass and function, resulting in a functional decline in physical abilities. Several factors contribute to the onset of sarcopenia, including reduced regenerative capacity, chronic low-grade inflammation, mitochondrial dysfunction, and increased oxidative stress, leading to the activation of catabolic pathways. Physical activity and adequate protein intake are considered effective strategies able to reduce the incidence and severity of sarcopenia by exerting beneficial effects in improving the muscular anabolic response during aging. Taurine is a non-essential amino acid that is highly expressed in mammalian tissues and, particularly, in skeletal muscle where it is involved in the regulation of biological processes and where it acts as an antioxidant and anti-inflammatory factor. Here, we evaluated whether taurine administration in old mice counteracts the physiopathological effects of aging in skeletal muscle. We showed that, in injured muscle, taurine enhances the regenerative process by downregulating the inflammatory response and preserving muscle fiber integrity. Moreover, taurine attenuates ROS production in aged muscles by maintaining a proper cellular redox balance, acting as an antioxidant molecule. Although further studies are needed to better elucidate the molecular mechanisms responsible for the beneficial effect of taurine on skeletal muscle homeostasis, these data demonstrate that taurine administration ameliorates the microenvironment allowing an efficient regenerative process and attenuation of the catabolic pathways related to the onset of sarcopenia. Full article
Show Figures

Figure 1

8 pages, 1207 KiB  
Article
Thyroid Disorders in Patients Treated with Dimethyl Fumarate for Multiple Sclerosis: A Retrospective Observational Study
by Cédric O. Renaud, Panos G. Ziros, Amandine Mathias, Caroline Pot and Gerasimos P. Sykiotis
Antioxidants 2022, 11(5), 1015; https://doi.org/10.3390/antiox11051015 - 21 May 2022
Cited by 2 | Viewed by 2914
Abstract
Background: Dimethyl fumarate (DMF), a drug used for the treatment of multiple sclerosis (MS) and psoriasis, has been shown to activate the Keap1/Nrf2 antioxidant response. Nrf2 exerts pleiotropic roles in the thyroid gland; among others, single nucleotide polymorphisms (SNPs) in the gene encoding [...] Read more.
Background: Dimethyl fumarate (DMF), a drug used for the treatment of multiple sclerosis (MS) and psoriasis, has been shown to activate the Keap1/Nrf2 antioxidant response. Nrf2 exerts pleiotropic roles in the thyroid gland; among others, single nucleotide polymorphisms (SNPs) in the gene encoding Nrf2 modulate the risk of Hashimoto’s thyroiditis (HT), suggesting that pharmacological activation of Nrf2 might also be protective. However, a patient with acute exacerbation of HT after starting DMF for MS was recently reported, raising questions about the thyroidal safety of Nrf2 activators. Methods: In a retrospective observational study, we investigated the prevalence and incidence of thyroid disorders (TD) among 163 patients with MS treated with DMF. Results: Only 7/163 patients (4.3%) were diagnosed with functional TD; most (5/163, 3.0%) were diagnosed before DMF treatment. Functional TD were diagnosed under or after DMF in only 2 patients (1.2%). Under DMF, one patient developed transient mild hypothyroidism with negative thyroid autoantibodies. After DMF discontinuation, another patient developed hyperthyroidism due to Graves’ disease. No patient developed thyroid structural disease under or after DMF. Conclusions: The very low incidence of functional TD indicates an overall very good thyroid tolerance of DMF, arguing against screening for TD in MS patients considered for or treated with DMF, and supporting the further study of Nrf2 activators for the prevention and treatment of TD. Full article
(This article belongs to the Topic Cellular Redox Homeostasis)
Show Figures

Figure 1

12 pages, 1390 KiB  
Article
Online Extraction–DPPH–HPLC–DAD–QTOF-MS System for Efficient Screening and Identification of Antioxidants from Citrus aurantium L. var. amara (Rutaceae): Integrating Sample Preparation and Antioxidants Profiling
by Yecheng Xiao, Fuhua Fu, Youhe Wei, Shuyun Shi and Yang Shan
Antioxidants 2022, 11(5), 1014; https://doi.org/10.3390/antiox11051014 - 20 May 2022
Cited by 12 | Viewed by 2549
Abstract
The lack of a direct connection between solid edible or medical natural products and bioactive compound profiling is a bottleneck in natural product research and quality control. Here, a novel integrated system, online extraction (OLE)–2,2′-diphenyl-1-picrylhydrazyl (DPPH)–HPLC−DAD−QTOF-MS, was fabricated to extract, screen, and identify [...] Read more.
The lack of a direct connection between solid edible or medical natural products and bioactive compound profiling is a bottleneck in natural product research and quality control. Here, a novel integrated system, online extraction (OLE)–2,2′-diphenyl-1-picrylhydrazyl (DPPH)–HPLC−DAD−QTOF-MS, was fabricated to extract, screen, and identify antioxidants from the whole fruit of Citrus aurantium L. var. amara (CAVA, Rutaceae) simply, rapidly, and efficiently. The system consumes less sample (1.0 mg of CAVA powder) and requires a shorter analytical time (45 min for sample extraction, antioxidants screening, separation, and identification). Eight antioxidant flavonoids were screened and identified, and six available flavanones were sensitively, precisely, and accurately quantified. Two major flavanone glycosides, naringin (50.37 ± 0.43 mg/g) and neohesperidin (38.20 ± 0.27 mg/g), exhibit potent DPPH scavenging activities with IC50 values of 111.9 ± 10.06 and 178.55 ± 11.28 μg/mL. A minor flavanone aglycone, hesperitin (0.73 ± 0.06 mg/g), presents stronger DPPH scavenging activity (IC50, 39.07 ± 2.51 μg/mL). Furthermore, density functional theory calculations demonstrated their electron transport ability and chemical reactivity, which confirmed the screened results. The results indicate that the developed OLE–DPPH–HPLC−DAD−QTOF-MS system provides new perspectives for analysis of antioxidants from complex natural products, which also contribute to the quality evaluation of CAVA. Full article
Show Figures

Graphical abstract

14 pages, 6201 KiB  
Article
Hot Water Extract of Sasa borealis (Hack.) Makino & Shibata Abate Hydrogen Peroxide-Induced Oxidative Stress and Apoptosis in Kidney Epithelial Cells
by Ilekuttige Priyan Shanura Fernando, Kirinde Gedara Isuru Sandanuwan Kirindage, Arachchige Maheshika Kumari Jayasinghe, Eui Jeong Han, Mawalle Kankanamge Hasitha Madhawa Dias, Kyung Pil Kang, Sung Ig Moon, Tai Sun Shin, Ayeong Ma, Kyungsook Jung and Ginnae Ahn
Antioxidants 2022, 11(5), 1013; https://doi.org/10.3390/antiox11051013 - 20 May 2022
Cited by 1 | Viewed by 2978
Abstract
Sasa borealis (Hack.) Makino & Shibata or broad-leaf bamboo is famous for its richness of bioactive natural products and its uses in traditional medicine for its anti-inflammatory, diuretic, and antipyretic properties and preventive effects against hypertension, arteriosclerosis, cardiovascular disease, and cancer. The present [...] Read more.
Sasa borealis (Hack.) Makino & Shibata or broad-leaf bamboo is famous for its richness of bioactive natural products and its uses in traditional medicine for its anti-inflammatory, diuretic, and antipyretic properties and preventive effects against hypertension, arteriosclerosis, cardiovascular disease, and cancer. The present study investigated the antioxidant activity of S. borealis hot water extract (SBH) and its effects in ameliorating hydrogen peroxide-induced oxidative stress, using an African green monkey kidney epithelial cell line (Vero). Known polyphenols in SBH were quantified by HPLC analysis. SBH indicated a dose-dependent increase for reducing power, ABTS+ (IC50 = 96.44 ± 0.61 µg/mL) and DPPH (IC50 = 125.78 ± 4.41 µg/mL) radical scavenging activities. SBH markedly reduced intracellular reactive oxygen species (ROS) generation in the Vero cells and increased the protective effects against H2O2-induced oxidative stress by reducing apoptosis. Other than the direct involvement in neutralizing ROS, metabolites in SBH were also found to induce NRF2-mediated production of antioxidant enzymes, HO-1, and NQO1. These findings imply that S. borealis hot water extract can be utilized to create nutraceutical and functional foods that can help to relieve the effects of oxidative stress in both acute and chronic kidney injury. Full article
(This article belongs to the Special Issue Mitochondrial Oxidative Stress in Kidney Injury)
Show Figures

Graphical abstract

8 pages, 706 KiB  
Editorial
Antioxidant Defences and Redox Homeostasis in Animals
by Peter F. Surai and Katie Earle-Payne
Antioxidants 2022, 11(5), 1012; https://doi.org/10.3390/antiox11051012 - 20 May 2022
Cited by 19 | Viewed by 2743
Abstract
For many years reactive oxygen species (ROS) production in biological systems has been considered to be detrimental [...] Full article
(This article belongs to the Special Issue Antioxidant Defences and Redox Homeostasis in Animals)
Show Figures

Figure 1

16 pages, 4929 KiB  
Article
Evolution of Heme Peroxygenases: Ancient Roots and Later Evolved Branches
by Marcel Zámocký and Jana Harichová
Antioxidants 2022, 11(5), 1011; https://doi.org/10.3390/antiox11051011 - 20 May 2022
Cited by 2 | Viewed by 4422
Abstract
We reconstructed the molecular phylogeny of heme containing peroxygenases that are known as very versatile biocatalysts. These oxidoreductases capable of mainly oxyfunctionalizations constitute the peroxidase–peroxygenase superfamily. Our representative reconstruction revealed a high diversity but also well conserved sequence motifs within rather short protein [...] Read more.
We reconstructed the molecular phylogeny of heme containing peroxygenases that are known as very versatile biocatalysts. These oxidoreductases capable of mainly oxyfunctionalizations constitute the peroxidase–peroxygenase superfamily. Our representative reconstruction revealed a high diversity but also well conserved sequence motifs within rather short protein molecules. Corresponding genes coding for heme thiolate peroxidases with peroxygenase activity were detected only among various lower eukaryotes. Most of them originate in the kingdom of fungi. However, it seems to be obvious that these htp genes are present not only among fungal Dikarya but they are distributed also in the clades of Mucoromycota and Chytridiomycota with deep ancient evolutionary origins. Moreover, there is also a distinct clade formed mainly by phytopathogenic Stramenopiles where even HTP sequences from Amoebozoa can be found. The phylogenetically older heme peroxygenases are mostly intracellular, but the later evolution gave a preference for secretory proteins mainly among pathogenic fungi. We also analyzed the conservation of typical structural features within various resolved clades of peroxygenases. The presented output of our phylogenetic analysis may be useful in the rational design of specifically modified peroxygenases for various future biotech applications. Full article
(This article belongs to the Special Issue Dream Peroxygenases)
Show Figures

Graphical abstract

14 pages, 1963 KiB  
Article
Hydropersulfides (RSSH) Outperform Post-Conditioning and Other Reactive Sulfur Species in Limiting Ischemia–Reperfusion Injury in the Isolated Mouse Heart
by Blaze M. Pharoah, Vinayak S. Khodade, Alexander Eremiev, Eric Bao, Ting Liu, Brian O’Rourke, Nazareno Paolocci and John P. Toscano
Antioxidants 2022, 11(5), 1010; https://doi.org/10.3390/antiox11051010 - 20 May 2022
Cited by 15 | Viewed by 3168
Abstract
Hydrogen sulfide (H2S) exhibits protective effects in cardiovascular disease such as myocardial ischemia/reperfusion (I/R) injury, cardiac hypertrophy, and atherosclerosis. Despite these findings, its mechanism of action remains elusive. Recent studies suggest that H2S can modulate protein activity through redox-based [...] Read more.
Hydrogen sulfide (H2S) exhibits protective effects in cardiovascular disease such as myocardial ischemia/reperfusion (I/R) injury, cardiac hypertrophy, and atherosclerosis. Despite these findings, its mechanism of action remains elusive. Recent studies suggest that H2S can modulate protein activity through redox-based post-translational modifications of protein cysteine residues forming hydropersulfides (RSSH). Furthermore, emerging evidence indicates that reactive sulfur species, including RSSH and polysulfides, exhibit cardioprotective action. However, it is not clear yet whether there are any pharmacological differences in the use of H2S vs. RSSH and/or polysulfides. This study aims to examine the differing cardioprotective effects of distinct reactive sulfur species (RSS) such as H2S, RSSH, and dialkyl trisulfides (RSSSR) compared with canonical ischemic post-conditioning in the context of a Langendorff ex-vivo myocardial I/R injury model. For the first time, a side-by-side study has revealed that exogenous RSSH donation is a superior approach to maintain post-ischemic function and limit infarct size when compared with other RSS and mechanical post-conditioning. Our results also suggest that RSSH preserves mitochondrial respiration in H9c2 cardiomyocytes exposed to hypoxia-reoxygenation via inhibition of oxidative phosphorylation while preserving cell viability. Full article
Show Figures

Figure 1

20 pages, 3584 KiB  
Article
Diclofenac: A Nonsteroidal Anti-Inflammatory Drug Inducing Cancer Cell Death by Inhibiting Microtubule Polymerization and Autophagy Flux
by Soohee Choi, Suree Kim, Jiyoung Park, Seung Eun Lee, Chaewon Kim and Dongmin Kang
Antioxidants 2022, 11(5), 1009; https://doi.org/10.3390/antiox11051009 - 20 May 2022
Cited by 13 | Viewed by 6770
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug (NSAID) used to treat inflammatory diseases induces cellular toxicity by increasing the production of reactive oxygen species (ROS) and impairing autophagic flux. In this study, we investigated whether diclofenac induces cancer cell death and the mechanism by which [...] Read more.
Diclofenac, a nonsteroidal anti-inflammatory drug (NSAID) used to treat inflammatory diseases induces cellular toxicity by increasing the production of reactive oxygen species (ROS) and impairing autophagic flux. In this study, we investigated whether diclofenac induces cancer cell death and the mechanism by which diclofenac causes cell death. We observed that diclofenac induces mitotic arrest with a half-maximal effective concentration of 170 μM and cell death with a half-maximal lethal dose of 200 µM during 18-h incubation in HeLa cells. Cellular microtubule imaging and in vitro tubulin polymerization assays demonstrated that treatment with diclofenac elicits microtubule destabilization. Autophagy relies on microtubule-mediated transport and the fusion of autophagic vesicles. We observed that diclofenac inhibits both phagophore movement, an early step of autophagy, and the fusion of autophagosomes and lysosomes, a late step of autophagy. Diclofenac also induces the fragmentation of mitochondria and the Golgi during cell death. We found that diclofenac induces cell death further in combination with 5-fuorouracil, a DNA replication inhibitor than in single treatment in cancer cells. Pancreatic cancer cells, which have high basal autophagy, are particularly sensitive to cell death by diclofenac. Our study suggests that microtubule destabilization by diclofenac induces cancer cell death via compromised spindle assembly checkpoints and increased ROS through impaired autophagy flux. Diclofenac may be a candidate therapeutic drug in certain type of cancers by inhibiting microtubule-mediated cellular events in combination with clinically utilized nucleoside metabolic inhibitors, including 5-fluorouracil, to block cancer cell proliferation. Full article
(This article belongs to the Special Issue Redox Balance and Autophagy)
Show Figures

Figure 1

13 pages, 1830 KiB  
Article
Oxidative Stress, HSP70/HSP90 and eNOS/iNOS Serum Levels in Professional Divers during Hyperbaric Exposition
by Jakub Szyller, Mariusz Kozakiewicz, Piotr Siermontowski and Dorota Kaczerska
Antioxidants 2022, 11(5), 1008; https://doi.org/10.3390/antiox11051008 - 20 May 2022
Cited by 6 | Viewed by 2298
Abstract
Heat shock proteins (HSPs) have protective effects against oxidative stress and decompression sickness. Nitric oxide may reduce bubble formation during decompression and its activity is regulated by HSPs. A simulated dive can cause the HSP response. The aim of this study was to [...] Read more.
Heat shock proteins (HSPs) have protective effects against oxidative stress and decompression sickness. Nitric oxide may reduce bubble formation during decompression and its activity is regulated by HSPs. A simulated dive can cause the HSP response. The aim of this study was to describe the effect of simulated dives on the antioxidant system, HSPs, and nitric oxide synthase response and demonste the relationship between the concentration of HSPs and the intensification of oxidative stress. A total of 20 healthy professional divers took part in training, consisting of simulated dry dives in a hyperbaric chamber and split into experiment I (30 m exposure, 400 kPa) and experiment II (60 m exposure, 700 kPa) over 24 h. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and the concentrations of malondialdehyde (MDA), heat shock protein 70 (HSP70), heat shock protein 90 (HSP90), endothelial (eNOS) and inducible (iNOS) nitric oxide synthase were measured. Increases in the activity of SOD and MDA concentration were demonstrated. The activity of GPx depended on the dive profile. The HSP70 serum level in both experiments was significantly lower after the dives. The mean HSP90 level was significantly higher after the simulated dive at 60 m. A significant relationship between HSP concentration and SOD/GPx activity was demonstrated. eNOS concentration increased after 60 m exposure. No change in iNOS concentration was observed. In conclusions, the simulated dive significantly affected the antioxidant system, heat shock protein expression and nitric oxide synthase; however, the changes depend on the diving conditions. There is a relationship between the expression of HSPs and the intensity of oxidative stress. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

12 pages, 2297 KiB  
Article
Lipid-Coated Nanocrystals as a Tool for Improving the Antioxidant Activity of Resveratrol
by Monica Argenziano, Irfan Aamer Ansari, Elisabetta Muntoni, Rita Spagnolo, Anna Scomparin and Roberta Cavalli
Antioxidants 2022, 11(5), 1007; https://doi.org/10.3390/antiox11051007 - 20 May 2022
Cited by 8 | Viewed by 2556
Abstract
Trans-resveratrol, a polyphenolic phytoalexin found in various plant sources, has been the focus of increasing attention in recent years because of its role in the prevention of many human diseases, and particularly because of its antioxidant properties. However, the in vivo effect [...] Read more.
Trans-resveratrol, a polyphenolic phytoalexin found in various plant sources, has been the focus of increasing attention in recent years because of its role in the prevention of many human diseases, and particularly because of its antioxidant properties. However, the in vivo effect of trans-resveratrol after oral administration is negligible when compared to its efficacy in vitro, due to its low bioavailability. Moreover, it presents stability issues as it is an extremely photosensitive compound when exposed to light. This work aims to develop lipid-coated nanocrystals in order to improve the antioxidant activity and bioavailability of trans-resveratrol. Lipid-coated trans-resveratrol nanocrystals with sizes lower than 500 nm, spherical shapes and smooth surfaces were obtained via a milling method. They showed a faster dissolution rate than the coarse trans-resveratrol powder. The antioxidant properties of trans-resveratrol were not impaired by the milling process. The in vivo pharmacokinetics of lipid-coated trans-resveratrol nanocrystals were evaluated after oral administration to rats, with a commercial Phytosome® formulation being used for comparison purposes. An increase in the trans-resveratrol area under the curve was observed and the lipid-coated nanocrystal formulation led to an enhancement in the oral bioavailability of the compound. Full article
Show Figures

Graphical abstract

20 pages, 2677 KiB  
Article
Phytochemical Characterization, Antioxidant and Anti-Proliferative Properties of Rubia cordifolia L. Extracts Prepared with Improved Extraction Conditions
by Ravikiran B. Humbare, Joyita Sarkar, Anjali A. Kulkarni, Mugdha G. Juwale, Sushil H. Deshmukh, Dinesh Amalnerkar, Manohar Chaskar, Maria C. Albertini, Marco B. L. Rocchi, Swapnil C. Kamble and Seeram Ramakrishna
Antioxidants 2022, 11(5), 1006; https://doi.org/10.3390/antiox11051006 - 20 May 2022
Cited by 8 | Viewed by 3759
Abstract
Rubia cordifolia L. (Rubiaceae) is an important plant in Indian and Chinese medical systems. Extracts prepared from the root, stem and leaf have been used traditionally for the management of various diseases. Some of the known effects are anti-inflammation, neuroprotection, anti-proliferation, immunomodulation and [...] Read more.
Rubia cordifolia L. (Rubiaceae) is an important plant in Indian and Chinese medical systems. Extracts prepared from the root, stem and leaf have been used traditionally for the management of various diseases. Some of the known effects are anti-inflammation, neuroprotection, anti-proliferation, immunomodulation and anti-tumor. A comparative account of the extracts derived from different organs that lead to the identification of the most suitable solvent is lacking. We explored the presence of phytochemicals, antioxidant activity and anti-proliferative properties of a variety of solvent-based extracts of root, and methanol extracts of stem and leaf of R. cordifolia L. The antioxidant potential was determined by DPPH, hydrogen peroxide, nitric oxide and total antioxidant assays. The anti-proliferative nature was evaluated by MTT assay on HeLa, ME-180 and HepG2 cells. The composition of the extracts was determined by UPLC-UV-MS. We found that the root extracts had the presence of higher amounts of antioxidants over the stem and leaf extracts. The root extracts prepared in methanol exhibited the highest cytotoxicity in HepG2 cells. The main compounds identified through UPLC-UV-MS of the methanol extract give credibility to the previous results. Our comprehensive study corroborates the preference given to the root over the stem and leaf for extract preparation. In conclusion, we identified the methanol extract of the root to be the most suited to have bioactivity with anti-cancer potential. Full article
(This article belongs to the Special Issue The 10th Anniversary of Antioxidants: Past, Present and Future)
Show Figures

Figure 1

34 pages, 2789 KiB  
Review
Metabolic Shades of S-D-Lactoylglutathione
by Miklós Péter Kalapos, Cinzia Antognelli and Lidia de Bari
Antioxidants 2022, 11(5), 1005; https://doi.org/10.3390/antiox11051005 - 20 May 2022
Cited by 9 | Viewed by 3745
Abstract
S-D-lactoylglutathione (SDL) is an intermediate of the glutathione-dependent metabolism of methylglyoxal (MGO) by glyoxalases. MGO is an electrophilic compound that is inevitably produced in conjunction with glucose breakdown and is essentially metabolized via the glyoxalase route. In the last decades, MGO metabolism and [...] Read more.
S-D-lactoylglutathione (SDL) is an intermediate of the glutathione-dependent metabolism of methylglyoxal (MGO) by glyoxalases. MGO is an electrophilic compound that is inevitably produced in conjunction with glucose breakdown and is essentially metabolized via the glyoxalase route. In the last decades, MGO metabolism and its cytotoxic effects have been under active investigation, while almost nothing is known about SDL. This article seeks to fill the gap by presenting an overview of the chemistry, biochemistry, physiological role and clinical importance of SDL. The effects of intracellular SDL are investigated in three main directions: as a substrate for post-translational protein modifications, as a reservoir for mitochondrial reduced glutathione and as an energy currency. In essence, all three approaches point to one direction, namely, a metabolism-related regulatory role, enhancing the cellular defense against insults. It is also suggested that an increased plasma concentration of SDL or its metabolites may possibly serve as marker molecules in hemolytic states, particularly when the cause of hemolysis is a disturbance of the pay-off phase of the glycolytic chain. Finally, SDL could also represent a useful marker in such metabolic disorders as diabetes mellitus or ketotic states, in which its formation is expected to be enhanced. Despite the lack of clear-cut evidence underlying the clinical and experimental findings, the investigation of SDL metabolism is a promising field of research. Full article
(This article belongs to the Special Issue Redox Biology of Glyoxalases)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop