Microwave-Assisted Dendropanax morbifera Extract for Cosmetic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microwave-Assisted Dendropanax morbifera Extract (MA-DME)
2.3. Ingredient Analysis of MA-DME
2.4. Antioxidant Content Analysis of MA-DME
2.5. Cell Viability Assay
2.6. Evaluation of Intracellular Reactive Oxygen Species (ROS)
2.7. ABTS Radical Preparation Protocol
2.8. Tyrosinase Inhibitory Activity Assay
2.9. Elastase Inhibitory Effect Assay
2.10. Blue Light Penetration Experiment with MA-DME
3. Results and Discussion
3.1. Characterization of MA-DME
3.2. Total Contents of Phenols and Flavonoids
3.3. Cell Viability Assay
3.4. MA-DME Effect on Reactive Oxygen Species (ROS)
3.5. ABTS Free Radical Scavenging Activity
3.6. Tyrosinase Inhibitory Activity Assay
3.7. Elastase Inhibitory Assay
3.8. Blue Light Penetration Experiment with MA-DME
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amberg, N.; Fogarassy, C. Green Consumer Behavior in the Cosmetics Market. Resources 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and Resupply of Pharmacologically Active Plant-Derived Natural Products: A Review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Mandal, V.; Mohan, Y.; Hemalatha, S. Microwave Assisted Extraction—An Innovative and Promising Extraction Tool for Medicinal Plant Research. Pharmacogn. Rev. 2007, 1, 7–18. [Google Scholar]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of Functional Compounds from Plant Materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Delazar, A.; Nahar, L.; Hamedeyazdan, S.; Sarker, S.D. Microwave-Assisted Extraction in Natural Products Isolation. Nat. Prod. Isol. 2012, 864, 89–115. [Google Scholar]
- Park, S.-Y.; Karthivashan, G.; Ko, H.M.; Cho, D.-Y.; Kim, J.; Cho, D.J.; Ganesan, P.; Su-Kim, I.; Choi, D.-K. Aqueous Extract of Dendropanax morbiferus Leaves Effectively Alleviated Neuroinflammation and Behavioral Impediments in Mptp-Induced Parkinson’s Mouse Model. Oxidative Med. Cell. Longev. 2018, 2018, 3175214. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.M.; Han, J.S. A Study on the Utilization of Dendropanax morbifera Lev. Leaf Extract for Material of Functional Cosmetics and Hair Growth Products. Asian J. Beauty Cosmetol. 2006, 14, 277–288. [Google Scholar] [CrossRef]
- Kim, J.M.; Park, S.K.; Guo, T.J.; Kang, J.Y.; Ha, J.S.; Lee, D.S.; Lee, U.; Heo, H.J. Anti-Amnesic Effect of Dendropanax morbifera via Jnk Signaling Pathway on Cognitive Dysfunction in High-Fat Diet-Induced Diabetic Mice. Behav. Brain Res. 2016, 312, 39–54. [Google Scholar] [CrossRef]
- Kim, W.; Kim, D.W.; Yoo, D.Y.; Jung, H.Y.; Nam, S.M.; Kim, J.W.; Hong, S.-M.; Kim, D.-W.; Choi, J.H.; Moon, S.M.; et al. Dendropanax morbifera Léveille Extract Facilitates Cadmium Excretion and Prevents Oxidative Damage in the Hippocampus by Increasing Antioxidant Levels in Cadmium-Exposed Rats. BMC Complement. Altern. Med. 2014, 14, 428. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, R.; Cho, D.Y.; Su-Kim, I.; Choi, D.K. Dendropanax morbifera and Other Species from the Genus Dendropanax: Therapeutic Potential of Its Traditional Uses, Phytochemistry, and Pharmacology. Antioxidants 2020, 9, 962. [Google Scholar] [CrossRef]
- Kim, J.Y.; Yoon, J.-Y.; Sugiura, Y.; Lee, S.-K.; Park, J.-D.; Song, G.-J.; Yang, H.-J. Dendropanax morbiferus Leaf Extract Facilitates Oligodendrocyte Development. R. Soc. Open Sci. 2019, 6, 190266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.Y.; Kim, K.S.; Lee, Y.H.; Park, J.H.; Kim, J.-H.; Lee, S.-Y.; Kim, Y.-M.; Kim, I.S.; Kacew, S.; Lee, B.M.; et al. Dendropanax morbifera Ameliorates Thioacetamide-Induced Hepatic Fibrosis Via Tgf-Β1/Smads Pathways. Int. J. Biol. Sci. 2019, 15, 800–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Kim, S. Antioxidant and Antithrombotic Properties of Dendropanax morbifera Léveille (Araliaceae) and Its Ferments Produced by Fermentation Processing. J. Food Biochem. 2019, 43, e13056. [Google Scholar] [CrossRef]
- Youn, J.S.; Kim, Y.-J.; Na, H.J.; Jung, H.R.; Song, C.K.; Kang, S.Y.; Kim, J.Y. Antioxidant Activity and Contents of Leaf Extracts Obtained from Dendropanax morbifera Lev Are Dependent on the Collecting Season and Extraction Conditions. Food Sci. Biotechnol. 2019, 28, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Kim, K.A.; Kim, E.S.; Syed, A.S.; Kim, C.Y.; Lee, J.S.; Bae, O.N. Potent Anti-Inflammatory and Analgesic Actions of the Chloroform Extract of Dendropanax morbifera Mediated by the Nrf2/Ho-1 Pathway. Biol. Pharm. Bull. 2016, 39, 728–736. [Google Scholar] [CrossRef] [Green Version]
- Birhanu, B.T.; Kim, J.-Y.; Hossain, A.; Choi, J.-W.; Lee, S.-P.; Park, S.-C. An in Vivo Immunomodulatory and Anti-Inflammatory Study of Fermented Dendropanax morbifera Léveille Leaf Extract. BMC Complement. Altern. Med. 2018, 18, 222. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.-Y.; Jung, H.Y.; Kwon, H.J.; Kim, J.W.; Nam, S.M.; Chung, J.Y.; Choi, J.H.; Kim, D.W.; Yoon, Y.S.; Hwang, I.K. Effects of Dendropanax morbifera Léveille Extract on Hypothyroidism-Induced Oxidative Stress in the Rat Hippocampus. Food Sci. Biotechnol. 2016, 25, 1761–1766. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, K.S.; An, H.K.; Kim, C.H.; Moon, H.I.; Lee, Y.C. Dendropanoxide Induces Autophagy through Erk1/2 Activation in Mg-63 Human Osteosarcoma Cells and Autophagy Inhibition Enhances Dendropanoxide-Induced Apoptosis. PLoS ONE 2013, 8, e83611. [Google Scholar] [CrossRef]
- Sachan, R.; Kundu, A.; Dey, P.; Son, J.Y.; Kim, K.S.; Lee, D.E.; Kim, H.R.; Park, J.H.; Lee, S.H.; Kim, J.-H.; et al. Dendropanax morbifera Protects against Renal Fibrosis in Streptozotocin-Induced Diabetic Rats. Antioxidants 2020, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- An, N.Y.; Kim, J.E.; Hwang, D.; Ryu, H.K. Anti-Diabetic Effects of Aqueous and Ethanol Extract of Dendropanax morbifera Leveille in Streptozotocin-Induced Diabetes Model. J. Nutr. Health 2014, 47, 394–402. [Google Scholar] [CrossRef]
- Lee, C.; Yang, M.; Moon, J.-O. Antioxidant and Hepatoprotective Effects of the Ethanol Extract of Dendropanax morbifera Leveille on the T-Butyl Hydroperoxide-Induced Hepg2 Cell Damages. Korean J. Pharmacogn. 2019, 50, 32–36. [Google Scholar]
- Bae, D.; Kim, J.; Lee, S.-Y.; Choi, E.-J.; Jung, M.-A.; Jeong, C.S.; Na, J.-R.; Kim, J.-J.; Kim, S. Hepatoprotective Effects of Aqueous Extracts from Leaves of Dendropanax morbifera Leveille against Alcohol-Induced Hepatotoxicity in Rats and In Vitro Anti-Oxidant Effects. Food Sci. Biotechnol. 2015, 24, 1495–1503. [Google Scholar] [CrossRef]
- Song, J.H.; Kwak, S.; Kim, H.; Jun, W.; Lee, J.; Yoon, H.G.; Choi, K.C. Dendropanax morbifera Branch Water Extract Increases the Immunostimulatory Activity of Raw264. 7 Macrophages and Primary Mouse Splenocytes. J. Med. Food 2019, 22, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.-W.; Lee, S.-Y.; Kim, S.-G.; Heo, Y.-R.; Son, M.-K. Antimicrobial, Antioxidant and Cytotoxic Activities of Dendropanax morbifera Léveille Extract for Mouthwash and Denture Cleaning Solution. J. Adv. Prosthodont. 2016, 8, 172–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, I.-M.; Kim, M.-Y.; Park, S.-D.; Park, W.-H.; Moon, H.-I. In Vitro Evaluation of the Antiplasmodial Activity of Dendropanax morbifera against Chloroquine-Sensitive Strains of Plasmodium Falciparum. Phytother. Res. 2009, 23, 1634–1637. [Google Scholar] [CrossRef]
- Yun, J.-W.; Kim, S.-H.; Kim, Y.-S.; Choi, E.J.; You, J.-R.; Cho, E.-Y.; Yoon, J.-H.; Kwon, E.; Kim, H.-C.; Jang, J.-J.; et al. Preclinical Study of Safety of Dendropanax morbifera Leveille Leaf Extract: General and Genetic Toxicology. J. Ethnopharmacol. 2019, 238, 111874. [Google Scholar] [CrossRef]
- Chung, I.-M.; Seo, S.-H.; Kang, E.-Y.; Park, S.-D.; Park, W.-H.; Moon, H.-I. Chemical Composition and Larvicidal Effects of Essential Oil of Dendropanax morbifera against Aedes aegypti L. Biochem. Syst. Ecol. 2009, 37, 470–473. [Google Scholar] [CrossRef]
- Lee, S.Y.; Choi, E.J.; Bae, D.H.; Lee, D.W.; Kim, S. Effects of 1-Tetradecanol and Β-Sitosterol Isolated from Dendropanax morbifera Lev. On Skin Whitening, Moisturizing and Preventing Hair Loss. J. Soc. Cosmet. Sci. Korea 2015, 41, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.C.; Kim, G.C.; Song, S.Y.; Kim, H.J.; Yang, J.C.; Kim, B. Antioxidant and Antiaging Activities of Complex Supercritical Fluid Extracts from Dendropanax morbifera, Corni fructus and Lycii fructus. Korea J. Herbol. 2013, 28, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Alvand, Z.M.; Rajabi, H.R.; Mirzaei, A.; Masoumiasl, A. Ultrasonic and Microwave Assisted Extraction as Rapid and Efficient Techniques for Plant Mediated Synthesis of Quantum Dots: Green Synthesis, Characterization of Zinc Telluride and Comparison Study of Some Biological Activities. New J. Chem. 2019, 43, 15126–15138. [Google Scholar] [CrossRef]
- Moon, J.-Y.; Ngoc, L.T.N.; Chae, M.; Van Tran, V.; Lee, Y.-C. Effects of Microwave-Assisted Opuntia humifusa Extract in Inhibiting the Impacts of Particulate Matter on Human Keratinocyte Skin Cell. Antioxidants 2020, 9, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterman, P.G.; Mole, S. Analysis of Phenolic Plant Metabolites; Blackwell Scientific: Hoboken, NJ, USA, 1994. [Google Scholar]
- Woisky, R.G.; Salatino, A. Analysis of Propolis: Some Parameters and Procedures for Chemical Quality Control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Mingle, C.E.; Newsome, A.L. An Amended Potassium Persulfate Abts Antioxidant Assay Used for Medicinal Plant Extracts Revealed Variable Antioxidant Capacity Based Upon Plant Extraction Process. bioRxiv 2020. [Google Scholar] [CrossRef]
- Suganya, P.; Jeyaprakash, K.; Mallavarapu, G.R.; Murugan, R. Comparison of the Chemical Composition, Tyrosinase Inhibitory and Anti-Inflammatory Activities of the Essential Oils of Pogostemon plectranthoides from India. Ind. Crops Prod. 2015, 69, 300–307. [Google Scholar] [CrossRef]
- Tu, P.T.B.; Tawata, S. Anti-Oxidant, Anti-Aging, and Anti-Melanogenic Properties of the Essential Oils from Two Varieties of Alpinia zerumbet. Molecules 2015, 20, 16723–16740. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Kim, J.; Hwang, W.; Lee, B.D.; Lee, K. In Vitro Anti-Tyrosinase Activity of Viscumneoside III and Homoflavoyadorinin B Isolated from Korean Mistletoe (Viscum album). Korean J. Plant Resour. 2016, 29, 690–698. [Google Scholar] [CrossRef] [Green Version]
- Casagrande, R.; Georgetti, S.R.; Verri, W.; Dorta, D.; Santos, A.C.; Fonseca, M.J. Protective Effect of Topical Formulations Containing Quercetin against Uvb-Induced Oxidative Stress in Hairless Mice. J. Photochem. Photobiol. B Biol. 2006, 84, 21–27. [Google Scholar] [CrossRef]
- Fulop, T.; Khalil, A.; Larbi, A. The Role of Elastin Peptides in Modulating the Immune Response in Aging and Age-Related Diseases. Pathol. Biol. 2012, 60, 28–33. [Google Scholar] [CrossRef]
- Thring, T.S.; Hili, P.; Naughton, D.P. Anti-Collagenase, Anti-Elastase and Anti-Oxidant Activities of Extracts from 21 Plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Horng, C.-T.; Wu, H.-C.; Chiang, N.-N.; Lee, C.-F.; Huang, Y.-S.; Wang, H.-Y.; Yang, J.-S.; Chen, F.-A. Inhibitory Effect of Burdock Leaves on Elastase and Tyrosinase Activity. Exp. Ther. Med. 2017, 14, 3247–3252. [Google Scholar] [CrossRef] [Green Version]
- Popoola, O.K.; Marnewick, J.L.; Rautenbach, F.; Ameer, F.; Iwuoha, E.I.; Hussein, A.A. Inhibition of Oxidative Stress and Skin Aging-Related Enzymes by Prenylated Chalcones and Other Flavonoids from Helichrysum teretifolium. Molecules 2015, 20, 7143–7155. [Google Scholar] [CrossRef] [PubMed]
- Villareal, M.O.; Kume, S.; Neffati, M.; Isoda, H. Upregulation of Mitf by Phenolic Compounds-Rich Cymbopogon schoenanthus Treatment Promotes Melanogenesis in B16 Melanoma Cells and Human Epidermal Melanocytes. BioMed Res. Int. 2017, 2017, 8303671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.-S.; Chen, H.-J.; Huang, J.-P.; Lee, P.-C.; Tsai, C.-R.; Hsu, T.-F.; Huang, W.-Y. Kinetics of Tyrosinase Inhibitory Activity Using Vitis vinifera Leaf Extracts. BioMed Res. Int. 2017, 2017, 5232680. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Uyama, H.; Kobayashi, S. Inhibition Effects of (+)-Catechin–Aldehyde Polycondensates on Proteinases Causing Proteolytic Degradation of Extracellular Matrix. Biochem. Biophys. Res. Commun. 2004, 320, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Baylac, S.; Racine, P. Inhibition of Human Leukocyte Elastase by Natural Fragrant Extracts of Aromatic Plants. Int. J. Aromather. 2004, 14, 179–182. [Google Scholar] [CrossRef]
No | Compound | Formula | Ion Mode | Retention Time | Extract Mass (m/z) | Suggested Role |
---|---|---|---|---|---|---|
1 | Quinic acid | C7H12O6 | – | 0.59 | 191.0558 | Astringent, anti-viral |
2 | 1-O-Caffeoylquinic acid | C16H18O9 | – | 2.95 | 353.0874 | Phenolic acid, antioxidant, antibacterial, anticancer, antihistamine, anti-viral |
3 | 4-O-Caffeoylquinic acid | C16H18O9 | – | 3.52 | 353.0871 | |
4 | 3-[(4-O-Acetyl-6-deoxy-alpha-L-mannopyranosyl)-oxyl]-2-(3,4-dihydroxyphenyl)-5-hydroxy-6-methoxy-4-oxo-4H-chromen-7-yl 2-O-acetyl-6-deoxy-alpha L-mannopyranoside | C32H36O18 | – | 3.43 | 707.1825 | Flavonoids |
5 | Benzyl alcohol xylopyranosyl(1->6)glucopyranoside | C18H26O10 | – | 3.71 | 401.1437 | Tea aroma glycosidic precursor bioactivation |
6 | Apigenin-6-C-glucosylglucoside (Isovitexin) | C27H30O15 | – | 3.79 | 593.1497 | Anti-inflammatory, antioxidant, antibacterial, anti-Alzheimer’s disease, anti-diabetic, anti-viral |
+ | 3.79 | 595.2663 | ||||
7 | Apocynoside I | C19H30O8 | – | 3.86 | 431.1901 | Inhibition of CYP2C9—causing aging and lowered disease resistance |
8 | Corchoionoside C | C19H30O8 | – | 3.86 | 431.1909 | Flavonoids |
9 | 1,3-Dihydroxy-2-hydromethylanthraquinone-3-B-β-D-xylopyranose(1->6)-β-D-glucopyranoside | C16H28O14 | – | 4 | 563.1395 | N/A |
+ | 3.99 | 565.2557 | ||||
10 | Apiin | C16H28O14 | – | 4.09 | 563.1402 | Anxiolytic, anti-inflammatory, anti-cancer, anti-fungal |
+ | 4.09 | 565.1562 | ||||
11 | Isochaftoside | C16H28O14 | – | 4.23 | 563.1399 | Flavones |
12 | 7-O-β-D-gluocopyranosylkaempferol | C21H20O11 | – | 4.24 | 447.0924 | Anti-inflammatory, anti-cancer, anti-diabetes Inhibit vascular endothelialinflammation Protect the cranial nerve and heart function Treat fibroproliferative disorders, anti-viral |
+ | 4.13 | 449.1083 | ||||
13 | Kaempferol-3,7-di-O-β-D-glucopyranoside | C27H30O16 | – | 4.46 | 609.1453 | |
+ | 4.46 | 611.1618 | ||||
14 | Nelumboroside A | C27H30O16 | – | 4.57 | 609.1450 | Antioxidant |
15 | 3,8-Di-C-glucosylapigenin | C27H30O15 | – | 4.79 | 593.1499 | N/A |
16 | Genistein-7,4′-di-O-β-D-glucoside | C27H30O15 | – | 4.79 | 593.1499 | Prevents hypertension, anti-cancer, maintaining bone mineral density, anti-Alzheimer’s disease, anti-viral |
17 | Terestigmine | C21H33N3O3 | – | 9.08 | 374.2436 | Cholinesterase inhibitor (treatment of cognition disorders) |
18 | N-(3-Methoxy-5-nitrophenyl)-2-(5-methyl-3,4-dinitro-1H-pyrazol-1-yl)acetamide | C13H12N6O8 | + | 0.56 | 381.0795 | N/A |
19 | Guanine | C5H5N5O | + | 1.45 | 152.0566 | Nucleobases |
20 | Daidzein-4′,7-diglucoside | C27H30O14 | + | 4.42 | 579.1728 | Phytoestrogen |
21 | Viscidulin I | C15H10O7 | + | 4.46 | 303.0502 | Inhibitor of hepatocellular carcinoma cells (protein Glypican-3) |
22 | Viscumneoside III | C25H26O13 | + | 4.47 | 535.1454 | Tyrosinase inhibition (skin whitening) |
23 | Aloe emodin 8-glucoside | C21H20O10 | – | 4.51 | 431.0971 | Anti-diabetic, DNA targeting molecule, anti-viral |
+ | 4.51 | 433.1132 | ||||
24 | 3,7,8,3′,4′-Pentahydroxyflavone (Quercetin) | C15H10O7 | + | 4.63 | 303.0499 | Strong antioxidant flavonoids, xanthine oxidase inhibition, antihyperuricemic, anti-inflammatory, enhances immune-regulation |
25 | Rubianic acid (dithiooxamide) | C25H26O13 | + | 4.65 | 535.1451 | Chelating agent (detection of copper), building block in the synthesis of cyclen |
26 | 3-Hydroxy baicalein | C15H10O6 | + | 4.79 | 287.0548 | Anxiolytic, antiestrogen, anti-inflammatory, anti-cancer, antibacterial, anti-viral |
27 | 7-Hydroxy-1-methoxy-2-methoxyxanthone | C15H10O6 | + | 4.79 | 287.0548 | N/A |
28 | 6,6′-Iminobis(2,2-dimethyl-1-hexanol) | C16H35NO2 | + | 7.7 | 274.2738 | N/A |
29 | N~2~-[(2S,4S,5S)-5-Amino-6-cyclohexyl-4-hydroxy-2-isopropylhexanoyl]-N-[2-pyridinylmethyl)-L-isoleucinamide | C27H46N4O3 | + | 9.08 | 475.3646 | N/A |
30 | 4-N-([1,2,4]triazolo[4,3-a]pyridin-3-ylmethyl)butanamide | C19H27N9O | + | 9.08 | 398.2415 | N/A |
31 | 1-Methyl-2-[(Z)-8-tetradecenyl]-4(1H)-quinolone | C24H35NO | + | 9.08 | 276.2596 | N/A |
32 | O-Benzyl-N-[9-(1H-imidazol-1-yl)nonanoyl]-L-seryl-N~6~-[(benzyloxy)carbonyl]-N-(2-cyclohexylethyl)-L-lysinamide) | C44H64N6O6 | + | 9.08 | 773.4956 | N/A |
Sample | Total Phenols (mg GAE g−1) | Total Flavonoids (mg QE g−1) |
---|---|---|
MA-DME | 313.03 ± 3.9 | 32.37 ± 0.9 |
Black extract 5% | 252.25 ± 6.9 | 21.04 ± 1.1 |
Transparent extract 5% | 30.59 ± 4.2 | 0 |
Concentration (µg/mL) | Elastase Inhibition Ratio (%) * | ||
---|---|---|---|
MA-DME | Retinol | Adenosine | |
6.25 | 4.6 ± 2.0 | 4.6 ± 2.5 | 3.5 ± 1.4 |
12.5 | 6.8 ± 2.4 | 13.8 ± 1.0 | 12.2 ± 0.88 |
25 | 13.1 ± 1.2 | 9.04 ± 3.0 | 11.8 ± 2.9 |
50 | 14.9 ± 1.7 | 13.6 ± 0.90 | 14.1 ± 1.0 |
100 | 14.1 ± 0.60 | 13.3 ± 0.21 | 8.7 ± 1.3 |
200 | 15.8 ± 0.61 | 11.0 ± 1.3 | 13.0 ± 1.5 |
400 | 16.0 ± 0.43 | 14.5 ± 0.70 | 13.7 ± 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, H.T.; Park, J.-S.; Kim, S.-H.; Moon, J.-Y.; Lee, Y.-C. Microwave-Assisted Dendropanax morbifera Extract for Cosmetic Applications. Antioxidants 2022, 11, 998. https://doi.org/10.3390/antiox11050998
Hoang HT, Park J-S, Kim S-H, Moon J-Y, Lee Y-C. Microwave-Assisted Dendropanax morbifera Extract for Cosmetic Applications. Antioxidants. 2022; 11(5):998. https://doi.org/10.3390/antiox11050998
Chicago/Turabian StyleHoang, Hien Thi, Jae-Seok Park, Seong-Hyeon Kim, Ju-Young Moon, and Young-Chul Lee. 2022. "Microwave-Assisted Dendropanax morbifera Extract for Cosmetic Applications" Antioxidants 11, no. 5: 998. https://doi.org/10.3390/antiox11050998
APA StyleHoang, H. T., Park, J. -S., Kim, S. -H., Moon, J. -Y., & Lee, Y. -C. (2022). Microwave-Assisted Dendropanax morbifera Extract for Cosmetic Applications. Antioxidants, 11(5), 998. https://doi.org/10.3390/antiox11050998