Effects of Stocking Density on Growth Performance, Antioxidant Status, and Meat Quality of Finisher Broiler Chickens under High Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Growth Performance and Sample Collection
2.3. Rectal Temperature and Respiration Rate
2.4. Blood Biochemistry, SOD Activity, and Corticosterone Concentration
2.5. Liver Antioxidant Status
2.6. Breast Meat Antioxidant Status
2.7. Breast Meat Quality
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Rectal Temperature and Respiration Rate
3.3. Blood Biochemistry, SOD Activity, and Corticosterone Concentration
3.4. Liver Antioxidant Status
3.5. Breast Meat Antioxidant Status
3.6. Breast Meat Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, H.; Xu, B.; Li, W.; Wei, F.; Kim, W.K.; Chen, C.; Sun, Q.; Fu, C.; Wang, G.; Li, S. Effects of alpha-lipoic acid on the behavior, serum indicators, and bone quality of broilers under stocking density stress. Poult. Sci. 2020, 99, 4653–4661. [Google Scholar] [CrossRef] [PubMed]
- Gregory, N. How climatic changes could affect meat quality. Int. Food Res. J. 2010, 43, 1866–1873. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.; Yang, L.; Chen, X.; Jiang, R.; Jin, S.; Geng, Z. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult. Sci. 2017, 96, 4325–4332. [Google Scholar] [CrossRef]
- Bhadauria, P.; Kataria, J.; Majumdar, S.; Bhanja, S. Impact of hot climate on poultry production system—A review. J. Poult. Sci. Technol. 2014, 2, 43–56. [Google Scholar]
- Mohammed, A.; Jacobs, J.; Murugesan, G.; Cheng, H. Effect of dietary synbiotic supplement on behavioral patterns and growth performance of broiler chickens reared under heat stress. Poult. Sci. 2018, 97, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Cramer, T.; Kim, H.; Chao, Y.; Wang, W.; Cheng, H.; Kim, Y. Effects of probiotic (Bacillus subtilis) supplementation on meat quality characteristics of breast muscle from broilers exposed to chronic heat stress. Poult. Sci. 2018, 97, 3358–3368. [Google Scholar] [CrossRef] [PubMed]
- Na, J.-C.; HwangBoa, J.; Kim, J.-H.; Kang, H.-G.; Kim, M.-J.; Kim, D.-W.; Choi, H.-C.; Hong, E.-C. Performance and carcass ratio of large-type female broiler at different stocking densities. Korean J. Poult. Sci. 2012, 39, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Goo, D.; Kim, J.H.; Park, G.H.; Delos Reyes, J.B.; Kil, D.Y. Effect of heat stress and stocking density on growth performance, breast meat quality, and intestinal barrier function in broiler chickens. Animals 2019, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Buijs, S.; Keeling, L.; Rettenbacher, S.; Van Poucke, E.; Tuyttens, F. Stocking density effects on broiler welfare: Identifying sensitive ranges for different indicators. Poult. Sci. 2009, 88, 1536–1543. [Google Scholar] [CrossRef]
- Simitzis, P.; Kalogeraki, E.; Goliomytis, M.; Charismiadou, M.; Triantaphyllopoulos, K.; Ayoutanti, A.; Niforou, K.; Hager-Theodorides, A.; Deligeorgis, S. Impact of stocking density on broiler growth performance, meat characteristics, behavioural components and indicators of physiological and oxidative stress. Br. Poult. Sci. 2012, 53, 721–730. [Google Scholar] [CrossRef]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzum, M.; Toplu, H.O. Effects of stocking density and feed restriction on performance, carcass, meat quality characteristics and some stress parameters in broilers under heat stress. Rev. Med. Vet. 2013, 164, 546–554. [Google Scholar]
- Kim, H.-J.; Kim, D.; Kim, N.-Y.; Kim, J.; Jang, A. Anti-wrinkle and anti-inflammatory effects of a combination of topically applied horse oil and dietary enzyme hydrolysates from horse bone. Process Biochem. 2020, 90, 257–267. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar]
- Kim, H.-J.; Kim, H.-J.; Jeon, J.; Nam, K.-C.; Shim, K.-S.; Jung, J.-H.; Kim, K.S.; Choi, Y.; Kim, S.-H.; Jang, A. Comparison of the quality characteristics of chicken breast meat from conventional and animal welfare farms under refrigerated storage. Poult. Sci. 2020, 99, 1788–1796. [Google Scholar] [CrossRef]
- Ferket, P.R.; Gernat, A.G. Factors that affect feed intake of meat birds: A review. Int. J. Poult. Sci. 2006, 5, 905–911. [Google Scholar]
- Aslam, M.A.; İpek, E.; Riaz, R.; Özsoy, Ş.Y.; Shahzad, W.; Güleş, Ö. Exposure of broiler chickens to chronic heat stress increases the severity of white striping on the pectoralis major muscle. Trop. Anim. Health Prod. 2021, 53, 502. [Google Scholar] [CrossRef]
- Najafi, P.; Zulkifli, I.; Amat Jajuli, N.; Farjam, A.S.; Ramiah, S.K.; Amir, A.A.; O’Reily, E.; Eckersall, D. Environmental temperature and stocking density effects on acute phase proteins, heat shock protein 70, circulating corticosterone and performance in broiler chickens. Int. J. Biometeorol. 2015, 59, 1577–1583. [Google Scholar] [CrossRef]
- Tuerkyilmaz, M.K. The effect of stocking density on stress reaction in broiler chickens during summer. Turk. J. Vet. Anim. Sci. 2008, 32, 31–36. [Google Scholar]
- Kamel, N.F.; Hady, M.M.; Ragaa, N.M.; Mohamed, F.F. Effect of nucleotides on growth performance, gut health, and some immunological parameters of broiler chicken exposed to high stocking density. Livest. Sci. 2021, 253, 104703. [Google Scholar] [CrossRef]
- Shanawany, M. Broiler performance under high stocking densities. Br. Poult. Sci. 1988, 29, 43–52. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Samara, E.M.; Hussein, E.O.; Al-Ghadi, M.a.Q.; Al-Atiyat, R.M. Impacts of stocking density on the performance and welfare of broiler chickens. Ital. J. Anim. Sci. 2013, 12, e11. [Google Scholar] [CrossRef] [Green Version]
- Bianca, W.; Kunz, P. Physiological reactions of three breeds of goats to cold, heat and high altitude. Livest. Prod. Sci. 1978, 5, 57–69. [Google Scholar] [CrossRef]
- Mello, J.; Boiago, M.; Giampietro-Ganeco, A.; Berton, M.; Vieira, L.; Souza, R.; Ferrari, F.; Borba, H. Periods of heat stress during the growing affects negatively the performance and carcass yield of broilers. Arch. Zootec. 2015, 64, 339–345. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Li, S.; Arowolo, M.A.; Yu, Q.; Chen, F.; Hu, R.; He, J. Effect of resveratrol on growth performance, rectal temperature and serum parameters of yellow-feather broilers under heat stress. Anim. Sci. J. 2019, 90, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Campo, J.; Gil, M.; García Dávila, S. Effect of intermingling chicks and bird density on fear and stress responses in chickens. Arch. Geflugelkd. 2005, 69, 199–205. [Google Scholar]
- de Souza, L.F.A.; Espinha, L.P.; de Almeida, E.A.; Lunedo, R.; Furlan, R.L.; Macari, M. How heat stress (continuous or cyclical) interferes with nutrient digestibility, energy and nitrogen balances and performance in broilers. Livest. Sci. 2016, 192, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Ordaz-Ochoa, G.; Juárez-Caratachea, A.; Pérez-Sánchez, R.E.; Román-Bravo, R.M.; Ortiz-Rodríguez, R. Effect of spineless cactus intake (Opuntia ficus-indica) on blood glucose levels in lactating sows and its impact on feed intake, body weight loss, and weaning-estrus interval. Trop. Anim. Health Prod. 2017, 49, 1025–1033. [Google Scholar] [CrossRef] [Green Version]
- Jastrebski, S.F.; Lamont, S.J.; Schmidt, C.J. Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis. PLoS ONE 2017, 12, e0181900. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; He, X.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Increased fat synthesis and limited apolipoprotein B cause lipid accumulation in the liver of broiler chickens exposed to chronic heat stress. Poult. Sci. 2019, 98, 3695–3704. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.; Rahman, Z.; Ijaz, A.; Yousaf, M.; Ashraf, K.; Yaqub, T.; Zaneb, H.; Anwar, H.; Rehman, H. Single or combined effects of mannan-oligosaccharides and probiotic supplements on the total oxidants, total antioxidants, enzymatic antioxidants, liver enzymes, and serum trace minerals in cyclic heat-stressed broilers. Poult. Sci. 2011, 90, 2573–2577. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Jiang, L.; Zhong, H.; Lu, Y.; Zhang, L.; Wang, T. Effects of enzymatically treated Artemisia annua L. on growth performance and some blood parameters of broilers exposed to heat stress. Anim. Sci. J. 2017, 88, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Lumeij, J. Avian clinical biochemistry. In Clinical Biochemistry of Domestic Animals, 5th ed.; Kaneko, J.J., Harvey, J.W., Bruss, M.L., Eds.; Academic Press: Cambridge, MA, USA, 1997; pp. 857–883. [Google Scholar]
- Nawaz, A.H.; Amoah, K.; Leng, Q.Y.; Zheng, J.H.; Zhang, W.L.; Zhang, L. Poultry response to heat stress: Its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Front. Vet. Sci. 2021, 8, 699081. [Google Scholar]
- Surai, P.F. Antioxidant systems in poultry biology: Superoxide dismutase. J. Appl. Anim. Nutr. 2016, 1, 8. [Google Scholar] [CrossRef]
- Bai, W.K.; Zhang, F.J.; He, T.J.; Su, P.W.; Ying, X.Z.; Zhang, L.L.; Wang, T. Dietary probiotic Bacillus subtilis strain fmbj increases antioxidant capacity and oxidative stability of chicken breast meat during storage. PLoS ONE 2016, 11, e0167339. [Google Scholar]
- Livingston, M.; Cowieson, A.; Crespo, R.; Hoang, V.; Nogal, B.; Browning, M.; Livingston, K. Effect of broiler genetics, age, and gender on performance and blood chemistry. Heliyon 2020, 6, e04400. [Google Scholar] [CrossRef]
- Altan, Ö.; Pabuçcuoğlu, A.; Altan, A.; Konyalioğlu, S.; Bayraktar, H. Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br. Poult. Sci. 2003, 44, 545–550. [Google Scholar] [CrossRef]
- McCord, J.M. The evolution of free radicals and oxidative stress. Am. J. Med. 2000, 108, 652–659. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Zhang, S.; Zhang, H.; Teng, X. miR-187-5p/apaf-1 axis was involved in oxidative stress-mediated apoptosis caused by ammonia via mitochondrial pathway in chicken livers. Toxicol. Appl. Pharmacol. 2020, 388, 114869. [Google Scholar] [CrossRef]
- Zhang, Z.-w.; Wang, Q.-h.; Zhang, J.-L.; Li, S.; Wang, X.-L.; Xu, S.-w. Effects of oxidative stress on immunosuppression induced by selenium deficiency in chickens. Biol. Trace Elem. Res. 2012, 149, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Wang, M.; Han, M.; Zhu, X.; Xu, X.; Zhou, G. Expression of heat shock protein 70 in transport-stressed broiler pectoralis major muscle and its relationship with meat quality. Animal 2017, 11, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jia, G.; Zuo, J.; Zhang, Y.; Lei, J.; Ren, L.; Feng, D. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult. Sci. 2012, 91, 2931–2937. [Google Scholar] [CrossRef]
- Tang, S.; Yin, B.; Xu, J.; Bao, E. Rosemary reduces heat stress by inducing CRYAB and HSP70 expression in broiler chickens. Oxidative Med. Cell. 2018, 2018, 7014126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beloor, J.; Kang, H.; Kim, Y.; Subramani, V.; Jang, I.; Sohn, S.; Moon, Y.S. The effect of stocking density on stress related genes and telomeric length in broiler chickens. Asian-Australas. J. Anim. Sci. 2010, 23, 437–443. [Google Scholar] [CrossRef]
- Del Vesco, A.; Gasparino, E. Production of reactive oxygen species, gene expression, and enzymatic activity in quail subjected to acute heat stress. Sci. J. Anim. Sci. 2013, 91, 582–587. [Google Scholar] [CrossRef] [Green Version]
- Wettasinghe, M.; Shahidi, F. Scavenging of reactive-oxygen species and DPPH free radicals by extracts of borage and evening primrose meals. Food Chem. 2000, 70, 17–26. [Google Scholar] [CrossRef]
- Aberle, E.D.; Forrest, J.C.; Gerrard, D.E.; Mills, E.W. Principles of Meat Science, 4th ed.; Kendall/Hunt Publishing Co.: Dubuque, IA, USA, 2001. [Google Scholar]
- Ma, B.; Zhang, L.; Li, J.; Xing, T.; Jiang, Y.; Gao, F. Heat stress alters muscle protein and amino acid metabolism and accelerates liver gluconeogenesis for energy supply in broilers. Poult. Sci. 2021, 100, 215–223. [Google Scholar] [CrossRef]
- Lee, D.; Lee, H.J.; Jung, D.Y.; Kim, H.-J.; Jang, A.; Jo, C. Effect of an animal-friendly raising environment on the quality, storage stability, and metabolomic profiles of chicken thigh meat. Int. Food Res. J. 2022, 155, 111046. [Google Scholar] [CrossRef]
- Furukawa, K.; Toyomizu, M.; Kikusato, M. Possible role of corticosterone in proteolysis, glycolytic, and amino acid metabolism in primary cultured avian myotubes incubated at high-temperature conditions. Domest. Anim. Endocrinol. 2021, 76, 106608. [Google Scholar] [CrossRef]
- Zuo, J.; Xu, M.; Abdullahi, Y.A.; Ma, L.; Zhang, Z.; Feng, D. Constant heat stress reduces skeletal muscle protein deposition in broilers. J. Sci. Food Agric. 2015, 95, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Castellini, C.; Mugnai, C.; Dal Bosco, A. Effect of organic production system on broiler carcass and meat quality. Meat Sci. 2002, 60, 219–225. [Google Scholar] [CrossRef]
Items | Stocking Density (Birds/m2) | SEM 1 | p-Value | Linear | Quadratic | ||||
---|---|---|---|---|---|---|---|---|---|
16 | 18 | 21 | 23 | 26 | |||||
Initial BW (g/bird) | 1345.5 | 1347.3 | 1353.3 | 1351.7 | 1356.8 | 7.322 | 0.993 | 0.664 | 0.990 |
Final BW (g/bird) | 1988.6 ab | 2013.7 a | 1945.3 b | 1844.0 c | 1816.2 c | 8.361 | 0.010 | 0.001 | 0.327 |
BWG (g/bird) | 643.1 ab | 666.4 a | 592.0 abc | 492.3 bc | 459.4 c | 26.017 | 0.010 | 0.001 | 0.348 |
Feed intake (g/bird) | 1052.3 | 1067.3 | 1064.5 | 991.0 | 898.4 | 26.806 | 0.214 | 0.049 | 0.190 |
FCR | 1.66 | 1.60 | 1.80 | 2.09 | 2.06 | 0.105 | 0.505 | 0.118 | 0.881 |
Items | Stocking Density (Birds/m2) | SEM 1 | p-Value | Linear | Quadratic | ||||
---|---|---|---|---|---|---|---|---|---|
16 | 18 | 21 | 23 | 26 | |||||
Rectal temperature (°C) | |||||||||
d 28 | 40.5 | 40.6 | 40.6 | 40.7 | 40.6 | 0.040 | 0.515 | 0.112 | 0.434 |
d 31 | 42.0 b | 42.3 ab | 42.2 ab | 42.5 ab | 42.6 a | 0.111 | 0.013 | 0.001 | 0.835 |
d 35 | 42.4 b | 42.5 ab | 42.6 ab | 42.8 ab | 42.9 a | 0.077 | 0.021 | 0.002 | 0.946 |
Respiration rate (breaths/min) | |||||||||
d 28 | 60.5 | 62.3 | 60.5 | 62.4 | 62.0 | 0.744 | 0.876 | 0.571 | 0.924 |
d 31 | 105.5 b | 110.9 b | 115.8 b | 126.6 ab | 140.0 a | 3.075 | 0.001 | 0.001 | 0.299 |
d 35 | 163.5 d | 178.3 cd | 181.8 bc | 193.8 ab | 201.3 a | 2.627 | 0.001 | 0.001 | 0.672 |
Items | Stocking Density (Birds/m2) | SEM 1 | p-Value | Linear | Quadratic | ||||
---|---|---|---|---|---|---|---|---|---|
16 | 18 | 21 | 23 | 26 | |||||
Total cholesterol (mg/dL) | 139.9 | 128.6 | 146.0 | 139.6 | 144.1 | 2.761 | 0.322 | 0.322 | 0.737 |
Triglyceride (mg/dL) | 83.7 | 87.1 | 80.0 | 75.7 | 72.8 | 3.644 | 0.754 | 0.219 | 0.759 |
Glucose (mg/dL) | 216.5 | 223.1 | 198.5 | 186.4 | 180.6 | 5.423 | 0.044 | 0.004 | 0.773 |
Total protein (g/dL) | 3.2 ab | 3.1 b | 3.2 ab | 3.5 a | 3.5 a | 0.051 | 0.013 | 0.005 | 0.224 |
Albumin (g/dL) | 1.33 | 1.23 | 1.34 | 1.37 | 1.38 | 0.017 | 0.063 | 0.046 | 0.057 |
AST (U/L) | 356.8 | 343.8 | 367.7 | 344.4 | 327.5 | 8.963 | 0.706 | 0.379 | 0.479 |
ALT (U/L) | 2.7 | 2.1 | 2.7 | 2.2 | 2.1 | 0.103 | 0.250 | 0.186 | 0.929 |
Creatinine (mg/dL) | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.003 | 0.603 | 0.388 | 0.258 |
IP (mg/dL) | 7.8 | 7.9 | 8.0 | 7.1 | 7.6 | 0.161 | 0.367 | 0.235 | 0.796 |
LDH (mg/dL) | 2508.4 | 2491.0 | 2474.0 | 2327.8 | 2181.1 | 67.111 | 0.553 | 0.106 | 0.511 |
Storage Days (mg MDA/kg Meat) | Stocking Density (Birds/m2) | SEM 1 | p-Value | Linear | Quadratic | ||||
---|---|---|---|---|---|---|---|---|---|
16 | 18 | 21 | 23 | 26 | |||||
0 | 0.307 B | 0.309 B | 0.307 B | 0.317 B | 0.318 B | 0.003 | 0.453 | 0.108 | 0.567 |
3 | 0.311 B | 0.312 AB | 0.318 AB | 0.318 B | 0.318 B | 0.002 | 0.694 | 0.210 | 0.565 |
5 | 0.320 ABb | 0.321 ABb | 0.321 ABb | 0.339 ABab | 0.370 Aa | 0.005 | 0.001 | 0.001 | 0.023 |
7 | 0.336 Aab | 0.328 Ab | 0.334 Aab | 0.350 Aa | 0.350 ABa | 0.002 | 0.004 | 0.001 | 0.103 |
Items | Stocking Density (Birds/m2) | SEM 1 | p-Value | Linear | Quadratic | ||||
---|---|---|---|---|---|---|---|---|---|
16 | 18 | 21 | 23 | 26 | |||||
pH | 5.87 | 5.91 | 5.90 | 5.85 | 5.86 | 0.014 | 0.685 | 0.544 | 0.402 |
Cooking loss (%) | 15.8 | 15.2 | 15.4 | 14.8 | 15.5 | 0.254 | 0.821 | 0.660 | 0.419 |
WHC | 49.4 b | 51.7 ab | 54.5 a | 54.1 a | 52.9 ab | 0.530 | 0.010 | 0.007 | 0.014 |
Shear force (N) | 77.2 a | 74.7 a | 63.3 ab | 51.6 b | 49.8 b | 2.376 | 0.001 | 0.001 | 0.941 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, J.; Kim, H.-J.; Hong, E.-C.; Kang, H.-K. Effects of Stocking Density on Growth Performance, Antioxidant Status, and Meat Quality of Finisher Broiler Chickens under High Temperature. Antioxidants 2022, 11, 871. https://doi.org/10.3390/antiox11050871
Son J, Kim H-J, Hong E-C, Kang H-K. Effects of Stocking Density on Growth Performance, Antioxidant Status, and Meat Quality of Finisher Broiler Chickens under High Temperature. Antioxidants. 2022; 11(5):871. https://doi.org/10.3390/antiox11050871
Chicago/Turabian StyleSon, Jiseon, Hee-Jin Kim, Eui-Chul Hong, and Hwan-Ku Kang. 2022. "Effects of Stocking Density on Growth Performance, Antioxidant Status, and Meat Quality of Finisher Broiler Chickens under High Temperature" Antioxidants 11, no. 5: 871. https://doi.org/10.3390/antiox11050871
APA StyleSon, J., Kim, H. -J., Hong, E. -C., & Kang, H. -K. (2022). Effects of Stocking Density on Growth Performance, Antioxidant Status, and Meat Quality of Finisher Broiler Chickens under High Temperature. Antioxidants, 11(5), 871. https://doi.org/10.3390/antiox11050871