Effect of Diet and Essential Oils on the Fatty Acid Composition, Oxidative Stability and Microbiological Profile of Marchigiana Burgers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Preparation of the Burgers
2.3. Meat Quality: Chemical Analyses, pH and Colour Measurements
2.4. Burgers Oxidative Stability: Thiobarbituric-Acid-Reactive Substances (TBARS), Ferric Reducing Antioxidant Power (FRAP) and Vitamin E
2.5. Fatty Acid Analysis
2.6. Microbiological Analysis
2.7. Statistical Analysis
3. Results
3.1. Beef Burger Characteristics: Chemical Analyses, pH, Color Measurements and Oxidative Stability
3.2. Microbiological Profile
3.3. Fatty Acid Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization. World Livestock 2011—Livestock in Food Security. Rome, Italy. 2011. FAO. Available online: http://www.fao.org/docrep/014/i2373e/i2373e00.htm (accessed on 20 January 2022).
- Leclercq, C.; Arcella, D.; Piccinelli, R.; Sette, S.; Le Donne, C.; Turrini, A. The Italian National Food Consumption Survey INRAN-SCAI 2005–06: Main Results in Terms of Food Consumption. Pub. Health Nutr. 2009, 12, 2504–2532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellini, G.; Lipizzi, F.; Cosentino, F.; Giordano, P. Atlas of Italian Agriculture: 6th Census of Agriculture; National Institute of Statistics: Rome, Italy, 2013. [Google Scholar]
- Nordic Council. Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity, 5th ed.; Nordic Co-Operation: Copenhagen, Denmark, 2014; p. 629. [Google Scholar]
- Flowers, S.; McFadden, B.R.; Carr, C.C.; Mateescu, R.G. Consumer preferences for beef with improved nutrient profile. J. Anim. Sci. 2019, 97, 4699–4709. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, T.; de Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommandations. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef]
- Ashraful, I.; Nurul, M.; Shafayet, A.; Siddiqui, A.; Hossain, P.; Farhana Sultana, F.; Kabir, R. Trans fatty acids and lipid profile: A Serious Risk Factor to Cardiovascular Disease, Cancer and Diabetes Diabetes & Metabolic Syndrome. Clinic. Res. Rev. 2019, 13, 1643–1647. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Giaretta, E.; Mordenti, A.; Palmonari, A.; Brogna, N.; Canestrari, G.; Belloni, P.; Cavallini, D.; Mammi, L.; Cabbri, R.; Formigoni, A. NIRs calibration models for chemical composition and fatty acid families of raw and freeze-dried beef: A comparison. J. Food Comp. Anal. 2019, 83, 103257. [Google Scholar] [CrossRef]
- Fusaro, I.; Giammarco, M.; Chincarini, M.; Vaintrub, M.O.; Palmonari, A.; Mammi, L.M.E.; Formigoni, A.; Giuseppe, L.; Vignola, G. Effect of ewe diet on milk and muscle fatty acid composition of suckling lambs of the protected geographical origin abbacchio romano. Animals 2020, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cortés, P.; Bach, A.; Luna, P.; Juárez, M.; Fuente, M.A. Effects of extruded linseed supplementation on n-3 fatty acids and conjugated linoleic acid in milk and cheese from ewes. J. Dairy Sci. 2009, 92, 4122–4134. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, X.S.M.; Palma, A.S.V.; Reis, B.R.; Franco, C.S.R.; Marconi, A.P.S.; Shiozaki, F.A.; Reis, L.G.; Salles, M.S.V.; Netto, A.S. Inclusion of soybean and linseed oils in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet. PLoS ONE 2021, 16, e0246357. [Google Scholar] [CrossRef]
- Marino, R.; Della Malva, A.; Caroprese, M.; De Palo, P.; Santillo, A.; Sevi, A.; Albenzio, M. Effects of whole linseed supplementation and treatment duration on fatty acid profile and endogenous bioactive compounds of beef muscle. Animal 2019, 13, 444–452. [Google Scholar] [CrossRef]
- Lasagna, E.; Ceccobelli, S.; Di Lorenzo, P.; Albera, A.; Filippini, F.; Sarti, F.M.; Panella, F.; Di Stasio, L. Comparison of four italian beef cattle breeds by means of functional genes. Ital. J. Anim. Sci. 2015, 14, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Wangang Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paparella, A.; Mazzarrino, G.; Chaves-López, C.; Rossi, C.; Sacchetti, G.; Guerrieri, O.; Serio, A. Chitosan boosts the antimicrobial activity of Origanum vulgare essential oil in modified atmosphere packaged pork. Food Microbiol. 2016, 59, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Pelaes Vital, A.C.; Guerrero, A.; Guarnido, P.; Severino, I.C.; Olleta, J.L.; Blasco, M.; Prado, I.N.; Maggi, F.; Campo, M.M. Effect of active-edible coating and essential oils on lamb patties oxidation during display. Foods 2021, 10, 263. [Google Scholar] [CrossRef]
- Fusaro, I.; Cavallini, D.; Giammarco, M.; Manetta, A.C.; Martuscelli, M.; Mammi, L.M.E.; Lanzoni, L.; Formigoni, A.; Vignola, G. Oxidative status of Marchigiana beef enriched in n-3 fatty acids and vitamin E, treated with a blend of oregano and rosemary essential oils. Front. Vet. Sci. 2021, 8, 662079. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2002. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Lock, A.L.; Teles, B.M.; Perfield, J.W.; Bauman, D.E.; Sinclair, L.A. A conjugated linoleic acid supplement containing trans-10, cis-12 reduces milk fat synthesis in lactating sheep. J. Dairy Sci. 2006, 89, 1525–1532. [Google Scholar] [CrossRef] [Green Version]
- Zequan, X.; Zirong, W.; Jiankun, L.; Xin, M.; Hopkins, D.L.; Holman, B.W.B.; Bekhit, A.E.-D.A. The effect of freezing time on the quality of normal and pale, soft and exudative (PSE)-like pork. Meat Sci. 2019, 152, 1–7. [Google Scholar] [CrossRef]
- Inserra, L.; Priolo, A.; Biondi, L.; Lanza, M.; Bognanno, M.; Gravador, R. Dietary citrus pulp reduces lipid oxidation in lamb meat. Meat Sci. 2014, 96, 1489–1493. [Google Scholar] [CrossRef]
- Szydłowska-Czerniaka, A.; Bartkowiak-BrodabIgor, I.; GyörgyKarlovitsd, K.; Szłyka, E. Antioxidant capacity, total phenolics, glucosinolates and colour parameters of rapeseed cultivars. Food Chem. 2011, 127, 556–563. [Google Scholar] [CrossRef]
- Koprivnjak, J.F.; Lum, K.R.; Sisak, M.M.; Saborowski, R. Determination of α-, γ(+β)-, and δ-tocopherols in a variety of liver tissues by reverse-phase high pressure liquid chromatography. Comp. Bioch. Phys. 1996, 113, 143–148. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Frega, N.; Lerker, G. Rapid methods for the quality control of food oils. Riv. Ital. Sost. Gr. 1984, 61, 385–391. [Google Scholar]
- Vannice, G.; Rasmussen, H. Position of the academy of nutrition and dietetics: Dietary Fatty Acids for Healthy Adults. J. Acad. Nutr. Diet. 2014, 114, 136–153. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S.; Assaad, B.; Poston, W.C. Tissue omega-6/omega-3 fatty acid ratio and risk for coronary artery disease. Am. J. Cardiol. 2006, 98, 19–26. [Google Scholar] [CrossRef]
- Mordenti, A.L.; Brogna, N.; Canestrari, G.; Bonfante, E.; Eusebi, S.; Mammi, L.M.E.; Giaretta, E.; Formigoni, A. Effects of breed and different lipid dietary supplements on beef quality. Anim. Sci. J. 2019, 90, 619–627. [Google Scholar] [CrossRef]
- Cavallini, D.; Mammi, L.M.E.; Fustini, M.; Palmonari, A.; Heinrichs, A.J.; Formigoni, A. Effects of ad libitum or restricted access to total mixed ration with supplemental long hay on production, intake, and rumination. J. Dairy Sci. 2018, 101, 10922–10928. [Google Scholar] [CrossRef] [Green Version]
- Juárez, M.; Dugan, M.E.R.; Aldai, N.; Basarab, J.A.; Baron, V.S.; McAllister, T.A.; Aalhus, J.L. Beef quality attributes as affected by increasing the intramuscular levels of vitamin E and omega-3 fatty acids. Meat Sci. 2012, 90, 764–769. [Google Scholar] [CrossRef]
- Berdahl, D.R.; McKeague, J. Rosemary sage extracts as antioxidants for food preservation. In Handbook of Antioxidants for Food Preservation; Shahidi, F., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 177–217. [Google Scholar] [CrossRef]
- Ruiz-Hernández, K.; Sosa-Morales, M.R.; Cerón-García, A.; Gómez-Salazar, J.A. Physical, Chemical and Sensory Changes in Meat and Meat Products Induced by the Addition of Essential Oils: A Concise Review. Food Rev. Int. 2021, 8, 1–30. [Google Scholar] [CrossRef]
- Delosièrea, M.; Duranda, D.; Bourguetb, C.; Terlouw, E.M.C. Lipid oxidation, pre-slaughter animal stress and meat packaging: Can dietary supplementation of vitamin E and plant extracts come to the rescue? Food Chem. 2020, 309, 125668. [Google Scholar] [CrossRef]
- Albertí, P.; Campo, M.M.; Beriain, M.J.; Ripoll, G.; Sañudo, C. Effect of including whole linseed and vitamin E in the diet of young bulls slaughtered at two fat covers on the sensory quality of beef packaged in two different packaging systems. J. Sci. Food Agric. 2017, 97, 753–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellésa, M.; Lealb, L.N.; Díaza, V.; Alonsoa, V.; Roncalésa, P.; Beltrána, J.A. Effect of dietary vitamin E on physicochemical and fatty acid stability of fresh and thawed lamb. Food Chem. 2018, 239, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R.; Mancini, R.A. Role of Mitochondria in Beef Color: A Review. Meat Musc. Biol. 2018, 2, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Rodríguez, J.; Urrutia, O.; Lobón, S.; Guillermo Ripoll, G.; Bertolín, J.R.; Joy, M. Insights into the role of major bioactive dietary nutrients in lamb meat quality: A Review. J. Anim. Sci. Biotechnol. 2020, 13, 20. [Google Scholar] [CrossRef]
- Bernardi, D.M.; Bertol, T.M.; Pflanzer, S.B.; Sgarbieri, V.C.; Pollonio, M.A.R. ω-3 in meat products: Benefits and Effects on Lipid Oxidative Stability. J. Sci. Food Agric. 2016, 96, 2620–2634. [Google Scholar] [CrossRef]
- De Palo, P.; Maggiolino, A.; Centoducati, N.; Tateo, A. Effects of different milk replacers on carcass traits, meat quality, meat color and fatty acids profile of dairy goat kids. Small Rumin. Res. 2015, 131, 6–11. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Pugine, S.M.P.; Lima, C.G.; Lorenzo, J.M.; de Melo, M.P. Evaluation of oxidative stability of lamb burger with Origanum vulgare extract. Food Chem. 2017, 233, 101–109. [Google Scholar] [CrossRef]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic Bases and Control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef]
- Idamokoro, E.M.; Falowo, A.B.; Oyeagu, C.E.; Afolayan, A.J. Multifunctional activity of vitamin E in animal and animal products: A review. Anim. Sci. J. 2020, 91, e13352. [Google Scholar] [CrossRef]
- Wang, Y.; Domínguez, R.; Lorenzo, J.M.; Bohrer, B.M. The Relationship between Lipid Content in Ground Beef Patties with Rate of Discoloration and Lipid Oxidation during Simulated Retail Display. Foods 2021, 10, 1982. [Google Scholar] [CrossRef]
- Kaur, R.; Gupta, T.B.; Bronlund, J.; Kaur, L. The potential of rosemary as a functional ingredient for meat products—A review. Food Rev. 2021, 9, 4517–4528. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Santos, M.J.M.C.; Silva, L.K.R.; Pereira, L.C.L.; Santos, I.A.; Lannes, S.C.S.; Silva, M.V. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, M.A. Potential of essential oils for poultry and pigs. Anim. Nutr. 2018, 4, 179–186. [Google Scholar] [CrossRef]
- Pelaes Vital, A.C.; Guerrero, A.; Barbosa Carvalho Kempinski, E.M.; de Oliveira Monteschio, J.; Sary, C.; Ramos, T.R.; MarCampo, M.; do Prado, I.N. Consumer profile and acceptability of cooked beef steaks with edible and active coating containing oregano and rosemary essential oils. Meat Sci. 2018, 143, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Pateiro, M.; Munekata, P.E.S.; Sant’Ana, A.S.; Domínguez, R.; Rodríguez-Lázaro, D.; Lorenzo, J.M. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int. J. Food Microbiol. 2021, 16, 337. [Google Scholar] [CrossRef]
- Iulietto, M.F.; Sechi, P.; Borgogni, E.; Cenci-Goga, B.T. Meat spoilage: A Critical Review of a Neglected Alteration due to Ropy slime Producing Bacteria. Ital. J. Anim. Sci. 2015, 14, 315–326. [Google Scholar] [CrossRef]
- Yang, S.L.; Bu, D.P.; Wang, J.Q.; Hu, Z.Y.; Li, D.; Wei, H.Y.; Zhou, L.Y.; Loor, J.J. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal 2009, 3, 1562–1569. [Google Scholar] [CrossRef] [Green Version]
- Ouattara, B.; Simard, R.E.; Holley, R.A.; Piette, G.J.P.; Bégin, A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int. J. Food Microb. 1997, 37, 155–162. [Google Scholar] [CrossRef]
- Serio, A.; Chiarini, M.; Tettamanti, E.; Paparella, A. Electronic paramagnetic resonance investigation of the activity of Origanum vulgare L. essential oil on the Listeria monocytogenes membrane. Lett. Appl. Microbiol. 2010, 51, 149–157. [Google Scholar] [CrossRef]
- Skandamis, P.N.; Nychas, G.J.E. Preservation of fresh meat with active and modified atmosphere packaging conditions. Int. J. Food Microbiol. 2010, 79, 35–45. [Google Scholar] [CrossRef]
- Albertí, P.; Gómez, I.; Mendizabal, J.A.; Ripoll, G.; Barahona, M.; Sarriés, V.; Insausti, K.; Beriain, M.J.; Purroy, A.; Realini, C. Effect of whole linseed and rumen-protected conjugated linoleic acid enriched diets on feedlot performance, carcass characteristics, and adipose tissue development in young Holstein bulls. Meat Sci. 2013, 94, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Renna, M.; Brugiapaglia, A.; Zanardi, E.; Prandini, A.; Moschini, M.; Sigolo, S. Fatty acid profile, meat quality and flavour acceptability of beef from double-muscled Piemontese young bulls fed ground flaxseed. Ital. J. Anim. Sci. 2019, 18, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Morittu, V.M.; Spina, A.A.; Iommelli, P.; Poerio, A.; Oliverio, F.V.; Britti, D.; Tudisco, R. Effect of Integration of Linseed and Vitamin E in Charolaise × Podolica Bulls’ Diet on Fatty Acids Profile, Beef Color and Lipid Stability. Agriculture 2021, 11, 1032. [Google Scholar] [CrossRef]
- Mordenti, A.L.; Brogna, N.; Merendi, F.; Formigoni, A.; Sardi, L.; Cardenia, V.; Rodriguez-Estrada, M.T. Effect of dietary inclusion of different lipid supplements on quality and oxidative susceptibility of beef meat. Ital. J. Anim. Sci. 2018, 18, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Pottier, J.; Focant, M.; Debier, C.; De Buysser, G.; Goffe, C.; Mignolet, E.; Froidmont, E.; Larondelle, Y. Effect of Dietary Vitamin E on Rumen Biohydrogenation Pathways and Milk Fat Depression in Dairy Cows Fed High-Fat Diets. J. Dairy Sci. 2006, 89, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, E.H.; Santos, N.W.; Machado, E.; Agustinho, B.C.; Pereira, L.M.; De Aguiar, S.C.; Franzolin, R.; Gasparino, E.; Santos, G.T.; Zeoula, L.M. Effects of dairy cow diets supplied with flaxseed oil and propolis extract, with or without vitamin E, on the ruminal microbiota, biohydrogenation, and digestion. Anim. Feed Sci. Technol. 2018, 241, 163–172. [Google Scholar] [CrossRef]
- Klieve, A.V.; Hennessy, D.; Ouwerkerk, D.; Forster, R.J.; Mackie, R.I.; Attwood, G.T. Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. J. Appl. Microbiol. 2003, 95, 621–630. [Google Scholar] [CrossRef]
- Griinari, J.M.; Corl, B.A.; Lacy, S.H.; Chouinard, P.Y.; Nurmela, K.V.V.; Bauman, D.E. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by 19-desaturase. J. Nutr. 2000, 130, 2285–2291. [Google Scholar] [CrossRef]
Dietary Ingredients (Kg) | C | L | LE |
---|---|---|---|
Dehydrated Alfa Hay | 2.86 | 2.85 | 2.85 |
Straw | 1.14 | 1.14 | 1.14 |
Corn meal | 4.57 | 4.56 | 4.56 |
Extruded linseed | 0.00 | 0.97 | 0.97 |
Beans | 1.14 | 0.46 | 0.46 |
Cereal bran | 2.29 | 2.28 | 2.28 |
Hydrogenate fat | 0.29 | 0.00 | 0.00 |
Sodium chloridae | 0.06 | 0.06 | 0.06 |
Sodium bicarbonate | 0.11 | 0.11 | 0.11 |
Vitamin E | 0.00 | 0.00 | 0.02 |
Chemical composition (% DM) | |||
Dry matter | 87.52 | 87.79 | 87.79 |
Crude fiber | 6.82 | 6.86 | 7.91 |
Crude protein | 13.87 | 13.91 | 13.91 |
Ether Extract | 6.84 | 6.84 | 7.06 |
Ash | 2.18 | 2.15 | 2.25 |
Fatty Acids Composition (% total fatty acids) | |||
SFA | 51.16 | 14.84 | 16.72 |
MUFA | 15.75 | 19.18 | 18.76 |
PUFA | 33.09 | 65.98 | 64.52 |
Diet | |||||
---|---|---|---|---|---|
C | L | LE | p-Value | SEM | |
Moisture (%) | 74.79 | 75.43 | 75.45 | 0.72 | 9.33 |
Protein (%) | 21.70 | 21.05 | 21.02 | 0.66 | 3.32 |
Fat (%) | 2.29 | 2.36 | 2.35 | 0.98 | 0.24 |
Ash (%) | 1.22 | 1.16 | 1.18 | 0.68 | 0.15 |
Diet | EO | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | L | LE | O | WO | Diet | EO | Time | D*EO | D*T | EO*T | SEM | |
pH | 5.70 A | 5.60 C | 5.67 B | 5.47 b | 5.65 a | <0.01 | 0.03 | <0.01 | 0.67 | 0.54 | 0.55 | 0.09 |
TBARS | 0.47 ab | 0.60 a | 0.39 b | 0.43 B | 0.55 A | 0.05 | <0.01 | <0.01 | 0.41 | <0.01 | <0.01 | 0.01 |
Vitamin E mg/kg | 0.64 c | 0.81 b | 1.38 a | 1.12 | 1.11 | 0.01 | 0.56 | 0.74 | 0.13 | 0.78 | 0.54 | 0.05 |
FRAP µmolFe/g | 0.56 b | 0.55 b | 0.74 a | 0.67 b | 0.52 a | 0.03 | 0.05 | 0.51 | 0.24 | 0.56 | 0.38 | 1.02 |
L | 43.85 B | 45.29 A | 43.40 B | 44.68 A | 43.68 B | <0.01 | 0.77 | <0.01 | 0.18 | <0.01 | 0.12 | 1.05 |
a | 19.39 B | 17.83 C | 20.68 A | 19.27 | 19.34 | <0.01 | 0.92 | <0.01 | 0.38 | <0.01 | 0.57 | 1.18 |
b | 12.65 A | 11.63 B | 12.90 A | 12.36 | 12.43 | <0.01 | 0.70 | <0.01 | 0.64 | <0.01 | 0.88 | 1.21 |
Diet | EO | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | L | LE | O | WO | Diet | EO | Time | D*EO | D*T | EO*T | SEM | |
SFA | 956.99 a | 721.53 ab | 679.51 b | 766.78 | 705.24 | 0.05 | 0.06 | 0.27 | 0.15 | 0.58 | 0.60 | 1.06 |
MUFA | 595.53 b | 642.10 ab | 699.22 a | 681.75 | 609.48 | 0.05 | 0.17 | 0.14 | 0.16 | 0.45 | 0.98 | 0.90 |
PUFA | 203.22 b | 226.48 ab | 253.63 a | 221.31 | 234.25 | 0.05 | 0.40 | 0.42 | 0.90 | 0.33 | 0.45 | 1.26 |
n-3 PUFA | 31.70 C | 49.43 B | 68.40 A | 52.16 | 47.52 | 0.01 | 0.15 | 0.14 | 0.56 | 0.20 | 0.68 | 0.14 |
n-6 PUFA | 121.88 | 125.00 | 121.54 | 122.89 | 122.72 | 0.68 | 0.96 | 0.68 | 0.57 | 0.06 | 0.68 | 1.13 |
CLA | 5.79 C | 11.22 B | 15.60 A | 11.90 | 10.84 | 0.01 | 0.06 | 0.58 | 0.55 | 0.06 | 0.27 | 0.94 |
I-HARRIS | 7.25 b | 8.85 a | 8.21 a | 7.80 | 8.40 | 0.05 | 0.42 | 0.10 | 0.64 | 0.42 | 0.27 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusaro, I.; Cavallini, D.; Giammarco, M.; Serio, A.; Mammi, L.M.E.; De Matos Vettori, J.; Lanzoni, L.; Formigoni, A.; Vignola, G. Effect of Diet and Essential Oils on the Fatty Acid Composition, Oxidative Stability and Microbiological Profile of Marchigiana Burgers. Antioxidants 2022, 11, 827. https://doi.org/10.3390/antiox11050827
Fusaro I, Cavallini D, Giammarco M, Serio A, Mammi LME, De Matos Vettori J, Lanzoni L, Formigoni A, Vignola G. Effect of Diet and Essential Oils on the Fatty Acid Composition, Oxidative Stability and Microbiological Profile of Marchigiana Burgers. Antioxidants. 2022; 11(5):827. https://doi.org/10.3390/antiox11050827
Chicago/Turabian StyleFusaro, Isa, Damiano Cavallini, Melania Giammarco, Annalisa Serio, Ludovica M. E. Mammi, Julio De Matos Vettori, Lydia Lanzoni, Andrea Formigoni, and Giorgio Vignola. 2022. "Effect of Diet and Essential Oils on the Fatty Acid Composition, Oxidative Stability and Microbiological Profile of Marchigiana Burgers" Antioxidants 11, no. 5: 827. https://doi.org/10.3390/antiox11050827
APA StyleFusaro, I., Cavallini, D., Giammarco, M., Serio, A., Mammi, L. M. E., De Matos Vettori, J., Lanzoni, L., Formigoni, A., & Vignola, G. (2022). Effect of Diet and Essential Oils on the Fatty Acid Composition, Oxidative Stability and Microbiological Profile of Marchigiana Burgers. Antioxidants, 11(5), 827. https://doi.org/10.3390/antiox11050827